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K&3 form factors are derived in the hard-pion approach without using vector- or axia1-vec-
tor-meson dominance and with more general consideration of symmetry breaking. Elastic
unitarity is employed for the vector form factor. The ratio f (0)/f+(0) is expressed in terms
of the symmetry-breaking parameter, b =(0[u 8~ 0)/(0~ u 0[ 0). It is found that current algebra
can provide a satisfactory explanation for the decay parameters.

I. INTRODUCTION

The current-algebra approach towards hadron
physics has proved to be most fruitful. Applied to
the problem of K» decay there have been numerous
theoretical treatises since the work of Callan and
Treiman. ' However, a good deal remains to be
said on the subject because of the ill-defined nature
of symmetry breaking and the uncertainty in the
experimental data involved. Recently, the hard-

pion approach of Schnitzer, Weinberg, and Ger-
stein' has been used to derive an effective-range
formula for the pion form factor with the applica-
tion of the principles of unitarity. ' Also, the
symmetry-breaking argument of Gell-Mann, Oakes,
and Henner' has been challenged and extended. '
With this and the updated experimental numbers
in mind, we intend to review and formulate the
K» problem without using the vector-meson or
axial-vector-meson dominance approximation.
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This being an on-shell current-algebra calculation,
much of the ambiguity involving soft-pion extra-
polation can be eliminated. Unlike many previous
results, our finding shows that the ratio of the
form factors, f (0)/f, (0), is largely determined
by the symmetry-breaking parameter of the vac-
uum state and favors the result given by the X2
Collaborations, ' with A., about 0.029 and g
=f (0)/f, (0) = -0.65. In Sec. II we introduce the

commutation relations, the spectral representation
of the two-point functions, and we define the rel-
evant three-point functions. Section III deals with
the solution of the Vfard identities, which gives
rise to expressions for the form factors, f, (s)
and f (s). In Sec. IV, the effective-range formula
for f,(s) is proposed and the ratio f (0)/f, (0) is
estimated to be in agreement with experiment.

II. TVfO-POINT FUNCTIONS AND COMMUTATION RELATIONS

We consider the decay matrix element (m'(q)Z'(P)
~ V, ~0) with the SU(3) quantum numbers of w' and X'

denoted by a and 5, respectively, and V, =(V, +iV,)/W. The following spectral representations of the two-
point functions are relevant. For vector currents,

~ ~--" n .).). .')o)) .=-.'I-:w"'- " ' '*. .*).) ' '. j' *.').) (1)

dxe ""(T(s"V",(x), V, (0)j)0=-2&"Jl ~g &f,(&),

while for axial-vector currents,

J~d) e ""(rg", b), A.'( 0))), =-,'
Iaaf

9) iq"q" —'l, g~P(x)+)vl"vl' c,",+ dxv~~(x)

. dy e '~" ( T(s'A", (y), A, (0)]),= --,'p ~)l, o~~(x), «)

where

~v, x(~) )I
d& v', x

(5)

CF, A F, A
t dx

bc bc

p (p") and o' (o ) are the vector and scalar spectral functions, and q"=(0, 0, 0, 1) is a unit timelike vector.
Now the three-point functions of currents, 8,'&, are defined with the pion and kaon poles explicitly sepa-

rated out.

W."„"=Jldxdye ""e *'"(r(»A-."(x),-W",(y), VP(0)]).=-f " ", E.'„'+ 2, .' .,P"E.~,

IV)'„""= d~dy e ""e *'"(rg~-(x), X-",(y), V,'(0)] ),= Z."„""+,f,pZ,".,"+ f', q" Z."„'vX

fifa ) .J ~ pg)+
2(g g)(p2 2) q p a)N) ( )

where f„and f~ are the charged-pion and -kaon
decay constants. The K» matrix element consid-
ered is just the vertex function I",& when the me-
sons axe on their mass shell. Thus, on shell,

and the form factors are

f, (s) f (0)()+z, ),

J," --'[f,(8)(q- p)"-f (s)&'] (10)
following the conventional parametrization and
setting s = -k'= -(p+ q)'.
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[F„u/] = if;/2u„' (12)

[F('x v/] = id...u, . (13)

Specifically for this work, the commutation re-
lations

The commutation relations between the charges
of the weak currents and the scalar and pseudo-
scalar densities belonging to the (3, 3)+ (3, 3) re-
presentation of SU(3) &&SU(3) algebra have been
given by Gell-Mann. '

The commutation relation (14) is derivable based
on such Hamiltonian density. However, it remains
true even if there should be an extra piece of 3"
belonging to the (1, 8) and (8, 1) representations.
The possibility of such addition has been suggested.
Thus we have in mind the more general symmetry-
breaking Hamiltonian by assuming (14).

We further assume that the scalar and pseudo-
scalar densities are proportional to their respec-
tive fiel.ds, namely,

v, = X~y~~

5(x'- y'){[A,'(x), S'A"(y)]+ [A (y), 92A,"(x)]]
+a= XKV'm (18)

=[-2 S V2(y) + iP uo(y)] ~(x —y)

are assumed, where P, is defined in the partially
conserved axial-vector current (PCAC) hypothesis
as

Then with these definitions for the m-meson and K-

meson fields, Eqs. (12} and (13) enable us to con-
clude that in the pole model,

XK&.
X,f„ i(20) 2+ 2b) '

s"A,"(x)= P,v, (x). (15) where

P (2)1/2e i (1)1/2e (16)

In the model of Gell-Mann, Oakes, and Renner
(with the symmetry-breaking hadronic Hamiltonian
density, X'= —e,u, —e2u2)

(ou, o)
(ou, o) (20)

is the symmetry-breaking parameter of the vac-
uum states.

III. WARD IDENTITIES

An independent set of the Ward identities for the three-point functions of currents follows from the stan-
dard current-algebra commutation relations and technique.

ie" ixex = & ifieeefedxe *(V{V "(x), V, (0')j) +if„,fdxe ' (T{A"(X),A, (0))), . (21)

ip'W,"~1 = W,~~+Jl dxdy e "*e "'6(x' —y') ( T([A',(y), S"A,"(x)], V, (0)) )()

+if~, fdxe '"(T{e"A,"(x),A, (0))), (22)

iq" W,"~1= W~~+ Jtd xdye "*e '2'5(x' —y')(T([A, (x), S'A2(y)], V, (0)))()

+if„J dye '2" (T(S'A2(y), Ad(0)j), . (23)

The result which emerges from the Ward identities is a solution for the vertex function E,~, in terms of the
two-point functions of currents and an unknown function E,~ related to the primitive function, as given by
Gerstein and Schnitzer. We give below the symmetrized result after the application of Eqs. (1)-(11)and
Eq. (14).

lim
q2 re+ ~m 2A p2 eex2 + 2

E

~pPVEp V X

,' f„fE[f,(s)(q- p) -f (s)k "]+k(p —q)"/) —2,(k)"" k(p —q)" Cv~+ J d-x(f~s(x) + 2(p~fz2 —q~f„2}

+-'(m '- ')k' "' '+-'k" " +-'p dxe-"*(Tfu (x) V"(0))) (24)
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This expression is exact given the assumed commutation relations, the standard PCAC, and %einberg's
first sum rule.

IV. FORM FACTORS

To proceed further, the left-hand side of Eq. (24) must be expanded in linear powers of momenta. There
is only one invariant scalar k to consider in the expansion. Taking the primitive functions to be slowly
varying functions of momenta, consistent mith the Ward identities, me let

(I('P"Z('""= P" [I',(P- q)'+rP "]+ it "{) I y' (25)

(28)

~~'+~»'- s fw'-fx'
8 fdxo~»(x)

'

It mill soon be clear that I', is fixed by I'„and I;, has the effect of removing the othermise linearly diver-
gent term in the scalar form factor for the divergence of vector current. The last term in Eq. (24) can
now be evaluated in the»-pole model with the help of Eqs. (15)-(19). When the resulting expression to-
gether with Eqs. (25)-(27) is introduced into (24), we have, for the form factors of K» decay,

( dx'x
(28)

"dxv,', (x) '(f»'- f, ')(s m' »-m,'), , 3f, 'm„' t(
( )+ x- s Jdx'v~(x') p, „—s W2+ 5g I + %+Biff gag +

It is obvious from Eq. (28) that f,{s) satisfies a once subtracted dispersion relation and

f,{0)=2 f, +f»' — dxof, (x)
w»

An effective-range formula for f, (s) can be derived if p„ is taken as

If.(s) I'

{30)

(31)

where

s'- 2(m»'+m, ')s+ (m»' —m„')'
8

(32)

This gives

Imf, (x) =8
' P'(x)(1+ 2Gx).If.(x) I'

w ~ » x

The integral equation has the solution

f+(o)f.( )=De( ),
with

f,(0) C(s) —C(0) —sC'(0)
Bn f„f»

——,'G"(0)}, for s&(rm -m, }*
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where

C( ) 3/2~3( )
m» +mg s 2WsP(s)

- EmVr
(36}

c(O) = —,'(m»' —m„')' ln(m, /m»),

C'(0) = k(m»' -m, ')[(m»' -m, ') —3(m»'+m„') ln(m„/m»)],

(3V)

(38)

„(p) 3[(m» -m„) +(m» +m„} ] I ( / ) 6( 2 ~)
8 mg -m~

For s&(m»+m„)', C(s) becomes C(s) where

s + 2&sE(s) —m» —mg

SSESRVI

In the effective-range approximation, B is determined by the condition

Itea(m, *') = O,

(39)

(41)

which gives

[sec(m, *')—c(o) -m,.'c (o)]+,c"(o).8» f„f (1+2Gs) —,1
m»+ K+

The K* decay width, zn turn, fares the parameter C, and

2 0f,'(0) = — ' [a+Gc"(0)+~c"(o)].8»'f.f»
With G=0.55, Eqs. (42) and (43) give f,'(0) =1.1V f+(0), which predicts X, =0.025.

To,find the ratio f (0)/f, (0), it is noted that the scalar form factor,

(42)

E(s) =- f,(s)(m»' —m, ')+ f (s)s, (44

being proportional to (»'K'~S" F" ~0), receives no contribution from the spin-1 part of the spectral repre-
sentation of vector currents. Indeed the terms involving p obtained by combining Eqs. (28) and (29) will
be canceled if I,= &(m» —m, ')G. This was derived before with the assumption q"P"k I'"""=0, where 1""
is the relevant primitive function. '

Thus in the»-pole model, with J dxo~(x) =E„', we have

m'sE=(m„'-m„')f, (0)+ . . . [(f»'-f„')(p„'-m»'-m, ')+E„'(p„'+m„'-m»')]+ P

from which it follows that

(45)

f (P) + & 2ff~(P)

The result as expressed in (46) is clearly con-
sistent with many previous current-algebra works
including that of Dashen-%einstein" if the last
term can be neglected. In fact, the first term on
the right-hand side gives about -0.28 and the sec-
ond term has a contribution of about +0.21, deter-
mined largely by the condition f»/[ f„f,(0)] = 1.28
and Eq. (30). The last term in Eq. (46), however,

is sensitive to the parameter b. With p, „=1.05 the
ratio f (0)/f, (0) reaches about -0.6 for values of
6 lying between -1.32 and -1.33. Proposals with
5= c —= e,/e, have been suggested and considered. '
We do not elaborate here.

In summary, we have formulated our problem
without the use of the vector-dominance approxi-
mation. Elastic unitarity has been used for the
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vector form factor f,(s) .and li, is determined to
be close to the II:*-dominance result. Our calcula-
tion is performed Lith mesons on the mass shell
so that meson dominance should be good. The
Callan-Treiman expressions for the sum and dif-
ference of the form factors follow in our approach
at the proper off-shell points. Although we have
used PCAC in the form of Eq. (15) for the pion, a
similar form for the kaon has not been adopted in
anticipation of correction to the model of Gell-Mann,
Oakes, and Renner. The commutation relation
(14) is the assumption and is true for extended
models including the addition of the (1, 8) and

(8, 1) representations to the symmetry-breaking

Hamiltonian. In comparison with other current-
algebra calculations, we agree with their results
if the last term is neglected. This last term, how-
ever, is expected to be significant if b= c= s,/s, .
By choosing b, we can achieve agreement with ex-
periment.
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In the usual application of vector-meson dominance to analyze the process m +p p +n,
only the amplitudes for transversely polarized p are related to single-pion photoproduction.
In this paper, it is shown that both the longitudinal and the transverse amplitudes for the
process m +p p +n can be obtained from single-pion photoproduction amplitudes by as-
suming that the off-shell Ball amplitudes not only satisfy the constraints imposed by current
conservation, but also are smooth in the vector-meson mass. The smoothness assumption
is discussed in particle-exchange models in detail. We also extend our predictions to some-
what larger ~t

~
than in our previous work, and comparison is made with recent 15-Gev

SLAG data on m +P p +n. We also apply the same assumptions to analyze some related
processes such as the electroproduction of a charged pion.

I. INTRODUCTION

Part of the objective of the vector-meson-domi-
nance model (VMD)' is to relate processes involv-

ing p mesons to processes involving isovector
photons. The idea of VMD is most easily under-
stood in a theory in which the p meson and the
isovector part of the photon are coupled to the same


