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A previously suggested method for suppression of exotic resonances in meson-meson
scattering is extended to the case of the meson-baryon interaction. The diagonalizing matrix
S is identified as one of the crossing matrices itself; this is also seen to be essential for
the reproduction of the correct signature of the {-channel trajectories.

In a recent paper' we have suggested an explicit
method for suppressing exotic resonances in
meson-meson scattering, which avoids the use of
group theory or a tensorial decomposition. Some
indications were given also regarding the applica-
bility of the method to the case of meson-baryon
(MB) scattering (the case of interaction of Sakata-
model triplets with mesons was considered in the
paper referred to above). In this note we have
considered an extension to the case of the MB
interaction, prototypes of which are 8 +10-8 +10,
8+8-8+10, etc. In paper I we have observed -
that the crucial step in our process was the deter-
mination of the diagonalizing matrix S. Here we
also proceed with the same motivation for the
process 8 +10-~8+10. The (s,«) and (s, t) cross-
ing matrices for this case are given by?
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The eigenvalues of X, are seen to be (+1,+1,+1,
—-1). Then, as has been observed before, the
determination of S reduces to the solution of the
eigenvalue equation

Xk =£&;, (2)

where £, are the columns of the matrix ST. In the
present case we have obtained the following set of

eigenvectors with the symmetry property indicated:
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— 3% Ag~ %A, - s Ay + Ay, antisymmetric.
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We can now write the most general functional form
for these eigenvectors according to the prescrip-
tion laid down in paper I:

—%AS +A10=.f’(s, t) +f’(u7 t) +g(3,u) =X (Say) ,
_%A8+A27=g’(s> t)+gJ(u’ t)+h(s,u)= Y,

. (4)
+4Ag+Ags=h'(s, 1) +h'(u, ) +j(s,u)= Z,

~ 38 Ag = T Ao~ FsAgrt Ags=p(s, 1) = plu,)=T.
These equations, when coupled with the constraint

that A,, and A, in the s channel and A,, in the ¢
channel do not contain any poles, yield

Aypr=0,

Ay = '?'g(“’ ),

A= 32 &(s,u) - —254'[8'(747 H+g'(s,l,

Ag=3r gls,u) —6lg'(u, ) +g'(s, B)].
A similar method can be followed for 8 +8 -8 + g)_
At this stage it is interesting to make a simple
observation. We form the following linear com-
binations:

(a) 10x+27Y+35Z2,

(b) 35Z+30x+81Y,

(¢) 5Zz-3Yy-10X,

which also possess the property of being eigen-
vectors with eigenvalue +1, i.e., symmetry under
(s, u) interchange. Then it is easily seen that (a),
(b), (c), and T of Eq. (4) are simply proportional
to the rows of X,,. Thatis, X, is one of the pos-
sible solutions of S. This phenomenon has been
seen to occur also in the case of 3+8—~3+8 and
8+8-8+10.

~ Under the above circumstances it seems plausi-
ble to formulate the following lemma:

Lemma. For any hadron-hadron scattering the
crossing matrix connecting those two channels
with identical isospin states is always diagonal -
izable by a second one connecting one of the above
channels and the third one. That is, if X, and X
stand for our usual crossing connections, then

thXus = TIth *

®)
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The proof of the above lemma is facilitated by
following the observation made by Dyson® that the
crossing matrices can be represented by 6j sym-
bols or Racah coefficients, and by making use of
an elegant property of these coefficients which
was discovered by Rose and Yang.*

Let us consider the process a+b - c+d and the
crossed one a+d- c+b; then

X,, = (=1)%*(2S +1)W(astd; bc) ,
X, =(=1)2"%(2S + 1)W(abdc; su) .

The following property of Racah coefficients,*

E(__l)j+13+j3(2l3+1)3j1 jz .73(
Y A

b s,
Ja by ls I L j
yields

(th)ij(Xus)jk= (_1)‘(th)ik (6)

if and only if b=d. It should be kept in mind that
the above calculation is done in the domain of
SU(2) symmetry and can be easily extended to the
case of SU(3), as the Clebsch-Gordan coefficients

of SU(3) have the same property® as those of SU(2).

In fact, the steps remain the same but for the
terminology. Equation (6) suggests that eigen-
values —or, in other words, the symmetry prop-
erties —of the rows of X,  (i.e., the eigenvectors)
are determined by their respective dimension in

the irreducible representation of the SU(2) group.
It has been observed that this rule plays the same
role even in the case of SU(3). It further suggests
that we need not be cognizant about the external
states involved in the scattering. We have ob-
served that states labeled by the irreducible rep-
resentations 1, 8., 27 occur always with eigen-
value +1, and those labeled by 10, 10, 8, with
eigenvalue -1, whatever be the scattering process
under consideration.

In conclusion it can be remarked that the simple
structure of S obtained above is intimately con-
nected with the signature of the ¢-channel Regge
trajectories, as the physical amplitudes of the ¢
channel, being eigenvectors of X, are either
symmetric or antisymmetric under (s,«) inter-
change. This implies that they are of the form
f(s,8) +f(u,t), where fis a dual function, and in
the limit s -~ », ¢ fixed yield the Regge behavior
with proper signature.

A further remark regarding the application of
the method of baryon-antibaryon scattering is
worth mentioning. It has been shown® that there
are inherent difficulties in the construction of the
amplitude in the BB case, under the assumption
of global duality and absence of exotic resonances.
Our present analysis is also not immediately ap-
plicable to this case.
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