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On the basis of positivity and crossing symmetry, we derive further constraints on the 7t x
s wave. One of these relates the physical region to the region below threshold, where cross-
ing is easy to apply. It is sufficiently strong that none of the models of unitarized m7! partial
waves which we have examined satisfies it. We also derive sufficient conditions which imIi-
cate that our results cannot be improved very much. Finally, we show how the knowledge of
the s wave below threshold can give us useful information about the physical partial waves.

I. INTRODUCTION

In recent years considerable effort has been de-
voted to the study of rigorous constraints on the» partial-wave amplitudes, and many different
results have been obtained and have proved to be
very useful in constructing low-energy models for» scattering. ' Martin and his collaborators' have
derived a large number of such constraints on the
basis of crossing symmetry, analyticity, and the
positivity of the absorptive parts of the amplitudes.
Based on the work of Balachandran and Nuyts, '
one of us4 has found a general crossing-symmetric
parametrization of the» partial-wave amplitudes
below threshold, and has also obtained some re-
strictions imposed by positivity on this param-
etrization. In this paper we present a more power-
ful technique than that of Ref. 5 for obtaining the
positivity constraints on the crossing-symmetric
expansion of the &'&' partial-wave amplitudes,
and derive stronger results. We also present some
sufficient conditions to ensure both positivity and
crossing symmetry. We indicate how our con-
straints can be useful in analyzing models of &'~'
scattering.

The philosophy of this paper differs from others'
which have recently considered the same problem.
All the constraints can be reformulated as condi-
tions on the coefficients in the expansion of the s
wave in terms of an orthogonal set of polynomials
in the unphysical region. The previous authors
have tried to find general conditions which can be
used to restrict all the coefficients. On the other
hand, we are interested here in obtaining stronger
conditions on the coefficients of the polynomials of
low order, those that govern the grosser features
of the behavior of the s wave. We feel that, at the
moment, it is more meaningful to compare these
grosser features with predictions of a given model
of the &'w' s wave. Also, by concentrating on
these lower coefficients, we are able to show that.
our new constraints are almost optimal.

f, (s) = Q 2(o +1)A„(1—s)'P"'"""(2s—1) (1.1)
o=l

for l=0, 2, 4, . . . , where P~,"',"0)(2s —1) are Jacobi
polynomials and

[~/2]

Z (C~)(b~h.
p=(a/3$

Here C~ are arbitrary constants, and (b~), are
given by

(o —1)!(a + l + 1)!
(2o+ 1)!

(1 2)

x dz P, (z)(z'+ 3)'~ '(1 —z')'-'~. (1.3)
~-1

We have used the notation

fa/3j=smallest integer) a/3,

[a/2] = largest integer (o/2,

and have chosen units such that the pion mass = 2.
Notice that in this parametrization only the arbi-

trary constants C~, but not A,» are independent.
Consequently, A„with the same o but different l
will be related to each other through Eq. (1.2).
Explicit calculation for the first few (b~), from
(1.3) will show, for example, that we must have

for o = l, Acro=0

for o =2, A„=-,'A„;
for 0=3, A„=-A„; (1.4)

for o = 5, A„=-2A» = -2A„;
and so on. In general, for a given o there will be
(a/3) such relations, each involving only those
A, &

with l(o. It is exactly the whole set of these

We will follow Ref. 5 closely in formulating the
problem. According to Ref. 4, the elastic &'&'
partial waves below threshold can be parametrized
as
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relations among A, that makes the parametriz-
ation (1.1) crossing symmetric.

Now in the range 0& s &1 one can also express
f, (s) for /~ 2 by a Froissart-Gribov formula

f (s) = dt d(t)Qs, , —1), (1.5)
t2t 220 2t

wl —s „,
where

d(t, s)= g (2 t ls)lmf, (t) ,2+1), (1.2)
) 'even

with

constraints on the s wave alone, and then examine
whether existing models satisfy them. Finally in
Sec. VII we give an interpretation of the con-
straints on C~ and describe how our analysis can
be of practical value in analyzing models for the
&'&' scattering. Conclusions are presented in
Sec. VIII. Appendix A contains useful properties
of the functions B„(t)which will appear in Sec. II,
while Appendix 8 contains the detailed numerical
descriptions of the allowable region for C~ which
we found in Sec. III.

Imf, .(t) 0. (1.7) 11. CROSSING CONSTRAINTS ON Imf(t(t)

The representation (1.5)-(1.7) satisfies explicit-
ly the positivity condition, but needs further con-
straints on Imf, (t) in order to satisfy crossing
symmetry. On the other hand, the representation
(1.1)-(1.3) satisfies crossing symmetry by con-
struction, but needs further restrictions on the
arbitrary constants C~ to meet the positivi ty re-
quirement. Therefore, on equating these two
representations of f, (s), one will obtain both the
crossing constraints on Imf, (t) and the positivity
constraints on C~. In this paper we find some nec-
essary and some sufficient constraints on C~ for
o =2, 3, 4 for f, (s) of (1.1) to satisfy positivity [i.e.,
to be expressible also by the representation (1.5)-
(1.7)].

The paper is organized as follows. In Sec. II we
analyze some of the crossing conditions (1.4)
which can be transformed into crossing sum rules
for Imf, (t) in the physical region. Using these we
describe in Sec. III a method for obtaining con-
straints on C~ for cr =2, 3, 4, and then generalize
these to higher a in Sec. IV. In Sec. V we calcu-
late the allowable region of C~ from a Mandelstam
representation with the most general positive
double-spectral function, and compare it with our
corresponding region. The reader interested only
in our results can turn immediately to Sec. VI.
There we reformulate the results of Sec. DI as

A„=—Q (2l' + 1)
4
27)l p

where

dt Imf, .(t)B'„(t), (2.2)

B', (t) = ' ds (1 —s)'P""' "(2s —1)
"p

xQ, —1 P,. +1 (2.3)

Although only B,', (t) with even / appear in our
problem bere, B,', (t) with odd l are also well de-
fined by Eq. (2.3), and all of them will be consid-
ered for the moment. Several important proper-
ties of B,', (t) will be noted here. First of all,
B,(t) is positive for all t ~ 1; for the Jacobi poly-
nomial of the zeroth degree is identically equal to
one, and hence the integrand in (2.3) becomes pos-
itive for all s in the range of integration.

Next B', (t) can be proved to satisfy the following
recurrence relation (see Appendix A):

One can invert Eq. (1.1) to solve for A„ in terms
of f, (s):

1

A„= ds 1 —s "'P,""
, 2s —1, s, 2.1

p

where 0& l and l=0, 2, 4, . . . . Now for l& 2, one
can insert the representation (1.5)-(1.7) into (2.1)
and get

2(2l + I)/'(/' +1)B~,(t) = (l + 1)(o —l)(o + /+ 2)[Bg„2(t)+B~,(t)] + /(o —I + 1)(o + l + 1)[B',(t) +B', ,(t)] 2 (2 4)

by which one can express each B,', (t) as B,', (t) times
a coefficient that depends on 0, l, and l', but not on
t. In particular, we find

B'„(t)= [—,', l(l+1)(l'+ l —8) +1]B'„(t)

positivity condition

Imf, (s) ~ 0, s~ 1, /=0, 2, 4, . . .

we can find new amplitudes f, (s) satisfying the
same properties for which

(2.6)

which mill be useful later on.
Before we go on any further, however, we will

invoke a useful theorem': If the fixed-t dispersion
relation for &p&p elastic scattering requires two
subtractions, then given partial-wave amplitudes
f, (s) consistent with crossing, analyticity, and the

Imf, (s)=Imf, (s), s& 1, l& 2

but for which Imf, (s) is arbitrary, except for (2.6).
This theorem means that the imaginary part of

the s-wave amplitude is not subject to any cross-
ing constraints. In view of this unique property of
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Aal Aal +Aal ~

where

A„=— dt imfo(t) B~, (f)
4

~l

(2 7)

(2.8)

A„=—Q (2l'+ 1) dt Imf, (t)8,', (t) .
m,

(2 9)

Since Imfo{t) can be arbitrary for the amplitude
to remain crossing symmetric, according to the
theorem A,', automatically satisfies the crossing
conditions (1.4), and therefore A„must satisfy
them too; e.g. ,

the s wave, it will be convenient to isolate the s-
wave contributions to A, in (2.2), and hence, to
write, for l ~ 2,

x=axo+(I —a)X, y=ayo+(I —a)y, (3.2)

arately in this section.
Ideally one would like to find a region of (x, y)

which is necessary and sufficient for A», A», and
A« to be expressible by the representation (2.2)
with Imf, (t) satisfying both the positivity condition
(1.7) and all the crossing conditions in (2.10). Such
a region would be the complete region of (x, y) for
the parametrization (1.1) to satisfy both positivity
and crossing symmetry. However, this region is
difficult to find, and we will be l.ess ambitious and
try to find a region of (x, y} which is necessary and
sufficient for A», A», and A44 to be expressible
by (2.2) with Imf, (f) satisfying (1.7) and only the
first condition in (2.10), which is (2.11).

To proceed we observe that from (3.1) and (2.7}
we can express x and y as

for 0=4, A42=A44p

for 0 =5, A.„=A.„;
(2.10) where x', y', x, y, and a are defined, respec-

tively, by

and so on. Equations (2.9) and (2.10) will give rise
to an infinite set of crossing sum rules for Imf, (t)
for l' & 2. For example, the first crossing condi-
tion in (2.10) is equivalent to and

x'= -AS2/A22 y'=A44/Aaa

A32/A22~ y A«/A»1

(3.3)

(3.4)

&0g (2l+1) dtImf, (t) [B,', (t) -B,',(t)] =0. (2.11)
l =2

This set of crossing sum rules is equivalent to the
set derived in Ref. 7 or Ref. 8.

III. POSITIVITY CONSTRAINTS ON Cp

FOR0 = 2, 3, 4

Now we turn to our main problem, to find the
positivity constraints on C~ for 0 =2, 3, 4. Here
we have only C'„C'„and C', to consider. However,
it will be more convenient to work with A. , instead
of C~ directly. The relevant A„ in this case are
[see (1.2)]

4 4 3
22 15 1 P 32 105 1 0

16
42 44 315 2 '

The only crossing condition given by (2.10) is
A « —-A „, or equivalently (2.11).

Since the positivity condition (1.7) does not re
strict in any way the over-all scale of f, (s) in
{1.5), the absolute scale of all A„ in (1.1) is left
undetermined. Hence we can choose to use
A„/A» instead of A„ in our analysis. Let us call

x=-A»/A» and y=A«/A22. (3.1)

Since we will force our Imf, (t) to obey the crossing
sum rule (2.11), the equality A«=A„and hence
A,4

= A „will always be guaranteed. Therefore,
there is no need from now on to consider A„sep-

s =A»/(A»+A») . (3 5)

Imf, (t) = W, 5(t —f,), W; )0, f, - 1 . (3.6)

Since B'„(t) is positive, it follows from (2.8),
(2.9), and (1.7) that both A» and A» are non-neg-
ative. Hence the quantity a defined by (3.5) lies
between 0 and 1. Then Eq. (3.2) says that the point
(x, y) always lies on the straight-line segment be-
tween (x', y') and (x, y). Further, by adjusting the
scale of Imf, (t), any point (x, y} on that line seg-
ment can be obtained.

Consequently, all we have to do now is to find
two things: One is a region R' for (x', y') which
will be necessary and sufficient for A'„, A32 and
Ao« to be expressible by (2.8) with Imf, (t) ) 0; the
other is a region R for (x, y) which will be neces-
sary and sufficient for 422, A», and A,4 to be ex-
pressible by (2.9) with Imf, (t) satisfying both the
positivity condition (1.7) and the crossing condition
(2.11). Then the region R, obtained by connecting
with straight-line segments all possible pairs of
points inside R' and R, will be the necessary and
sufficient region of (x, y) for A», A», and A« to
be expressible by (2.2) with Imf, (t) satisfying (1.7)
and (2.11). The constraints thus obtained will be
the optimum constraints on C~ for 0 =2, 3, 4, as
long as we ignore all but the first crossing sum
rule in (2.10).

The region R' is easy to find. We first observe
that Imf, (t) can be arbitrary for the amplitude to
remain crossing symmetric, and hence, can be
taken to be
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(2l+I)c', dtImf, (t B' (t),dt Imf2(t)B~~(t =

(3.7)

where0.5

A

R

-0.5
=X

0.5

III forons R and R obtained in Sec. IIIgo
4. To find the missing o

region R (the convnvex hull of R an
nt B on the upper-lef R and the end poin

-l segment as shown 1nth a straight- ine secorner of R wi a
Fig. 4.

t will lead, through Eq .s. 2.8}This choice of Imf, (t) wi
and (3.3), to a point P'(t, ) given by

x'(t, ) = -B'„(t,)/B', ,(t,),
y'(t, ) =B,.(t, )/B'„(t, ) .

e t along the real axis from 1 to ~,1

n oint P t, wi
d describe a cer ain i '

the x-y plane an e
hich we shall denote by C .

i «):
w ic

er choice of Im,N w consider another c0

5 t —t ), W;&0, t;&1.Imf (t) = W, 5(t —t, )+ W25(t —t, ,0

t ' ') ' this case will alwaysThe resulting point (x', y
se ment between

th l'Further mor,re everypoint ont is i
properly ad]uste .I

f tions in Imf, (t).
to eneralize this consi e

l
and more 5 func ions 0

the most genera non- c-Finally, since
linear superposi-but a continuous in

'thfunctions at various po'

,x' ') o dits the point, y
0 'llf ll 'd thg 1Im (t)~ wi

connecting with ine s'(f oints on the curveossible pairs o poin
'nt ' side this regionther every poin ins' '

n

f.( )b an appropria e ccan be realized y e c
e re ion A we are

1R' is shown in Fig. , an
B.'ll b

' A dixi pcri tion wi e g'

R is much more
we have to take e c()ioo i '

i
ration. We wi i

2 or ' ' mruleinamore2 5) to rewrite this sum
form:

=—' l(l+1)(l +I t&4).

that not all Imf, (t) wiIIWe see from 3.7 a
other. However, since the left-pendent of each ot er.

the right-handwell as each term on

bl, I f, (t)
7 is ositive defini e or

Th f '
the each other. ere(3. ) wiQ alance e

the crossing condition
t for l& areNow s ppose I f,

late the right-han siThen we can calcu a e
and call the result M,

M=+(2l+1)n, dtImf, (t)B~(t).
l=4 &1

Then our Imf, (t) has to satisfy

(3 8)

5 dt Imf, (t) B44(t) = M
41

or, equivalently,

J
dt Imf (t)/A(t) = 1, (3.9)

(3.10)

»(t, )B„(t,) +g»
5A.(t, )B',,(t, ) +g» '

where

5X(t, ) '„(t,)+g„
5X(t,}B',(t, ) +g„'

(3.12}

OO
. rO

g„=Q (2l'+1)

ain X t and y(t, ) in the followingA ain we rewrite X(t,) an ygain
form:

(3.13)dt 11Xlft'(t) Ba( (t) '

x(t, ) =bx, (t, )+(1 —b)x,

y(t, ) =hy. (t,)+(I —5)y,
where

xi (t) = B,',(t)/B'„(t), -
y (t) =B'.,(t)/B.'.(t),

(3.14)

(3.15}

where

~(t) = M/5B'„(t) & 0.
Clearly the choice

(3.11)Imf (t) = A(t, )5(t —t, ), t, ~ 12 1 1

tl will leadand (1.7), and consequently
to an allowable point (X(t,), y t, r
and (2.9):
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g32~g22 i y g«/822 & (3.16) obtained in the same manner as R' was obtained
earlier in this section. That is to say, we can
first take Imf, (t) for l' ~ 4 to be

h =6~(ti)@22(ti)/I. 6~(ti}822(ti)+g»]. (3.17)

We see, therefore, that given any choice of Imf, (t)
for l~ 4, we can first calculate (x, y) from (3.13)
and (3.16) and then choose a value of t, and com-
pute x,(t, ), y, (t, ), and h from (3.15), (3.17), (3.10),
and (3.8), and hence obtain an allowable point
(x(t,), y(t, )) from Eg. (3.14). If we vary t, through
all values from 1 to ~ while maintaining the same
Imf, (t) for l ~ 4, we obtain a certain finite curve C
in the x-y plane, every point on which is an allow-
able point for (x, y). We denote the convex hull of
C bY R'.

It is easy to see that every point inside the re-
gion R' is an allowable point for (x, y), and further,
that the point (x, y) corresponding to the most gen-
eral Imf, (t) consistent with (3.9) will definitely fall
inside this region R'. The first part of this asser-
tion is true, because any point (x, y) inside the re-
gion R' can always be made to correspond to some
Imf2(t) of the following form:

A(t, )5(t —t, ) +C X(t~)5(t —t2)

which satisfies (3.9) and (1.7). The second part is
true because the most general Imf, (t} satisfying
(3.9) can be expressed as a properly-weighted lin-
ear superposition of A(t, )5(t —t, ) at various points,
l.e.)

Imf (t) = dt, h(t, )A(t, )5(t —t, ),

where

h(t, ) = Imf, (t, )/A. (t,) ~ 0

4 y

dt, h(t, ) = 1

because of (3.9}.
Now we summarize our results so far as'follows.

Once given a set of Imf, (t) for t ~ 4, we can first
calculate the point (x, y), from which we can im-
mediately generate an allowable region R' for
(x, y). This region R is the necessary and suffi-
cient region of (X, y) for Imf, (t) to satisfy both (1.7)
and (3.9). It is clear that if one can find the com-
plete region for (x, y), then one will be able to ob-
tain all possible allowable regions R', and con-
sequently, by taking their convex hull one will ob-
tain the region R.

Fortunately, the complete region for (x, y) is
quite easy to find. Since x and y are given by
(3.13) and (3.16) with Imf, (t) all independent and
arbitrary, the complete region for (x, y) can be

Imf, (t) =5, , 6(t —t ) (3.18)

and calculate the corresponding (x, y). The convex
hull of all such points will be the complete region
for (x, y).

Thus we have described a method for obtaining
the necessary and sufficient region R of (x, y} for
A», A», and A« to be expressible by (2.9) with

Imf, (t) satisfying (1.7) and (2.11). To find the re-
gion R we only need to calculate

The region R is obtained by taking the convex hull
of all these points. The region R is also shown in
Fig. 1, and its numerical details are again given
in Appendix B.

IV. GENERALIZATION TO HIGHER 0

Now we can try to apply the same technique de-
scribed in Sec. III to the case of higher 0. Suppose
we wish to find constraints on C~ for 0 =2, 3, . . . , n.
There are d(n)+1 such C~ in total, where

d(n) + 1 = [n/2](n —[n/2]) —((n/3] —1)(n —2(n/3]. ) .

Hence among all the relevant A.„(2.«x & n), only
d(n)+1 of them will be independent. Moreover, we
will actually consider A„/A» rather than A,
themselves, and thus we are left with d(n)-inde-
pendent variables among A„/A», which we shall
denote by xy x2 xg( ) We will also choose
x, =x and x, = y, where x and y are given in Sec. III.

To find the constraints on C~, we will have to
find a region in the d(n)-dimensional space of
(x„x„.. . , x«„~), which is necessary and sufficient
for A„(2 & o & n) to be expressible by (2.2) with
Imf, (t) satisfying the positivity condition (1.7) and
all the crossing conditions in (2.10) for 4 & g & n.

To proceed we first separate as before s-wave
contributions to A, from those of the other partial
waves, i.e., we write again Eqs. (2.7)-(2.9), and
start to find a region R' for (x'„x'„.. . , x«„~) which
is necessary and sufficient for A', (2 & o & n) to be
expressible by (2.8) with Imf, (t) ~ 0. This region
can be obtained by taking the convex hull of the
curve C', which in turn is obtained by inserting
Imf, (t) = 6(t —t, ) into (2.8), and varying t, through
all values from 1 to ~. This region R' can be cal-
culated explicitly without any difficulty, as can be
seen in Appendix A.
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The region R, which is the necessary and suffi-
cient region for A„(2 & o & n) to be expressible by
(2.9) with Imf, (t) satisfying (1.7) and all the cross-
ing conditions in (2.10) for o & n, seems however
more difficult to calculate, and in fact, we have
not been able to find a general method for obtaining
such a region for n» 5. Nevertheless, it is still
possible to apply our technique to find another re-
gion R' which is necessary although not sufficient
for A„ to have the same properties. Such a re-
gion can still provide strong constraints on C~.

For simplicity we shall describe the procedure
to obtain R' only for the case n = 5. In this case we
have two crossing conditions to satisfy, namely,

A44=A4, (4.1)

54 52 ' (4.2)

Since we know how to take care of only one of them
at a time, we will first ignore the condition (4.2}
and hence treat A.„and A52 separately. Suppose
we are considering A„, A„, A«, and A„only.
Then following exactly the same procedure for ob-
taining R in Sec. III, we can find a region R, of
(x, y, Z), where Z =-2»/A», which is necessary
and sufficient for A22j A32y A44 and A» to be ex-
pressible by (2.9), (1.7), and (4.1). Similarly if
we consider A„, A», A44, and A„only, we can
find the corresponding region A,' in the (x, y, Z')
space, where z' = -A„/A». However, Z' is sup-
posed to be the same as z, if we take (4.2) into
account. Therefore, the intersection I, Ry A Ry
will be a necessary region of (X, y, Z} for A „
(2 & o & 5) to be expressible by (2.9), (1.7), (4.1),
and (4.2).

Now we can repeat this procedure all over again
having the roles of (4.1) and (4.2) exchanged, and
hence find another necessary region I, of (X, y, Z)
for A. , to have the same properties. Finally we
take the intersection of I, and I„and obtain an
even smaller region R =I, AI, of (x, y, z) which is
necessary (but not sufficient) for A, (2 «r & 5) to
be expressible by (2.9), (1.7), (4.1), and (4.2).
Clearly this method can be used also in the case of
higher n.

It is a relatively easy matter to find a certain
sufficient region in the (X„x„.. . , x,t„~) space for
A„(2 & cr & n) to be expressible by (2.9), (1.7), and
(2.10), as will be seen in Sec. V. Hence it is pos-
sible for one to tell how far apart our region R' is
from the region R. However, without doing all this
we want to argue that the region R' obtained by the
above method must be strongly constrained. To
show this we use the method just described to ob-
tain the region R' for the case n=4, and show that
R' is a large improvement over the previous re-

0.05

-0.5 0
— X

FIG. 2. Comparison of the region R with the region R'
of Sec. IV and with the region R& of Sec. V. R is the
region bounded by the solid curves, R' the one bounded by
the dotted lines, and Rz by the dashed curves. R~ is con-
tained in R, which in turn is contained in R'. Notice the
difference in scale for the x and y coordinates.

suit in Ref. 5.
To find the region R' for n=4, we first ignore

the crossing condition (2.11) and treat all Imf, (t)
for l» 2 as if they were independent of each other.
Let us call

y=A. „/A„and y'=A„/A„
to distinguish A44 from A4, for the moment. Then
following exactly the same procedure for obtaining
the region R' in Sec. III, we can find a region R, in
the (x, y) plane which is necessary and sufficient
for A», A», and A« to be expressible by (2.9)
with Imf, (t) satisfying (1.7) alone. Similarly we
can find the corresponding region 8,' in the (x, y')
plane. The intersection R'=R, AR,' is a necessary
(but not sufficient) region of (x, y) for A„(2 &o &4)
to be expressible by (2.9) with Imf, (t) satisfying
(1.7) and (2.11). The region 8' is shown in Fig. 2

together with R. This result is indeed much better
than the previous result, as can be seen from Fig.
3.

If one could somehow manage to find the region
R in general case, then one could take the convex
hull of R' and R to obtain the region R, the nec-
essary and sufficient region for A„(2 &o &n) to
satisfy positivity (1.7) and crossing conditions
(2.10) for 4 & o & n. Notice that if one projects this
d(n)-dimensional region A onto the x-y plane, one
may find there a region even smaller than the re-
gion we previously found for the case n=4. This
can happen because our previous constraints are
not sufficient conditions for A„ to satisfy o» 5

crossing conditions. However, as will be seen in
Sec. V, the improvement one can make over our
results in Sec. III by going to higher n is rather



FURTHER CONSTHAI'NTS QN THE n w s-~AVE AMPLITUDE 18'79

0.5

-l.5 -l.o ~, -0.5
R

0 0.5

limited, as far as constraints on (x, y) are con-
cerned. Hence our region R is not too far apart
from the complete region for (x, y).

V. COMPARISON WITH THE RESULTS FROM

A MANDELSTAM REPRESENTATION

To see how good our results in Sec. III are, we
can take a simple example of a scattering ampli-
tude that satisfies the analyticity, positivity, and

FIG. 3. Comparison of our region R (the innermost)
with the previous region of Ref. 5 (the outermost) and
with the region R' (in between). The region R' is just the
convex hull of R and R' (see Figs. 1 and 2). R and R'
share the right-hand-side boundary.

where

+ cyclic terms,

p(s', f') = p(t', s') ~ 0.
After removing the imaginary part of the s wave,

w'e find the absorptive part to be

crossing properties of the elastic &'~' scattering,
and calculate the corresponding a11.owable region
of (x,y). Such a region will be a sufficient region
of (x, y) for A„(2 ~ o ~ 4) to be expressible by
(2.2) with Imf, (t) satisfying positivity (1.7) and all
the crossing conditions in (2.10). However, since
the imaginary part of the s-wave amplitude can be
chosen arbitrarily, i.e., every point in the region
B' is already realizable, it is not necessary to
consider this part of the allowable region for the
purpose of comparison. Hence, we will calculate
only the allowable region for (x, y) for a given
model.

Here me shall take for such a model the most
general twice-subtracted Mandelstam representa-
tion with a positive symmetric double-spectral
function (the single-spectral-function terms lead
to the region R', because they involve only the
imaginary part of the s wave):

st ( ", , p(s', t')
F(stt)= 2J) J dsdt t t( t )(, )

1 2 s'+t' —1

The d-wave amplitude below threshold can be ex-
pressed as

f (t)= ( dt'tt(t', t)t), —()
4 "",—, 2t'

1

from which we can calculate A~2 and hence (x, y)
using (2.1) In practical computation we set

P(s', t') = 5(s' —s,)5(t' —t,)+ 5(s ' —t,)5(t' —s,)

(5 1)
because the most general positive symmetric func-
tion is simply a linear superposition of such ex-
pressions at various points (s„t,). For each
choice of (so, to) we find an allowable point for
(X, y). Then we take the convex hull of all such
points and thus obtain a region B„, shown in Fig. 2

together with B. This region R„ is a sufficient re-
gion of (x, y) for A», A», and A« to be express-
ible by (2.9) with Imf, .(t) satisfying (1.7) and (2.11).
The boundary of R„consists of two parts, a curved
portion and a straight line. It is interesting to note
that this curved portion of the boundary corre-

I

sponds to those p(s', I') with s, = t, in Eq. (5.1).
Other choices of p(s', t') give rise to inside points
of (x, y).

Of course one can take the convex hull of R„and
8' and thus find a sufficient region B„of (x, y) for
A„(a = 2, 3, 4) to be expressible by (2.2) with

Imf, (t) satisfying (1.7) and all the crossing sum
rules in (2.10). The complete region of (x, y)
mhich is both necessary and sufficient for A„ to
have the same properties mill contain R„, but mill
be contained in R. Since there is not much room
in between R„and R, w'e see that our region R is
quite close to the complete region.

Following a different approach, Pennington has
also studied the positivity and crossing constraints
on the r'r partial-wave amplitudes, and has ob-
tained the necessary and sufficient constraints on
(x, y) for f,(s) and f,(s) to be positive definite below
threshold. However, this property of f, (s) is only
a small consequence of the full positivity condition
(1.7), and hence it is not surprising that his re-
sults are much weaker than ours.
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Finally we also compare our results with the
original results of Ref. 5, as shown in Fig. 3.

VI. RESULTS REFORMULATED AS

CONSTRAINTS ON s WAVE ALONE

All the constraints on C~ for o =2, 3, 4 we just
obtained can be reformulated as constraints on the
s-wave amplitude alone, which will be more use-
ful in analyzing models of ~'m' scattering. We
first express all the relevant A„and A,', in terms
of the s wave explicitly. We have from Eq. (2.1),

A,o
= (1 —s)(3s —1)fo(s)ds,

A,o
= (1 —s)(10s' —8s + 1)fo(s)ds,

4 p

(2.9), and (1.7), while (6.3) and (6.5) were derived
in Sec. III, and the regions R, R', and R were
shown in Fig. 1. Condition (6.5) will turn out to be
the strictest constraint. It is particularly interest-
ing because it relates the s wave above threshold
[via (x', y')] to the s wave below threshold [via
(x, y)].

Now we can analyze various models for the s-
wave &'&' scattering to see whether they satisfy
our constraints (6.1)-(6.5). We have examined all
the models of Ref. 1 except the one of Basdevant
and Lee which by itself does not satisfy crossing
symmetry well enough for us to make a meaningful
comparison. The model of Auberson et al. does
not satisfy the crossing condition (6.1) and the
other crossing condition'

A,p=
6 p

(1 —s)(35s' —45s'+ 15s —1)f,(s)ds,

"1
2 (1 —s)f00(s)ds = 5

~ (1 —s)f02(s)ds
p Qp

(6.6)

2
hag

A p" 3m. Imfo(t) [Q,(2t —1) —Q~(2t —1)]dt,

00

A'„=— Imf, (t) [Q,(2t —1)—Q,(2t —1)]dt,"1

p 2AP
44 Imfo(t) (Q, (2t —1) —Q, (2t —1)]dt .

Then our results can be summarized as follows:

Aip =o

(x, y)eR,
where

x=5A„/2A„, y =5A„/7A„;

(x', y') eR',
where

A 32/Agg y y A 44/A22 y

(x, y)cR,
where

x —ax' y —ayp
X= , y=1-a ' 1-a

with a =5A'„/2A„.

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

Condition (6.1) follows from crossing symmetry
alone [see (1.4)], while condition (6.4) from the
positivity of Imfo(t) alone. The rest are conse-
quences of both positivity and crossing symmetry.
Condition (6.2) can be proved from (1.4), (2.7),

A ~o
= (1 —s)(126s~ —224s'+ 126s' —24s + 1)f,(s)ds;

dp

from Eqs. (2.8) and (A6),

very well either. However, we have been able to
choose a different set of parameters for their mod-
el in such a way that both crossing conditions as
well as all the constraints" listed in their paper are
well satisfied. Our choice of the parameters is,
in their notation and units,

a', = -0.099, n' = 0.24, A = 3.81,

B = -0.6306, C =0.3753, D =0.05263.

Then we take this modified version of Auberson's
model together with those of Le Guillou, Krinsky,
and Kang into our analysis.

They all satisfy, by construction, conditions
(6.1) and (6.4), neither of which is a joint conse-
quence of crossing and positivity. We list in Table
I the calculated values of (x, y), (x', y'), and (x, y)
for each model and indicate whether conditions
(6.2), (6.3), and (6.5) are satisfied or not in each
case.

Thus we see that none of them satisfies all our
constraints, despite the fact that they all satisfy
the crossing conditions (6.1}and (6.6} on the s-
wave amplitudes below threshold, and the positiv-
ity condition on Imf, (t) above threshold. The point
here is that they violate (implicitly) the positivity
of the higher partial waves. This can be easily
understood as follows. We have seen that the s
wave in the unphysical region is related to the
higher partial waves in the same region by cross-
ing [see (1.4) and (2.1)], and the latter in turn are
related, by the Froissart-Gribov representation
(1.5)-(1.7), to the crossed-channel imaginary part
of all partial waves in the physical region. Conse-
quently, the positivity of the higher partial waves
puts some constraints on the s wave in the unphys-
ical region, and they have nothing to do with the
positivity of the s wave.
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TABLE I. Calculated values of (x, y), (x,y ), and (x, y) for each model,

Model (x, y) (x', go) (x, y)
(6 2)

satisfied
(6.3)

satisfied
. (6.5)

satisfied

Auberson x =0.157
y =0.026

x = 0.098
yo = 0.019

x =-0.130
y =-0.0084

'No No No

Le Guillou x =0.183 x =0.125
y =0.022 yo= 0.027

4.10
y =-0.312

No No No

Krinsky x =0.089
y =0.012

x =0.111
y =0.017

x'=0.097
yo= 0.019

x =0,122
yo= 0.026

x = 0.052

y =-0.018

x = 0.052
y = -0.031

Yes

Yes

Yes

Yes

No

No

VII. INTERPRETATION OF
THE CONSTRAINTS ON C

-0.5

0 0.5

FIG. 4. The point P = (x, y) calculated from any model.
The point (x,yo) associated with P must come from the
region AEE, and the point (x, y) from the region ORGCD.

We want to see how much information about the
physical amplitude one can extract from the know-
ledge of a given point (x, y) defined by (3.1). We
first observe that each point (x, y) has been ob-
tained through Eqs. (3.2)-(3.5). Thus each (x, y)
must be associated with a certain straight-line
segment whose end points (x', y') and (x, y) are in-
side the regions R' and R, respectively. Further,
the closer the point (x, y) gets to the end point
(x', y'), the more important the s wave must be
relative to all the other partial waves, in the sense
that A. » gets bigger than A», and vice versa.

Now given a point P = (x, y) inside B, we shall not,
in general, be able to tell which line segment it is
associated with. However, we do know something
about this line segment, for we can draw a straight
line through A and P (see Fig. 4) intersecting with
the boundary of R at C and D, and also a straight
line through I3 and P intersecting with the boundary
of R' at E and F, and we know for sure that the
point (x', y') associated with P must come from the
region AEE, and similarly the point (x, y) from the
region BGCD.

The analysis in Appendix 8 indicates that, in

general, a point (x', y') in the upper portion of the
region Bo corresponds to an s wave Imfo(t) empha-
sizing the lower-energy (smaller-t) region and vice
versa. Similarly, a point in the upper portion of
the region 8 corresponds to Imf, (t) for l & 2 empha-
sizing the lower-energy region and vice versa.
Therefore, the larger y is, the more likely it is
for most partial waves to emphasize the low-
energy region and vice versa. Also the larger
(more positive) x is, the more likely it is for the
s wave to dominate the rest of the partial waves in
the physical region and vice versa.

Some extreme cases can be easily interpreted.
They will happen when the point (x, y} falls some-
where on the boundary of R. The following pre-
dictions are all based on the analysis in Appendix
B.

(I) If (x, y) falls on the AEO part of the bound-
ary, then there is only the s wave in the physical
region, and it will consist of a single sharp reso-
nance at a certain energy uniquely determined by
the location of (x, y).

(2) If (x, y) falls on the BDO part of the bound-

ary, then there are only the d wave and the g
wave, each of which consists of a single sharp res-
onance. The location of these two resonances and
their relative strength are uniquely determined by
the location of (x, y).

(3} If (x, y) falls on the straight line AB of the
boundary, then only s, d, and g waves are present,
and they are all concentrated at the threshold.

Of course all these extreme cases cannot occur
in the &'&' scattering. But if a model happens to
produce a point (x, y) extremely close to the bound-
ary of R, we can still make some approximate
predictions about the partial waves in the physical
region. For example, suppose a model gives rise
to a point (x, y) very close to the AEO part of the
boundary. Then we know that all higher partial
waves than the s wave, if present at all, must be
relatively unimportant. Further, it is most likely
for the s wave to be concentrated around a small
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dt Imf, (t)B22(t) = dn(dtl»+ -240'),
l =2

oo

Q(2l+1) dtlmf, (t)B' (t) = —2((-',A —A„).

The right-hand side of each equation above is
known for a given model. Such constraints on

Imf, (t) in the physical region, plus some additional
assumptions like f' dominance in the d-wave am-

energy region, in which there may be several
sharp resonances, or just a broad resonance or
something else. ln any case, the s wave must be
relatively small outside that region.

If the point (x, y) falls somewhere inside the re-
gion R, not too close to any part of its boundary,
then there are too many possibilities pertaining to
such a point for one to predict anything conclusive.
However, given additional information about the
model under consideration and applying our anal-
ysis in a more quantitative manner, one can cer-
tainly understand better the structure of the mod-
el. To illustrate this point, consider a model for
the s-wave elastic &'&' scattering satisfying con-
ditions (6.1)-(6.5). Then it can be shown that there
exists at least one set of non-negative functions
Imf, (t) for l & 2 in the physical region t & 1 such
that 222, A32 A. 4„and 244 can be expressed by
(2.2) and satisfy the crossing conditions (1.4} for
1 &o &4. Furthermore, this set of Imf, (t) will
satisfy the. following equations'.

g (2I + 1) dt Imf, (t)B'„(t)= d &(-',A» -dt») 2
L=2 ~ 1

g (2l+1)

plitude, and so forth, can lead to some predictions
on the behavior of the higher partial waves in the
physical region, such as the mass and width of the
f' resonance. Unfortunately, we have not been
able to consider such implications for existing
models since they all violate at least one of our
conditions.

VIII. CONCLUSIONS

We have found the necessary and sufficient con-
straints on the parameters C~ for o =2, 3, 4 in the
crossing-symmetric &'~' partial-wave expansion
(1.1)-(1.3), which follow from, and ensure, the
existence of a set of amplitudes Imf, (t) in the phys-
ical region satisfying both the positivity condition
(1.7) and the crossing sum rule (2.11). Although
they are not quite the complete constraints on C~

to ensure positivity and crossing symmetry, we
have nevertheless shown that in fact our results
cannot be strengthened very much.

We have also reformulated the results as con-
straints on the s-wave amplitude alone, and have
examined whether they are satisfied in several
existing models for the s-wave && scattering. It
turned out that none of them satisfies all our con-
straints, which indicates that they have all violated
the positivity condition on the higher partial waves.
We have also given an interpretation of the con-
straints on C~ and described how they can be used
to extract implications on the higher partial waves
in the physical region from a given model of the s-
wave amplitude.

APPENDIX A

We wish to establish several properties of B', (t) defined by (2.3}. First we shall give a proof of the re-
currence relation (2.4). From (2.3) we have

1'(2 +1)B' (t)= ds (1 —s)'P" ""(2s—()1), —1 1'(1'+l)P, +1) .
2t 2s

j. —s l' (Al)

Now we insert the equation

(A2)

satisfied by the Legendre function P, (x), into (Al) and then integrate by parts twice to express (Al) in the
following form:

pl 2s(l' lP)B s(f) = ds P„(',s, , t)P, +1),"0
(A3)

where F«(s, t) is a complicated expression involving Q,(2t/(I —s) —1) and its first and second derivatives,
and some polynomials of s and t Then we use th. e differential E(I. (A2) satisfied by Q, (x) and several
recurrence relations of Q, functions to express all the derivatives of Q, in E (s, t)«in terms of Q„„Q„
and Q, , only, so that all t dependence of E«(s, t) gets absorbed into the three Legendre functions:
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d2

+-,'(1 —s)'Q( —1 l+[(2l+3)s —1]——s(1 —s), P,"',"')(2s —1)s dS ds

+ (1 — )' 'O, , —1) (21+1)I(sl+l)s —ll2t

d—[(4l+3}s—1](1—s)—+s(1 —s)', P,"',""(2s —1}. (A4)

Finally, we can transform (A4) into

( )
(l+ I)(& —1)(&+l + 2}

(1 — )2+ 2 2t —1 P{22+3,0)(2 I}2(2l+1) S Ql+ ~ 1 — o-l -j S

+,'-(s' —1 ~ 22 —l)(1 —2)'O, —1))'2' s(22 —1).l y —S

l(o —l+1)(o+ l+1)( )(-2 2t !22-2 o)(
2(2l+ 1)

—S Ql -y
y

a-l+& S— (A6)

Here we have made use of the differential equation
satisfied by the Jacobi polynomials, and several of
their recurrence relations, which can be easily
established by using the representation"

(n+{).+ m)!
Ps{ ' (x) =+2N{ !( )!(&'+ )!(x

m=0

Inserting (A6) into (A3) and using the definition
(2.3) for B,', (t), we obtain the recurrence relation
(2 4)

This recurrence relation can be used to find the
explicit expression of B,', (t), as we show in the
following. For l' =0, (2.4) becomes

(l+1}(o—l)(o+ l+ 2)[B,' „,(t) +B,', (t)]

+ l(o —l+1)(o + l+1)[B',(t) +B,', ,(t)) =0

from whi. ch we can easily establish

B:,(t) =(-1) -'B.'.(t).
Hence, all we have to do is to evaluate

2t)2' ({)= ds{( —s)'O, —\).I —8

The integral can be calculated to be

[I/2(" I)][Q.(2t - I) —Q.„(2t-I)]
by using the representation"

I nInf g
"+'

Q,(2x —1)=—
2 (n-&x)!(n+o+I)! x

Therefore, we find

-2
B.', (t) = [Q.(2t -1)—Q.„(2t-1)]

which can be used to find the region R' of Sec. IV.

Notice that if only B,', (t) with even l are consid-
ered, as is the case in our problem, B,', (t) will be
independent of l for a given a. Hence we have, for
example,

0 0 0 0 0 0 0
44 42& 54 527 66 64 62 0

and so on. Thus A', satisfy automatically all the
crossing conditions corresponding to those of
(2.10).

We can of course use the recurrence relation
(2.4) to deduce properties of B,', (t) for 1'x 0, but
the results will look more complicated in general.

APPENDIX 8

In this appendix we shall give a detailed descrip-
tion of the regions B and R we obtained in Sec. III,
in order for our results to be convenient to use in
practice. The boundary of the region B0 consists
of two parts (see Fig. 4), the curved part AEO and
the straight-line part AEO. The curve AEO is
simply the curve Co2 described by E{I.(3.6), or,
more explicitly,

3[Q,(2t —1) —Q,(2t —1)]
4[Q.(2t —1)—Q.(2t - I)]'

y'(t) = 3[Q,(2t —1) —Q, (2t —1)]
6[Q.(2t -1)—Q.(2t -1)]'

with t ~ 1. The point A is given by (x'(1), y'(1)), or
(—,'„—,', ), and the portion of the curve near the origin
0 can be approximated by y =446x'/406.

In Table II we list several calculated values of
points on the curve A.EO for practical purposes.

The straight line AEO is y =16x/25. Generally
a point (x, y) in the upper portion of the region Bo
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TABLE II. Calculated points on the curve AFO (Fig. 4).

xp(t)

lated from

7=x(4, t„ t,), y=y(4, t„ t,), t„ t, -1

1.0
1.01
1.05
1.1
1.4
2.0
5.0

0.563
0.496
0.399
0.337
0.193
0.110
0.0358

0.360
0.277
0.178
0.126
0.0413
0.0133
0.0014

where t, and t, ark related to each other through
the equation

x,(t,)y, '(t,) x, '(t,—)y,(t,) x,(t,)y, '(t, ) x, '(—t,)y, (t,)

(Bl)

corresponds to an s wave Imf, (t) emphasizing the
lower-energy (i.e., smaller-t) region, and a point
in the lower portion, the higher-energy region.
This can be seen clearly from the way A' was con-
structed in Sec. III.

The region A has a more complicated structure,
given by using (3.19) for all I) 4 and t„ t, ) 1. It
appears to us, from taking many different values
of l t0 tj that the boundary is given by 3 pie ces,
the curved portion BDO, the broken-line portion
BG, and the straight line GCO.

The BG part of the boundary is obtained by con-
necting with straight-line segments the following
sequence of points successively'.

3 155P+692l +623l+150
16 37P+152P+77l —50

3(t - 1)(t+2)(t+ 3)
37l'+152P+77l —50 '

l=4, 6, 8, . . . .

The point G is given by

when there is a solution for t, and t, ) 1. [x,(t) and

y, (t) were defined by (3.15), where x, '(t) means
dx, (t)/dt. ] It turns out" that (B1) has no solution
unless t0& 2.33. For t0& 2.33, the boundary is given
by

x =x(4, t„ 1),

y=y(4, t„ 1).
We have not been able to find a closed form for the
expression of this curve BDO, but we know the
portion near the origin 0 can be approximated by

g 111x=X(4 t t )= ——
0& 37 0 56t p

0

4107
(4 t —t ) 1494 0

Several points on the curve BDO are listed in
Table IV.

Again in general a point in the upper portion of
the region A corresponds to Imf, (t) for l ) 2 em-
phasizing the lower-energy region and vice versa.
Further, .a point closer to the BDO part of the
boundary tends to emphasize lower partial waves
(smaller l).

and the point B by

(x(4, 1, I), y(4, 1, 1))=(-,",—,', ) . TABLE IV. Calculated points on the curve BDO (Fig. 4).
In Table III we list several points on this part of
the boundary.

The straight line GCO is given by y =-16x/155.
The curved portion BDO of the boundary is calcu-

x'(l, 1,1) y(l, 1,1, )

4
6
8

10
20

-'0.876
—0.842
-0.826
-0.817
-0.800
-0.785

0.0747
0.0778
0.0790
0.0796
0.0805
0.0811

TABLE III. Calculated points on the segment BC (Fig. 4).

tp

1.00
1.20
1.40
1.60
2.00
2.33
2.83
3.29
3.95
4.81
6.29
8.37

18.28

1.00
1.00
1.00
1.00
1.00
1.00
1.10
1.20
1.35
1.55
1.90

- 2.40
4.80

-0.876
—0.876
-0.869
-0.855
-0.814
-0.773
-0.653
-0.569
-0.479
-0.397
—0.307
-0.232
-0.107

0.0747
0.0707
0.0666
0.0623
0.0541
0.0479
0..0332
0.0247
0.0173
0.0117
0.00689
0.00389
0.00082
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Necessary and sufficient conditions in order for all components of a local operator (such
as a current, for example) to have the same dimension are given and discussed. In addition,
we then note that exact scale invariance is in an apparent formal contradiction with a definite
scaling behavior for the currents. The solution of this contradiction is then traced back to
the fact that in scale-invariant theories, the Schwinger term must be guadratically divergent.
We finally conclude by briefly discussing Coleman's theorem for scale and conformal trans-
formations.

In a previous paper' the equal-time commutator
algebra satisfied by the generators of the broken
conformal group have been derived. These rela-
tions were then used to give necessary and suffi-
cient conditions in order for all components of a
local operator (such as a current, for example) to
have the same dimension, and to discuss Coleman's
theorem for scale and conformal transformations. '

In this paper we wish to summarize the discus-
sion given in Ref. 1 and to make some further com-
ments. In addi. tion, we show that exact scale in-
variance immediately leads to an immediate appar-
ent formal contradiction with definite scaling be-
havior for the currents. This has already been
pointed out in Ref. 8 on the additional assumption
that

[D, P„]= iPq — d'x B-„Dq(x)6„~, (2)

[Kq, P,] = 2i (6q, D -M„„)—2 d'x 6,1x„BgDg(x),

[D,Mq„] = d'x(6„,x, —6„x„)BqD (x),
. 4

[K„,M,.]= i(6„.K, —6„,K.)

(2)

(4)

uum. Moreover, we note that the solution of this
apparent contradiction may be traced back to the
fact that in scale-invariant theories, the Schwinger
term must be quadratically divergent.

We start by writing, for the sake of complete-
ness, the by now well-known relations satisfied- by
the generators of the broken conformal group. '

These are

In this paper we also schematize that proof and note
in addition that Eq. (l) follows immediately from
the equal-time commutator algebra of the confor-
mal group and the translation invariance of the vac-

fO

+2 d'xx„(6„x.—6.,x, )B,D,(x),
4

[D, Kj=iK~ — d'x Bq~x BgDg(x), (6)


