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The conditions imposed by the saturation of tPe isospin-factored current algebra are-studied
for a class of currents which includes the canonical currents belonging to second-order wave
equations. The aim is to understand in a simple, transparent way the nature and extent of the
conditions imposed by current algebra, and to see how, iri particular models, these conditions
reduce more general wave equations to the special form (ap + 2g p + s)g(p) =0 predicted in
earlier work. A recently proposed wave equation which appears at first sight to contradict
the prediction is shown to contain no contradiction.

INTRODUCTION

In recent papers' ' the saturation of current al-
gebra at infinite momentum has been studied in
some detail. Particular attention has been paid to
the case of the isospin-factored algebra (corre-
sponding to saturation with a tower of -particles of
fixed isospin, e.g., a tower of I=-,' K mesons or
= particles). No physically satisfactory solution
ha, s been found for this case, and the nontrivial
solutions which have been found can be expressed
in terms of the canonical current associated with
an infinite-component wave equation of the form

(uP'+ 2g„p" + &)g(p) =o,

where g(p) carries the infinite-component repre-
sentation of SL(2, C) and a, b, and g„are SL(2, C)
scalars and vectors, respectively. However, these
results for the isospin-factored algebras have been
derived in most cases by guesswork, ' and in the
one attempt at a systematic analysis, ' they come
as the end result of some algebraic manipulations
in the course of which a number of technical as-
sumptions are made (see below). Hence it would

seem to be desirabl'e to obtain a better intuitive
understanding of how the results come about. This
desire has recently been accentuated by the appear-
ance of a model' which at first sight seems to con-
tradict the results of Ref. 2.

Accordingly, the broader purpose of the present
paper is to try to achieve the better intuitive under-
standing just mentioned of the isospin-factored
case. A secondary purpose is to use this better

understanding to show that the contradiction be-
tween the model of Ref. 4 and the results of Ref. 2
is only apparent —the reason being that, in the
model, not all the physical requirements have been
imposed.

To fix our ideas, let the matrix elements of the
local current (at time zero) J„(x,0), between one-
particle states ~np) where p is the 3-momentum
and n denotes mass m(n), spin, helicity, and in-
ternal quantum numbers, be

(n p I J„(x,0)lnp) = e'"'-"'"y„'.(p') pl„(pd 'pp, )q„(p)

"'"0'(0)N '(P')

" I„(POP'Pp. )I .(P)g. (o), (I 2)

where

l,„(p) = exp -i sinh ',( .
~

)p, m(n) p

Here, g„(p) belongs to any representation (finite-
dimensional, infinite sum of finite-dimensional, or
strictly infinite-dimensional representation) of the
spin group SL(2, C), P is a metric in spinor space,
I„ is a Lorentz 4-vector, and K is the boost vector
in spinor space.

It should be emphasized that the current J„(x,0)
and the states ~np) are the conventional current
and states of second-quantized field theory. In par-
ticular, the current J„(x,0) is self-adjoint and the

states ~np) have positive norm. This will be as-
sumed throughout. Only for the matrix elements
(n'p'

~ J„(x,0)~np) do we introduce spinorial notation,
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and the metric p in spinor space is not assumed to
be positive.

In conventional theories the "dynamics" of the
form factors is contained in I„,. and the "kinemat-
ics" in the boost term L„(p). However, the satura-
tion of the isospin-factored current apparently re-
verses the situation. It apparently forces I„ to take
the simple linear form

(1.3)I„(p,'p'pp, ) =~( p„' +p„)+2g„

associated with the wave equation (1.1), and hence
forces the moinentum-transfer dependence of the
form factors to reside in the factors L„(p), in
which case it can be nontrivial only if p(p) carries
a strictly infinite-dimensional representation of
SL(2, C). The problem is to understand how this
reversal of the roles of I„(p'p} and L„(p}comes
about.

Qne. can separate the question into two parts.
(1) Why does the saturation force I (p'p) to be a

polynomial Iand hence remove from I„(p'p) the
"dynamical" content, of the theory] 'P

(2) Given that f„(p'p) is a polynomial, why does
the saturation force it to be linear?

In this paper we shall attempt to answer only the
second question, and that only for a special class
of currents. However, we feel that the answer for
this special case clarifies the general situation,
since it is probable that the mechanism that re-
duces polynomials to linear functions for the spe-
cial class of currents is the mechanism which is
operating also for general nonpolynomial currents.

Before proceeding with the discussion of the
present paper there are two points which we should
perhaps discuss, as they have been treated only
implicitly in previous articles. The first concerns
the general philosophy of saturation at p3 =

More precisely, since the transition to p, =~ is a
kinematical exercise, one may legitimately ask:
Where does the physics lie? The answer is that
the saturation assumption at p, = ~ is not meant to
provide a complete physical theory —"there is no
Hamiltonian"- but is meant only to provide re-
strictions on possible theories, or rather to pro-
vide a restrictive framework within which one still
has to choose a specific theory. The situation is
analogous to Lagrangian theory, which provides a
framework within which one still has to choose a
specific Lagrangian. Indeed, one can say that free
parameters allowed by the choice of representation
of SL(2, C) in Eq. (1.1) correspond roughly to the
free choice of coupling constants in Lagrangian
theory.

The actual restrictions imposed by current alge-
bra, in order of strength, are as follows:

(1) Saturation with all physical states at p, =~.
The only assumption here is that there is no leak-

age to finite-momentum states, i.e.,
lim g e' (n'p" IJ;(x, 0}In'p')

x(n p'I&'(y~ o)Inp) =0.

(1.4)

(2} Saturation with genuine one-particle states
at p3=~, i.e., with states of discrete mass, which
are finitely degenerate in spin and isospin at each
mass level.

(3) Saturation with states of uniformly bounded
isospin, in particular with states all of which have
isospin I= —,'. From the Wigner-Eckart theorem.
this assumption is equivalent to the factorization

g & aJo = g7'Jo

of the isospin current. Qne of the main results of
the present paper will be to see these restrictions .
manifesting themselves explicitly for simple mod-
els.

The second point concerning previous results
that we should like to mention here concerns the
technical assumptions used in Ref. 2. We should
like to summarize them here.

First, throughout Ref. 2, it is assumed that the
"angular condition" has an analytic expansion

c„k,"k, for sufficiently small k = (k„k,),
where k is the transverse momentum transfer.
This is probably not too restrictive an assumption.
A possibly more restrictive assumption is that the
expansion terminates in the sense that it actually
implies only a finite number of conditions, i.e.,

c „=0 for n, m~N&~ ~c„=0 for all n, m ~

The basis for this assumption is that it is self-con-
sistent and that it can actually be proved in the
case that one saturates also the time-space current
algebra at p, =~ (with symmetric Schwinger terms).

The set of 0-independent equations displayed in
the table of Ref. 2 were derived under these two
assumptions. '

The question of the mass spectrum and the man-
ifest covariance of the solutions was discussed
within the context of this table. Regarding the mass
spectrum, it was shown that if the symmetric oper-
ator K of the table was self-adjoint then all non-
trivial solutions had a spacelike (p'&0) part. A
motivat'ion for thinking that K should be self-adjoint
was that, in the case that the solutions of the table
could be expressed as wave equations, K could be
identified as the generator of a finite unitary
Lorentz transformation in spinor space. Given the
existence of spacelike solutions, it was then made
plausible that the only model in which the space-
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like and timelike parts of the solution were not
coupled by the current was the free-quark model.
(Coupling by the current has already been proved
in a number of specific models. 6) It should be em-
phasized that this second result on coupling is a
plausibility argument and no more.

With respect to manifest covariance, it was
shown without any assumptions that the table of &-

independent equations allowed three primitive
classes of solutions corresponding to the three al-
lowed eigenvalues (0, +1) of an operator B defined
in that table, and that these primitive solutions
could be expressed in terms of the canonical cur-
rents belonging to the manifestly covariant wave
equations

(P' - 2g„P" —&)4(P) = 0

(r„P"—&)0(&) = o,

r,y(P) = ~ P(P),

(1.7)

respectively. From this result, it was conjec-
tured, but not proved, that the most general solu-
tion to the equations of the table could be obtained
by coupling Eqs. (1.7) by means of a P-independent
coupling. This conjecture leads immediately to
Eq. (1.1).

The number of loopholes left by the above set of
assumptions and conjectures, together with the
complicated algebra which was necessary to obtain
the results, are what make it desirable that the
problem be understood in a simpler and more in-
tuitive way, even at the expense of generality-
hence our restriction to question (2) above and a
relatively simple class of currents.

We shall begin by considering the problem of sat-
urating the isospin-factored current at all momenta
for the class of currents considered (Sec. II). (In
this connection, since it is well known that satura-
tion at finite momentum leads to physical difficul-
ties, we should perhaps make it clear that we shall.
be allowing the possibility of spacelike solutions
for wave equations, although ultimately, of course,
one is aiming at a solution which does not have a
spacelike part. ) In Sec. III we derive the condition
imposed by current algebra at infinite momentum,
and in Secs. IV and V we apply this condition to two
simple models. In Sec. VI we consider the more
complicated model of Ref. 4, and show that the
wave equations for this model can always be de-
rived from an equation of the form (1.1). In Sec.
VII we apply the current-algebra condition to the
model, with interesting results. The technical de-
tails of this model are contained in an appendix.
We conclude by discussing in Sec. VIII the relation-
ship between our work and that of other authors,
particularly that of Ref. 4.

II. SATURATION AT FINITE MOMENTUM

Let the matrix elements of the current be as in
(1.2), where I,(POP'PP, } is a polynomial and p is a
P-independent metric in spinor space (not neces-
sarily positive) introduced so that gg= g PP is
Lorentz-invariant, where g p ~ 0. It is convenient
to define a Hamiltonian operator H(P) in spinor
space by the relation

ff(P}y„(P)= ~ [P' +m'(n)] "y.(P) .
Equation (1.2) can be written in the form

(2.1)

Z„'(x, t) = .'~'J„(x, f}-, (2.5)

where the 7' are Pauli matrices, and in particular,
implies that

= ~T Q gT' d xJO xy t y I
where I' is the isospin. Hence

Q —QwD or Q —1.

(2.6)

(2.7)

In other words, for the factored algebra, the re-
duced charge is not only conserved but is unity.
Now integrating (2.2) over x and inserting (2.7),
we obtain

g.
'

(P)1(PP)4.(P) = [(»)'~(P'- P)] '(n'P'InP)

(2.8)

which fixes the normalization of the g„(P) as re
quired. Note that from the completeness of the
states g„(P), Eq. (2.8) implies also

I '(PP) = Z $„(P)$„(P)& 0 ~ (2 ~)

Note that the positivity of I(PP) implied by (2.9) is
a consequence of the factored current algebra and
the positivity of the norm for the physical states
~nP) . The positivity of the metric I6 in spinor space
is not assumed, and since I(PP) = pIO(PP), it is not
necessarily implied by the positivity of I(PP}.

(n'P'1&0(x, 0)lnP} =e'"' "'"0'. (P')I(P' P)k.(P)

= e'~' "'"Z(n'PPn), (2.2}

where

I(P'P) = PI, (P 'a(P')P, P', P, ff(P)) (2.&)

depends only on the 3-momenta p' and p, the caret
on I, indicating that p,' and p, are to be moved to
the left and right of all spinor operators in Io
before substitution. The Hermiticity of the current
J„(x,0) in physical Hilbert space implies

I(P'P) = I (PP') (2.4)

The normalization of the states g„(P}is fixed by the
current algebra and the normalization of the phys-
ical states as follows: The factorization of the
isospin current implies that
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J,(x, 0}J,(y, o) =J,(x, 0)5(x- y);
inserting this result into (2.2), we obtain

(2.11}

d'p "e'o ' '"J(n'p'p "n")e'~'-"'J(n "p"pn}
II

For the nonintegrated current (2.5), the equal-
time current algebra

[J,'(x, 0), J,'(y, 0)]=ie'"J; (x, 0)5(x- y) (2.10)

implies

[I'(P') l(P")]I-'(P"P")[I'(P").I(p)]=l'(P')+l(P),

(2.20)

whence, using (2.19}, we have

[I (p'} —I (p")]I (p "p")[I(p)—I(p")) =0

(2.21)

Setting p'= p and recalling that l(p"p") is positive,
we obtain

=(2.)'e'' &'*J-(n p pn)5(x- y), I(p) —I(p")=0 or I(p)=l(0), (2.22)

whence, on multiplication by exp(jq y) and

integration over y, we have

(2.12)

d'p"e' ' o ~ 'J(n'p'p"n")J(n"p"pn)5(p" p+ q)-
II

whence, from (2.19),

l(P'P) =I(o, o) =I, (2.23)

where I is independent of p' and p.
Inserting this result into the expression (2.2) for

the matrix elements of the current, we obtain

or

= J(n'p'pn}e'+

Q J(n'P'P"n") J(n "P"Pn) =J(n'P'Pn),

(2.13)

(2.14)

(n'p IJ,(x, o)lnp)=e'" -"'p„.(p')(p 'l)g„(p),

(2.24)
whence, using Lorentz invariance, we have

(n'P'
( J„(x,0)(nP) = e'~ o~ ' P„(P')I„g„(P), (2.25)

whence, using the definition of J(n'p'pn) in (2.2)
and the completeness relation (2.9), we obtain, fi-
nally,

l(P'P")I '(P"P")l(P"P)=l(P'P) (2.15)

as our current-algebra condition. Note that there
is no integration over p".

So far, apart from the polynomial condition, the
current is completely general. We now specialize
to the class of sePaxable currents, i.e., currents
of the form

lo(PoP'PPo) = lo(PoP') + lo(PPo) . (2.16)

This class of currents includes those in which we
shall be most interested, namely, the canonical
currents belonging to second-order wave equations:

where I„ is a vector operator which is independent
of p' and p and such that plo =I. From Eq. (2.25)
the strength of the current algebra is evident: It
eliminates the p', p dependence of I„(p'p).

Furthermore, for a conserved current, it follows
from the p', p independence of I„ that g(p) satisfies
a linear wave equation of the form

(l„p" —m)p(p) =0, (2.26)

where m is a p'-, p-independent scalar. ' Thus
current algebra forces a linear wave equation. In
particular, if the current is the canonical current
belonging to a higher-order wave equation, then
the higher-order equation must be compatible with

(2.26). For example, comparison of the second-
order wave equation given above with (2.26)
squared yields

Ip(pop PPo}=~o!IP +Toop +I
p ~

where

(~„.p"p" +I'„p" +s)y(p) =o,

(2.11)
1 1

Tpv+ Tvg = Ipy Ivm m

2I" = ——I
m ~

'

(2.27}

(2.18)

I(p'P) =I'(P') I(p». (2.19)

Inserting this result into the current-algebra con-
dition (2.18), we obtain

For the separable currents (2.16), the separability
condition and the Hermiticity condition (2.4) imply
that

We note in conclusion that the crucial step in going
from a p', p-dependent to a p', p-independent
I„(p'p), namely, the step (2.21) -(2.22), depends
critically on the Hermiticity of the current and the
positivity of I(p"p"}. These conditions are de-
manded by the physics of the problem (observable
currents and positive norms for the physical
states}, and if they are not satisfied the conclu-
sions do not follow, as we shall see later in coun-
ter examples.
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III: SATURATION AT INFINITE MOMENTUM

Consider again the matrix elements (1.2) of the current and let'

(n'
I F()3)ln&

= »m(n'P1P3KI &0(0)InP1P. K&

K ~00

= »m 4. (Pd13K)I0(pop'PP0)4. (pd 3K)
K~ 3

lim iji (0)e-i[in+(n ))Kkeik ' E (eiaK3 I (p ipipp )e-i 0K3)e-iP 'Eel[in+(n)u3)ji (Q)
m(n)~ n)-'"

pip
n' 0 0 0

(0)e [il nin( 0')
JK3[~ (n I)]1/keiP 'E(y (pip ipp ) +I {pgfipp )}e-iP Eel[I'0ln(n))

K3[~(n)] 1/3
y (Q)

(0)eiP 'E I (pip ipp )e-iP E
y (Q)

= Q„',(0)e'P 'I(P'P)e--" ' 'p„(0-),- (3.1)

where I(p'p) is defined as in (2.3) with 0-u=o+3, o =sinh 'K, (n'In&=5„.„, p=(p„.p, ), k=p'-p, E
=(K, +E31K3—El), and It, K are the generators of SL(2, C) in spinor space. [Note that in the final expres-
sion in (3.1),, p,'+p,'=p, +p, = 1, so that by using the standard deceleration eXp(ioK3), we have effectively
pulled back the infinite-momentum hypersurface p,' = p, = ~ to this position. ]

Saturation at infinite momentum for the isospin-factored current means applying the current-algebra
condition (2.11) to the expression (3.1). With the normalization (n ln&= 5„.„, this amounts to setting

F(u') F(I)=F(/'+I). (3 2)

Before inserting the right-hand side of (3.1}into (3.2), however, we specialize for simplicity to the class
of currents whose a component is separable on the hypersurface p,'+ p,'=Po+ p, = 1, i.e., for which

I(p'p)=I'(p') I{p) at p."p.'=p. P.=l. (3.3)

This class of currents includes, of course, those which are separable at all momenta, but it is a strictly
larger class as we shall see below. Inserting (3.3) in (3.1}, we obtain the simplification

(n'IF()t)ln&= y.'(o)e" Et [I'(p')+-I(p)) e 'P 'E
g„(0)

y~ (0)( [eiP "EtI1'(pi)e-iP "E]eik'E+ eik E[eiP'E 'I {p) iP'E]}y (0)-

= y'(o)(I'e'"-'-+ e"-'- I)y (o) (3.4)

where I= I(p) at p, + p, = 1, p=0, p, —p, =M3 = {mass operator)' on ip„(0), and we have used the fact that the
conjugation with exp(-ip E) is in spinor space only and E(Poincare) =E+ E(orbital) commutes with. I (p).
Note that the right-hand side of (3.4) depends only on p'- p and not on p'+ p, a fact which follows from gen-
eral considerations (Ref. 1) and which we have anticipated in (3.1) by writing F(I3).

Let us now apply the (isospin-factored) current-algebra condition (3.2) to (3.4). First, for k =0, we ob-
tain the condition

(n'ln) = y„'(0)(i'+ I)y„(0),

which fixes the relative normalization of In& and $„(0};i.e.,
.P„(0)=(I +I) '/'ln& .

(3.5)

(3.6)

(3.V)

(3.8)

Note that Eq, (3.6} makes physical sense, since current conservation yields

0 = (p)'i —p„)p„.(p')i„(P0P'pp0)lji„(p) = 3[ni'{n') —Pn'(n)] ip„(0)(I + I)ip„(0)

when evaluated for p'= p= 0. Inserting (3.6) into (3.4), we obtain the identification

F(I3) =(I'+I)-'"(I'e"'+e"''I)(I'+I) -"-. --
We are now free to apply (3.2) to (3.8} for all ii', k. However, only 13 =- k' will be necessary. In that case
we obtain

(I eik E~ ik'E I)(I&+ I)-1(Ite ik E+ e ik E:I)'. -

or, letting

I'e "'E+ e "EI=-[I'+ I+-~-'(/3)] e~k-'-,

(3.8)

(3.10)
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(I'+I+ ~'(h)](I'+I)[I'+I+ ~(h)] =I'+ I+ I '(h)+ A(h) .
From this equation we see at once that

A'(h)(I'+I)d, (h) =0 or ~(h) =~ (h) =0.

(3.11)

Hence

E I=IE or [E,p 'I]=0. (3.12)

Conversely, if (3.12) is satisfied, the current-algebra condition (3.2) is satisfied for all h, h. Hence we
have the result that for currents whose n component is separable on the hypersurface po+ p,'= p, +p, = 1, a
necessary and sufficient condition for current algebra at infinite momentum is Eq. p. Ig), where ti I= I (p)
calculated at po+ p, = 1, p= 0. Thus once again we see that current algebra imposes nontrivial conditions on
the current. To make the nature of the conditions more understandable we turn now to particular models.

IV. MODEL 1

We shall consider in this section a special case
of the second-order wave equations already dis-
cussed for finite momenta, namely,

(T„.p"P"- I)4(p) = o,

I„(p.'P'Pp. ) = T„.p"+ T.,P'" .
(4.1}

(4.2)

I(P'P) =T..p" T..p", (4.3)

For expository reasons we shall derive the condi-
tion imposed by current algebra at p, =~ in two
different ways, namely, by using the p, =~ method
of Sec. III, and then by using the finite-momentum
method of Sec. II, and taking the limit. The result
is, of course, the same. Afterwards we shall an-
alyze the result.
1. The method of Sec III. Fr. om (4.2) we have

whence, on taking the limit o -~, we obtain

I„(p)c-"'sy„(0) =-I.(0)e-" '
y„(0),-- (4.10)

where p, +p, =1, the zero in I (0) referring to p,
and p, . Equation (4.10) is the infinite-momentum
analog of (4.7). In contradistinction to the finite-
momentum case, however, we are now assuming
saturation at p, =~; i.e., saturation with the states
po+p, =1. Hence we can assume (4.10) to hold only
for p, +p, =1. Hence we are not allowed to use the
full Lorentz group L, on [exp(-ip E)]p„(0), but
only the subgroup which respects the condition p,
+p, =l. The subgroup [E(2)], however, respects
also the index ct, and hence, using E(2) we cannot
deduce (4.10) for any other index. Thus (4.10) is
already the full extent of the current-algebra con-
dition at p, =~. It remains only to express (4.10)
in infinitesimal form. We have from (4.10)

where

I(P}= T.„P'

~= ~&~a~'+ ~&a8 ~
p=0-3.

(4 4)

(4.5)

I.(o)e-"-'-y.(0) =I.(P)s-"-'-4„(0)
= s-"-'-I.(o)4.(0),

whence, since p is arbitrary,

[E,I (o)] = o on 4 „(0),

(4.11)

(4.12)
Hence the current-algebra condition is simply

[E,r]= ,'[E, T..Itf'+ T„,-]=0. (4.6)

Z. The method of Sec II. At fini. te momentum
we obtained in Eq. (2.22} the result

and since I=I (0) on g„(0), this equation is iden-
tical with (4.6).

We now turn to the question of analyzing (4.6).
First we note that in the special case 7„,=g„„

the wave equation and current of the model become
I,(p)y„(p) =I,(0)y„(p) (4.7)

(O' —I)y(p) = 0 (4.13)
using only current algebra and completeness.
Afterwards, we used the fact that (4.7) was valid
for all momenta to deduce that

and

I„(P'P) =P„'+P„, (4.14)

I„(p)y„(p)=I„(0)y„(p). (4.8)

Hence in going to the limit it is legitimate to use
(4.7} but not (4.8}. From (4.7) we have

eias3 I (p}&-talc&&(as& ~ (p}
sfas3 I (0)&-ias3&lass 4, (p}

(4.9)

respectively, and that since T =0 and 7 8=2,
the p, =~ current-algebra condition (4.6) is auto-
matically satisfied. Thus the p, =~ current alge-
bra allows the solution (4.13), (4.14), a solution
which was not allowed by current algebra at finite
momenta. The reason for the difference is clear.
At general momenta, 1„(p'p) cannot possibly sat-
isfy a condition of the form
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I(P'P")I '(P"P")I(P"P) -I(P'P)

but at p, =~,

I (p'p)-p„'+p„=2,

which can satisfy such a condition. This circum-
stance is clearly the origin of the ap' term in Eqs.
(1.1). On the other hand, as we see from (1.1) and
as we shall see from our models, the extra term
gp' appears to be the only extra freedom allowed
by the retreat to p, = ~.

We now return to (4.6), and to analyze it, we
find it convenient to first apply the wave equation
(4.1) to the states g„(0). We obtain

T~ M +(T„8+T~„)M +Tq~=4, n, p=0+3.

I (pop'ppo) =p" +P +2T (p'"+ p'),
and hence

I.(p)=p'+» p",

I=I~(0) =—M +(T~~M + T~g)

(5.3}

(5 4)

=(1+T „)M'+T „on y„(0), (5.5)

where P =0 —3. The current-algebra condition is

I„(p.'p'pp. ) = l(p" p')(p„'+ p„)+»„.(p"+p'),

(5.2)

where m is a constant and p(p) carries a unitary
representation of SL(2, C). I„ is not separable for
all p, but on the hyperplane p, + p, = I we have

(4.15) [E,I]=0, (5.6)

i[E» Vs]=2V„

i[E„V,] = V., i[E„VJ = 0,
(4.17)

We can then write this as an equation for I. From
(4.5) we obtain

(2I+ Ts„)(T „)-'(2I-T 8)+ T,8=4, (4.16}

where we have assumed (T ) 'w~, in particular,
T~~ Age~ T.

So far, this is just a reformulation of the wave
equation using the definition (4.5}. We now apply
current algebra by inserting in (4.16) the neces-
sary and sufficient condition (4.6). Using

(I+ TB„)(1+T„„)'(I—T„s)+Tqs+ m =0 (5.&)

[assuming the existence of (1+T ) ']. We now
commute (5.8) four times with iE, and obtain, using
the current-algebra condition (5.6),

-24T (1+T ) 'T„„+24T„=Oor T =0.

and to apply it, it is again conveni. ent to write the
wave equation (5.1}on p„(0), i.e. ,

M +T,~M +(T~~+ T8,) M'+ T88+ m =0, (5.7)

and then to regard it as an equation for I by sub-
stitution from (5.5). We obtain

and commuting (4.14) once and twice with iE„we
obtain

But then

(5 9)

(4I+2T, )(T ) '(-T,)+(T,„)(T„)'(4I-2T„,)
+ 2(T,8+ T8,) = 0

T~~= Ag~p (5.10)

and the original combination (5.1), (5.2) reduces to

and

Tl n(T a a) T n 1 T11 1

(4.18)

(4.19}

(p' + 4~P' + m)y(p) = 0,

I„=,'(P" +P'+4X)(P-„'+P„) .
These equations can be solved to yield

(5.11)

respectively. ' Thus current algebra implies (4.18)
and (4.19). The important point about (4.19) is that
it is an intrinsic condition on T„, and therefore
shows at once that not every T„„in (4.1) can sat-
isfy current algebra ln fact, .Eq. (4.19) imposes
severe restrictions on T„„but as they are rather
complicated we shall not discuss them further in
this paper.

V. MODEL 2

Model 2 is the simplest nontrivial model we
could find, namely,

(p'+4T„,p"p'+ m)y(p) =0, T „„=T,„=T„'„,

(5.1)

(p'- s)y(p) =0,
(5.12)

I, = ~ [(u.)'- m] "(p„'+p„),
where S = 2[+ (A.

' ——, m')' ' —X] is a p-independent
scalar, and this combination is manifestly of the
form (1.1). Thus in this model we see in a very
transparent way how the current algebra reduces
the combination (5.1), (5.2) to the form found in
Ref. 2.

Note that what reduces is not the wave equation
alone but the combination of wave equation and cur-
rent; i.e., the curr'ent reduces in such a way that
it becomes (up to the factor +[(2X)' -m]'~') the can-
onical current for the reduced wave equation. That
this reduction is a nontrivial consequence of.cur-
rent algebra will be seen in the next model.
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VI. MODEL 3: FACTORIZATION

Model 3 was introduced in Ref. 4 as an apparent counterexample to the results of Ref. 2. It can be written
in the form

[-I "I'g' I.„,L,„-5I'- ,'e'(P-'-m ')']y=o, (6.1)

I„={I'"+ J")[2m. 5„'+(p„+p,}6:][-:g-kI-.C, Lan)+ 5g.s]+ ,'"(p-"+ p —2m }(p„+p„). (6.2)

where m, =m, + m„6, and e are arbitrary numerical parameters, g carries a unitary representation of
SO(4, 1) generated by I.», A=0, 1, 2, 3, 4; @=0,1, 2, 3, and

P"=(2m,p„,m, m -p'). (6.3)

The representations of SO(4, 1) used in Ref. 4 are described in the Appendix and are characterized by -3
&lv&- —,', where N(N+ 3) is the second-order Casimir operator. The representations for -2 & N &- zs are
somewhat simpler than those for -3 «N«-2 and we shall limit the discussion of this section to this range of

¹

To dlscllss tllls nlodel fl'Gill olll' poillt of view 1't ls co11velllent 'to 1'educe lt to SO(3 1) IlotR'tioll. Ill that 110-
tation (6.1) and {6.2) take the form

(Ap'+ 2p'B„p" + S„,p"p'+ 2G„p" + F)p(p) = 0,
I„(plp'ppo) =A(p" + p')(p„'+ p„}+(p"+ p'»„+ B.{p'"+p")(p„'+p„)+S„.(p'"+ p")+ 2~„~

respectively, where, with g«= i and g„=1,„4, we have

Gq = m, m m~1'„, Bq =- m, l"q, I'q =(Lq„,v'} „

S = —'e'm (m —m, ) + 2 m, m A + 4m, (N+ 3 —5), A = Il'+ —'e~ —6,
F=m, 'm A —ge m '(m, ' —m ').

(6.4)

(6.5)

(6 6)

In Eqs. (6.1)-{6.5), p' denotes 4-momentum squared.
Thus the wave-equation in model 3 is a generalization of that used in model 2. However, the restrictions

on model 3 are more severe, as we are working here within a (special) class of unitary representations of
SO(4, 1) and within this class, A, B„, 3„„,G„, and F are restricted by (6.6).

It is pointed out in Ref. 4 that Eq. (6.1) factorizes into

[(I "V„)'-F2--.'e'(p2- m ')]y=0, (6-7}

whel8 y js Rn SO(4 I) 5 vector jf and only jf ~=-2. This js correc't. But the conclusion/ tllat Eq. (6.1)
ca„„otbe derived from an equation of the form (1.1) (and hence contradicts the results of Ref. 2) for N
x-2 is not correct. The point is that (6.7) is a five-dimensional factorization, whereas for (6.1) to be de-
rivable from an equation of the form (1.1) only four-dimensional factorization is necessary To pro. ve this
we shall exhibit explicitly a wave equation of the form (1.1) from which (6.1) can be derived for all -2 &N

A 1'elllal'kRMe feRtlll'8 of (6.1) ls tllRt 1't llRS tllls pl'operty' llldepelldelltly of clllTellt Rlgelll'R. Tllls does
not mean that the system (6.4), (6.5) automatically satisfies current algebra because we have no guarantee
that the current (6.5) belonging to the wave equation (6.4) will agree with the canonical current belonging to
the wave-equation of the form (1.1). We leave the investigation of the current-algebra condition to Sec. VII.

The crucial point in the proof that (6.4} is derivable from an equation of the form (1.1) is that for the rep-
resentations of SO(4-, 1) under consideration, one can prove the identity

8T~~+T4 q%'„+ 8'p 8'p =O,

where T„, is defined in (6.6) and

(6.8}

W„=[r„-I(mr+ 5)v„]5-',

5 =- v +(jV'+2), where v —1=~I.„ I," (6.10)

The operator 5 is non-negative for all N, -3 «X«-3, and is singular, nonsingular, and positive definite
for -3 &~&-2, N=-2, -2 &N &--,', respectively (see Appendix), Hence for the range ws are considering it
xs non-negative and nonsingular.

The pr«f «(6.6) d~p~~d~ «y on the pro perties of the representations of SO(4, 1) used [note that, by def-
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inition, T~ „ is in the enveloping algebra of SO(4, 1)] and hence is given in the Appendix. Now let

(Dp'+D„p" + ~) g(p) =o,

mhere
~ =-,'e'+(x+3- 5),

By inspection,

2 +

y=-,'e'+(m, '/m ')(X+3 —5).

(6.11)

(6.12)

(5P +m, W„P" —m, m 5)y=(up' —ym ')y,

(5P'+ m, W„"p& —m, m 5)y=(p'- m ')y.
Hence„by eliminating p,

E(~ -5')P'- 2m p'I, p" —m '(W'. P')(& P")+ [2m. m-~' —m-'(&+y)]p'

(6.13)

But

+2m, m m, I"~p"+ m '(ym ' —5'm, ')}/=0.

(6.14)

e —b =r +pe —5=A,2 2 1 4

2m, m 5' —m '(o+y) = —2m, m A+2m, m o. —m '(o+y)= —S,
m-'(ym ' —&'m, ')=m ' ,'e'(m ' —m, '}+-m 'm, 'A=J".

Hence, using (6.8) and (6.6), we obtain from (6.14) the equation

(6.15)

Qp" 2p' „p" 4 .', .p'p'- p"p" 2 p" 1&(p) =o, (6.16)

which is exactly Eq. (6.4), as required.
The deriivation of (6.14) from (6.11) shows not only that Eq. (6.1) can be derived from an equation of the

form (1.1}for all -2 ~N&- —,', but also that the problems of factorizing the wave equation and satisfying cur-
rent algebra are not directly related. They may be indirectly related through the current, because although

the canonical current D(p„+p„)+D„ for (6.11) will automatically satisfy current algebra with the metric
(D+D ) ' (at p, =~), we do not know whether the canonical current (6.5) agrees with this current, and

mhether it satisfies current algebra. This is the question mhich mill be considered in Sec. VII.

VII. MODEL 3". CURRENT-ALGEBRA CONDITION

To investigate the condition imposed on the current of model 3 by current algebra at infinite momentum,

we note that on the hypersurface p, + p, = 1, I (p,'p'ppo) of (6.5) reduces to

f.(p.'P'pp. )=»(p".p') D.(p" p'). »„(P'" P") ~.„(p" P") 2~.,
mhich is separable, mith

f„(p)=(»+a„)p'+2a„p&+S„,p'+C „; (7.2)

f -=f.(0) =(»+a„)m'+(a.m'+a, )+-,'(S.„m'+S.,)+G.
= (»+ 2a.+ —,'S..)M'+ (a, + —,'S„+C.)

mhere jg' is the mass operator on the states

y„(0) = &m(n) exp[i lnm (n)Z, ]y„(0).

To apply the current-algebra condition mhich, as me have seen in Sec. III, is

[Z, f] =0 (7.4}
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for all currents which are separable on the hyperplane, we proceed as in the simple model 2. First, we
write the wave equation on p„(0), where it reduces to

or
AM +(B~M +B8)M + ~[S~„M +2S~BM +SM]+ (G„M +G8)+ E=0

XN + YM +Z=o,

(7.5)

(7.6)

where X, Y are as defined in (7.3), and

Z= 4ssg+GB+ E. (7.7)

We now assume that A is nonsingular. In that case (see Appendix), X is nonsingular, and if we substitute
I for M' in (7.6), using (V.3), we obtain

(I+ Y)X '(I —Y)+4Z=0. (7 8)

We now apply the current-algebra, condition (7.4). Commuting (V.8) four times with iE„and using (7.4) and
the definitions of X, Y, Z, we obtain as a necessmy condition for current algebra

or
6(2B + S„„)X '(-2B„-S„„)+24S„,.=O (7 8)

(7.10)

where, by definition (6.6), S„'exists unless m, =0. (If m, =0, Eqs. (6.4) and (6.5) collapse to the model
of Sec. V for the trivial case in which the current actually vanishes [(2A)'= m].) With m, eO, Eq. (7.10)
can be ana1yzed using SO(4, 1) techniques (see Appendix) and the result is that a necessary and sufficient
condition for (7.10) is

(V.ll)
but in that case & is singular. It follows that the current-algebra condition can be satisfied for at most
those cases for which A is singular, and since for the representation -3 &N&-2, A. can be singular only for
special values of the parameters, and for the representations -2 ~N&-~, it is strictly nonsingular, we see
that, in general, the current of Eqs. (6.4) and (6.5) does not satisfy current algebra.

At first sight this result seems to contradict that of Ref. 4. It will be shown in Sec. VIII that there is no
real contradiction. The basic reason is that in Ref. 4 the conventional requirement of positive norm for the
physical states has been relaxed, thus allowing a wider but, in this respect, unphysical class of solution.

VIII. COMPARISON WTH OTHER RESULTS

We first wish to compare the results of Sec. VII with those of Ref. 4. For this purpose, it turns out to be
instructive to first consider an earlier paper by one of the same authors, in which a similar result is ob-
tained for finite-dimensional representations of SL(2, C), since this case is simpler and is also in apparent
contradiction with Sec. II above. To see that there is no real contradiction, we take the simplest possible
case, namely the scalar Klein-Gordon equation of mass ~, with both positive- and negative-frequency solu-
tions. The current postulated for this case is

( 'p'I&. ( 0)I p)=|(." (p')(p.'+ p.)0„(p) '~ "',
where n, n'= 1, or, in the notation of our Sec. II, where H(p) is now 2 x 2,

(8.1)

(8.2)

The current-algebra condition (2.15) of Sec. II above now reads

I(P'P")S '(P"P")f(P"P)—f(P'P) =f(PP") g ";," I(P "P) —I(P'P)
n



1906 U. H. NIEDERER AND L. O'RAIFEARTAIGH

where g„(P) =2n~(P), and this equation turns out to be an identity. Thus current algebra. is automatically
satisfied for the model, as claimed, and the conclusion seems to contradict the results of our Sec. II since
I(P'P) is manifestly P', P-dependent.

The resolution of the paradox is that with the choice (8.1) of the current, the charge cannot be positive as
demanded by current algebra [Eq. (2.7)] unless the norm of the physical states is not definite. Indeed, in-
tegrating (8.1) over x and using Q = 1 for n'=n, we obtain

(») '( P'IsP)=20.'(P)P.VP)5(P'-P) =n.(P)0.'(P)P.(P)5(P'-P), (8.4)

which is not definite since q„(P) =+2&@(P) for n=+, by definition. It should perhaps be emphasized that the
indefinite norm of the physical states is known to the authors of Ref. 9 and is stated explicitly. However,
what the comparison of that paper with our Sec. II shows is that the indefinite norm is of critical importance
in evading the conditions imposed by current algebra. With positive norm we get the strong condition (2.23)
leading to a linear wave equation. With indefinite norm we get no condition.

We are now in a better position to understand why the model of Ref. 4 does not contradict the results of
Ref. 2. In the model, we have an equation similar to (8.3), namely,

f(P'P "}g g + « " " f(P "P) =I(P'P),~!~.(P)g."(P)
n.(P)

(8.5)

where the integral represents the contribution from
continuum states, so that, just as in (8.3), current
algebra is formally satisfied. But justias in (8.3)
formal satisfaction is not enough. The twin re-
quirements of positive (unit) charge and positive
norm for all physical states [i.e. , all states used
in the summation and integration in (8.5}] have
still to be imposed, and until they are imposed and
shown to be satisfied by I there is, as in the case
of (8.3), no contradiction with the results of Ref.
2. In point of fact all that is actually true in Ref.
4 is that P,q„(P) &0 for the discrete states, and this
result has already been seen to be insufficient for
the simple case (8.3) where there is no continuum
contribution.

In the above connection two remarks might not
be out of place. First, it has already been re-
marked by Leutwyler" that if one relaxes the pos-
itivity of the norm, solutions of the isospin-fac-
tored algebra which are physically satisfactory in
every other way, can easily be constructed. Sec-
ondly, one might ask why, if we are so insistent on
the positivity of the physical norm, do we accept
the wave equations (1.1) which have spacelike parts
that are equally unphysical. The answer is that we
have not been able to prove conclusively that the
spacelike parts are coupled to the timelike parts
by the current in all nontrivial cases. If, as we

suspect, the two parts are coupled by the current
in all but t:rivial cases, then indeed the wave equa-
tions (1.1) would not be acceptable, and there would
be no physically satisfactory solution to the prob-
lem of saturating the isospin-factored current alge-
bra at p, =~. The conclusion would then be either
that many-particle states are necessary for satura-
tion, or that in the physical world the isospin ex-
plodes; i.e., we should expect K's and ='s with

I ~ —,
' from future experiments. And indeed there

are presently some strong indications of the exist-
ence of resonances with exotic values of isospin. "

We turn now to other authors. In Ref. 12 it is
shown (theorem 1) that a current of the form (1.3)
is sufficient to satisfy the isospin-factored algebra
at p, =~. The results of Ref. 2 indicate, as we
have said, that this form. of the current is neces-
sary as well as sufficient, and in Sec. IV we have
partially verified this result in the sense that we
have shown that not every current of the form
T„,P'+ p'T, „can be a solution. This shows in par-
ticular, that the restriction of the authors of Ref.
12 from the general current with which they start
to currents of the form (1.3) is a necessary prereq-
uisite for their results. References 3 and 13 rep-
resent, as far as we know, the only attacks made
on the no@factored problem and so are beyond the
scope of the present paper. We note only that the
relation @=1which is deduced in the factored
case, is not necessarily true in the nonfactored
case, but has been imposed and plays an important
role in Ref. 3.

APPENDIX: TECHNICAL DETAILS FOR MENDEL 3

The class of unitary irreducible representations
of SO(4, 1) underlying model 3 has been described
by Fronsdal" and is characterized by the values
of the two Casimir operators

Q =2L~sL =N(N+ 3), -3 &N& 2-(Al}

~A p ~A ~A BcDEL (A2)

where L„s are the SO(4, 1) generators and e~~~~~

is the Levi-Civita symbol (A =0, 1, 2, 3, 4; g«=1).
It can be shown that actually
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X,=O. (A3) q ——5+ v2+gv2g —&(1+g2) —&[v2 g]2 (All)

For -2 ~ N &- —,.', the two conventional Casimir
operators ( jo, v) of SO(3, 1)C SO(4, 1) take the val-
ues jo Op ~ &v'(0, and for -3& N& -2 we may
have in addition the eigenvalue v'=(N+2)'. It is
to avoid the complications arising from this dis-
crete eigenvalue that we restrict ourselves to the
range -2 ( jV&-~ in Sec. VI.

The two SO(4, 1) vectors which appear in Secs.
VI and VIl are g„=L,„4 and

I „=(L„„v')=i[v', v„], (A4)

and in the sequel we shall need the inner products

pT =v —1 —Qy

I' = 9m'+ 4(v'+ 1)(w'+ Q),

v I =-r ~=i[3w'+2(m'+g)],

(A5)

(A6)

(A7)

~a g~~ ~ -0+3~ ~ ~x + ~2 y (AB)

where g is an operator in the space of the Casimir
operator v' only, and satisfies

[",[",g]]=2(",g]-g. (A9}

Using the relation [w„, v, ]=i L „we have also the
condition

which can be calculated directly from (Al)-(A4).
It will be convenient to use an E(2) basis for
SO(3, 1),"i.e., to let SO(3, 1) act on L,(e) where e
is a two-dimensional vector. In this basis g„ takes
the form

We now turn to the calculations of Secs. VI and
VII.

Section VII. In our present notation

A= v —1 —Q+4e —5,
B„= im,-[v', g] e,
S =-4m, '(I+g')e',
X=e' 2" Ae '

(A12)

[[v' gl (I+g') ']=-4g(1+g') '. (A14)

Hence the denominator in (A13) can be pulled to
the left, and we obtain

[v', g]' =4gv'g- 4g'v'+4(1+g')(v' —Q- 1+ ~e' —5).
(A15)

Comparing this equation with (All) we have

g'(e' —45 —4Q —3)+ (e' —45 + 2) =0. (A16)

But from (A10) we see that g cannot be a c number;
hence (A16) splits into

In particular, g is nonsingular if A is nonsingular.
We next analyze the condition B~S „'B~=A,
which then reduces to

[v', g](1+g') '[v', g]=4(v' —Q- I+-,'e' —5),

(A13)

where 1+g')0, since g=g . Now from (A10) we
have

[g [g v']]=2(1+g'), (A10)

and using (A5) and (AB)-(A10) we can write Q as

1 4 1 54e —6=- 2 and Q=-4,
as required.

(A17)

Section VI. The relation to be proved is

8T„.+g „W,'+g „W„'=0, (A18)

where T „and W„are defined in (6.6) and (6.9), respectively. Since T„, is symmetric (A18) has only the
traceless and scalar components

4T +g g' =0, +=0+3 (A19)

respectively, and it will be convenient to treat these separately.
In our present notation the traceless component (A19) can be written in the form

4(1+g'}—([v', g] (2N+ 5)g]—5 '([v', g]+ (2N+ 5)g} = 0

or, equivalently,

([v', g]+ (2N+ 5)g)(1+g')-'([v', g] —(2N+ 5)g] = —4&' =4[v' —(lV+ 2)'] .
Using (A14) to pull the factor (1+g') ' to the left, we obtain

[v' g]'=4(v'- @-l)+4gv'g-g'

(A20)

(A21)

(A22)

(A23)
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and since this equation is just a modified form of (All), Eq. (A19) is established.
The scalar component (A20} can be written in the form

(A24)4(v'+N'+ 7N+11)+ fi' —i(2N+5)w„jb '(I'"+i(2N+5)w") =0,

and to extract the b-' factor we proceed as follows: From the definitions of b' and 1 „and Eqs. (A8} and

(A9) we have

[b', w„]=ir„, [b', r, ]= i(4-v' —l)w„+2r„,
whence

1 1 i 1 1 1 i(4v' —1) 1 2 1
I" b2 b2 I" b2 P b2 s P b2 b2 ] b2 P b2 b2 P b2

and

(A25)

(A26)

P b2 b2 b2 P b2 f jf b2 b2 b2 P b3 b2 P b2

1 1 i 1 1 1, i(4v' —1} 1 2 1
~ —r~ = —~ r+ —r —r~ r —r~ = —r'- ~ —r~+ —r —r~.

jf b2 b2 b2 jf b2 0 P b2 b2 . b2 . jf b2 b2 P b2

(A27)

Solving these four equations we obtain, using (A6) and (A7),

nb m" (b'-2)w'+ir w

,

~„b-'r~ (b' —2}w r+ ir'

I'„b 'w~ (b' —1)' —4v' b'I' w- i(4v' —1)w'

r b 'ri' b'I —i(4v' —1)w I'

(b2 —1)2 —4

(b'+ 1)w'+ 2(v' —1)

i[(3b'+4v' —1)w'+ 2b'(v' —1}]
—i[(3b'+ 4 v' —1)w'+ 2b'( v ' —1)]

(5b'+4b'v'+12v' —3}w'+ 2(2b'+4v' —1}(v'—1) (A28}

Inserting these results into (A24} and using the definition of b and (A5), we obtain an identity. This estab-

lishes Eq. (A20) and hence Eq. (A18).
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