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residues of a11 its poles are curls, we conclude
that B„„(&+ 1, Z) differs from a curl by at most a
bilinear expression in any N momenta other than g,

B„,(%+1,Z)=pn, , (p„'p'„-p~p'„)+ curl, (8)

where the summation extends over all i and j such
that

l~i&j~¹
Put equal to zero all momenta excepting p;, p, , and

p„+,. Provided that N~ 3, the momentum of at
least one 8'W line has been put equal to zero, so
that the left-hand side of (8) vanishes by construc-
tion. The curl vanishes since Z =0. Thus, ~,. =0.
This argument is applied to all i and j satisfying
(9), thereby proving that B„„(N+1, Z) is a curl.
This completes the induction.
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Two models of production amplitudes are presented which do not lead to a violation of the
Froissart bound when the leading Regge singularity reaches J=1. Both models have a boot-
strap solution with the two-body amplitude having the form [{J-1) -Ro t] 3

It is well known that the multi-Regge model in
its simplest form leads to a violation of the Frois-
sart bound for total cross sections if the leading
Regge pole reaches 1 at t= 0.' This difficulty can
of course be avoided by assuming that the Pome-
ranchuk pole has an intercept, n(0), slightly less
than 1.' Alternatively one can attempt to construct
models of production amplitudes which will not
lead to a violation of the unitarity bound when the
leading 4-plane singularity reaches 1. In this note
we present two such models. One is based on the
unitarity model of l3ash, Fulco, and Pignotti'
(DFP model) and the other on a generalization of
the relativistic eikonal model. ' Both of these mod-
els reduce to the multi-Regge model if the leading
Regge singularity is well below 1, but they give
strikingly different results when it reaches I.

Xn particular„both models present a self-consis-
tent solution with the two-body amplitude having
the J-plane structure

as suggested by the eikonal model. ' In these
models the two-body amplitude satisfies unitarity
exactly, so there is no violation of the Froissart
bound. Interestingly enough a simple pole with
o (0) = 1 does not bootstrap itself in our models, al-
though it does not lead to a violation of the unitar-
ity bound.

Let us first consider the DFP model. Following
Ref. 3, we work in impact-parameter space and
write

M2„(s, s) =B2„(1 iB22/4s) ', -n=2, 3, . . . . (2)

The form of Eg. (2) guarantees that the unitarity
condition will be satisfied at high energies, if all
multiparticle effects are included in the I3,„. In
the spirit of the multi-Regge model we write'

n-1
B,„=G'g" ' Q M„(s„b,).

s, is the subenergy of the i and i+1 particles and

b, is their separation in impact-parameter space.
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For the Pomeranchuk singularity we expect B»
to be pure imaginary at high energies. Writing
B» =i C, we see that the two-particle amplitude
will satisfy unitarity exactly provided

C(s, b) = Q ~B,„~'p„—= Q C„(s,b), (4)

where in the approximatjon mentioned in Ref. 6
the n-particle phase-space factor p„ is given by

p„=—— d'b, dy& 5 s yj —1

(5)

with ye =1/s, . Now Eq. (1) implies that M»(s, b) is
of the form

M (s, b) = 4 is0(b —b'), (8)

We have taken the masses of all particles to be uni-
ty. If all subenergies are large,

n-1
g s, -=s and Q b, =b.

high energies. Obviously the average multiplicity
goes to 2.

Let us now turn to the eikonal model. We shall
consider diagrams of the type shown in Fig. 1.
The wavy lines may be thought of as quantum elec-
trodynamics or y' ladders. The loops at which
the particles are produced will eventually be ap-
proximated by constants. As usual one is to con-
sider not only the diagram of Fig. 1 but all those
that can be obtained from it by interchanging the
legs of the ladders. The important new feature in
this model is that when the leading J-plane singu-
larity reaches 1, diagrams in which the produced
particles come from different chains are just as
important as those in which they come from a sin-
gle chain. We believe that this feature will hold
for any model based on Feynman diagrams.

We denote the amplitude in which n, —2 particles
are produced from one chain, n, -2 from a second
chain, etc. by M, .„...„.When all subenergies
are large, the usual eikonal calculation gives"

with b, =R, ln(s/s, ). It is an easy matter to com-
pute the C„'s and we find

8Ps[s(b 2 b2)1/2]3n-5
(

(b 2 b2)1/2(8 5) t 0

N-1 N

M. =e'""'b' — g g"' '
ng 28 5=1

n) 1

x g M»(s,.„,;b,.„,),j=1
(12)

where a and P are constants depending on R, and g.
Therefore, 7

g b 2 b2)1/2I
2 b2 1/2

"b ' b2)'/2
2P

% 0 g(b 2 b2) . b 2 b2
0 ~ 0

where

n~ -1
g s, „,=s,
j=1

e' =1+—Ig$ Z

2s

Q b, „,=b
j=1

Substituting Eg. (8) into Eg. (2) for the case %=2
gives, to leading order in ln(s/s, ),

M»(s, b) =4ise(b, ' —b'),

At high energies we expect I» and therefore 6 to
be pure imaginary; so we write 5 =ia. The unitar-
ity condition for I» then becomes"

ImM»(s, b)=2s(l —e ')

or

M»(s, t) = 8visb, ~,(b.~i)
„g[C'(s, 5)/s]"

(14)

so the bootstrap is complete. '
It should be noticed that the S matrix is given by

1 +iB„/4s
1 —iB»/4s '

so S22 = -1 for b'«b, ' and large s. In other words
all scattering takes place inside a disk of radius
b, =R, ln(s/s, ). Except for a small region at the
edge of the disk, the scattering is entirely elastic
and we have, to leading order in ln(s/s, ),

The inelastic cross section comes entirely from
the edge of the disk and goes to a constant at very

FIG. 1. A typical diagram for the production ampli-
tudes in the eikonal model.
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with

C'(s, b) = g C„'(s, b)
fl- 3

n- J.

= P g'" ' g IM„(s„h,) I'p„.
n=3 f=l

If M»(s, tt) = 2 is 6(b,' —b'), then we have C„'(s, h)
= (—,')"C„(s, b) and a bootstrap solution is achieved
w't.shs 9

a(s, h) = C '/2s . (16)

+tnt + elastic + inelastic 2 tt ( / o) (17)

The cross section for the production of n parti-
cles is easily found by expanding the last term in

Eq. (14) in powers of g'. We have

0= dbe ' 5~p

Although the elastic scattering amplitude differs
from that of the DFP model only by a factor of 2,
the physics is completely different. In the present
model we have a totally absorbing disk of radius

bc =Rein(s/s, ), and S»(s, b) = 0 for b'«b, ' The.
elastic and inelastic cross sections are equal and

we find

which leads to an average multiplicity of

n =Z(s/ s,)'/ln(s/s, )'.
It should be noted that unlike the DFP model all
production in the eikonal model comes from the in-
terior of the disk.

We realize that the two models presented here
are quite crude since the form of the production
amplitudes are expected to be realistic only when

all subenergies are large. Furthermore the ap-
proximations made to compute phase-space inte-
grals are only valid also when all the subenergies
are large. Nevertheless, it appears that the main
feature of both models is independent of the ap-
proximations we have made, namely, that unitar-
ity requires that the leading J-plane singularity be
iterated when this singularity is near J = 1. It al-
so seems quite likely that as suggested by the
eikonal model, diagrams corresponding to produc-
tion of particles from more than one chain should
be included in the inelastic amplitudes.

While it is clear that some predictions such as
multipliciti. es and inelastic cross sections are
quite model-dependent, others, like the (lns)' be-
havior of total cross sections and the (lns) '
shrinkage of the diffraction peaks, seem to be
consequences of the general features of the mod-
els. '

*Supported by the National Science Foundation.
J. Finkelstein and K. Kajantie, Phys. Letters 26B,

305 (1968).
2See, for example, G. F. Chew and D. Snyder, Phys.

Rev. D 1, 3453 (1970).
3I. Dash, J. R. Fulco, and A. Pignotti, Phys. Rev. D 1,

3164 (1970).
4R. L. Sugar, 1971 Boulder Summer School Lectures

(unpublished).
5J. Finkelstein and F. Zachariasen, CERN Report No.

CERN-TH-1297, 1971 (unpublished). Our models are
similar in spirit to the idea presented in this paper.

~Although Eqs. (3) and (12) are at most expected to be
valid when all subenergies are large we wiQ use them
throughout phase space. We also make the usual approx-
imations to phase space which are only valid for large
subenergies. We do not believe these approximations
alter the qualitative features of the model.

trourier transforming Pq. {8) gives the well-known
result C(s,t)~8 +' @o &, which shows that the simple1 a+R2t &

multiperipheral model would give a violation of the
Froissart bound for the input singularity of Eq. (1).

Notice that the bootstrap condition does not determine
the magnitude of +D

9If we had started by assuming that the leading J-plane
singularity entering B2„, n& 3 was a simple pole with
0'{0)=1, then, of course, B»=~ would have a pole with
t =0 intercept to the right of J=1. Substituting into Eq.
{2) leads to an expression for M&2 having the form of Eq.
(1). Thus the bootstrap solution will be achieved by a
second iteration. A similar result is true for the eikonal
model.

We only consider interactions between nearest neigh-
bors on the same chain and between the two incident par-
ticles. The latter give rise to long-range correlations
which are crucial if unitarity is to be satisfied. . Other
long-range correlations arising from non-nearest-neigh-
bor interactions have been neglected for simplicity. How-
ever, they may well be important.

To be consistent with our nearest-neighbor approxi-
mation we must only retain terms in the inelastic uni-
tarity sum arising when ladders of equal length are
joined together.


