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By the canonical Hamiltonian approach to field theory, we have studied the very high-
energy limit of massive quantum electrodynamics. %'e introduce a series of canonical
transformations which bring the usual Hamiltonian of a neutral-vector-meson interaction
with a conserved current to the effective Hamiltonian that operates at infinite energy. The
result we obtain for the S-matrix operator is that it factorizes at very high energies:

S=S, Vtr~exp —* dta, (i) V,

w'here 80 is the S matrix for the hard-meson "core, "first given by Cheng and Wu and by Chang
and Ma.

. g', iz(k~))J. (-kg)
(2m')2 k~2+ p2

arid the second operator describes the contribution to scattering due to pionization effects.
U is the dressing operator which clothes the hard-meson "core" in a coherent state of
vii'tual soft mesons, and the T product is obviously the time-evolution operator for soft-
meson dynamics.

I. INTRODUCTION

Physics at very high energies is- believed to be
simple. Thisbelief, until recently, was based
more on physical intuition than on a complete the-
oretical framework such as that of field theory.
However, within the last two years, very much
stimulated by the ideas of Feynman' and Yang,
Cheng and Wu' and others' have carried out an
extensive investigation of field theory, summing
various classes of Feynman diagrams and arriving
at the infinite-energy limit. The results of their
investigations, on the whole, lend support to the
parton ideas of Feynman' and to the coherent-drop-
let ideas of Yang. '

In this paper we study the field theory of massive
quantum electrodynamics in the limit of very high
energies from. a Hamiltonian approach, rather than
in terms of summing Feynman diagrams. Our
analysis thus is very close in spirit to the talk that
Feynman gave at Stony .Brook in 1969,' except that
we commit ourselves to a specific model field the-
ory. The language we use is the noncovariant one,
viz. , with respect to the center-of-mass frame,
and the picture we describe in this langua, ge is sim-
ilar and, we believe, adds to the one given by
Cheng and Wu.

The picture we have for massive quantum elec-
trodynamics at very high energies is this: An inci-
dent hadron, of momentum W along the z direction,
is a fully dressed state with a "hard"-meson "core"
as well as a "soft"-meson cloud. These are the
"partons*' in Feynman's language. ' The hard-
meson "core" is due to the virtual dissociation of
a hadron of momentum P, = W to a hard meson

[p, = xW, l & x& 0] and a hadron [P, = (1 —x}W] and

these correspond to the "wriggles" of Cheng and

%u.' The soft-meson cloud is due to the virtual
bremsstrahlung of a soft meson (momentum k,
k, «W) by the hadron of momentum W. The soft-
meson cloud is in a coherent state, ' and is attached
to the "core,"i.e., in classical physics terms, it
is a persistent field and not a radiation field of the
moving particle.

One could either follow the motion of the core
or that of the cloud. I.et us first follow the motion
of the cores. The cores moving right (ft) and left
(L), if there were no soft-meson clouds attached
to them, would simply not interact to leading order
in 8', since the energy cost is too great for a hard
meson moving right to (in Feynman's words) jump
the wagon. ' But there are soft-meson clouds which

overlap when the 8 and I. cores meet and the re-
sultant interaction Hamiltonian between the two
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cores is an effective current x current interaction;
in particular, it is the current for the right-moving
system interacting with the current for the left-
moving system as well as the current for soft (pion-
ization) particles, if they are present.

Now the current operator can connect between
the initial dressed-hadron state and any final phys-
ical multiparticle state. The momentum transfer
carried by this current is soft, so that the final
"fragmented" state carries the same large over-
all momentum W as the initial hadron. The effec-
tive Hamiltonian of interaction between the two
cores may thus be called the fragmentation Hamil-
tonian. Were it not for pionization, the resulting
8-matrix element would simply be

(2v)2 k 2+ p,
'

r~ exp(-i f d(H. (()) (. (1 2)

Thus the full S matrix can be given by reading off
from (1.2) in the coherent-state basis' rather than,
as is usual, in the Fock space of definite numbers
of mesons. More precisely, if U is.the dressing
operator for the soft-meson cloud [see Eq. (4.5)],
then

(1.3)

The approach. we are taking in this paper bears
a great similarity to those used in studies on sca-
lar-field theories, ' and also in the classic investi-
gations on quantum electrodynamics (QED).' The
basic Hamiltonian we start with is simple in struc-

a result first obtained by Cheng and Wu, ' Chang
and Ma, ' and others. This S, corresponds to
"black dots" in the impact picture of Cheng and
Wu. ' Matrix elements of j~, j~ are their impact
factors. ' This form of the S matrix is consistent
with the coherent-droplet model of Yang. ' js(k)
and j~(k) are the Fourier transforms of the current
operators. The effect of pionization is to append
to 8, the time-evolution operator for the soft-cur-
rent interaction with the right and left currents
[see (5.5)].

To understand better the physical process in-
volved in pionization, we should next follow the
motion of the clouds. As we mentioned earlier,
for the class of experiments where we do not or
are not able to measure the fragmentation products,
we can regard the initial hadrons as sources of the
coherent state of soft virtual mesons. These soft
virtual mesons will, of course, interact according
to the time-evolution operator appropriate to soft-
meson dynamics,

ture, but leads to fairly complicated processes.
Of these, only a certain class is expected to be im-
portant at high energies, and we can perform a ca-
nonical transformation on the original Hamiltonian
so that this class is explicitly singled out. The
analogy with QED is now clear. There, the initial
Hamiltonian contains terms describing absorption
and emission of mesons by free nucleons. These
processes are forbidden if we impose energy con-
servation, and may be transformed away. 9 The
way to do this has already been pointed out by
Schwinger and Tomonaga, and our canonical trans-
formation is constructed to parallel theirs.

The plan of the paper is as follows: In Sec. II
we set up our notation, and exhibit the relevant
kinematics at high energies in the center-of-mass
frame. In Sec. II we also introduce the concept of
order of processes that occur at high energies in
our model. With respect to such an order, we may
expect certain processes to be suppressed relative
to others. This is analogous to the case in QED
where certain processes do not occur because of
energy conservation. The concept of suppression
by order is of course absent there, although the
basic mechanisms involved are the same. We then
construct the appropriate canonical transformations
(Secs. III and IV) to exhibit these suppressions
manifestly in the Hamiltonian. The procedure is
reminiscent of that used by Foldy and Wouthuysen"
to exhibit the relevant nonrelativistic suppression
factors for the motion of electrons in an external
field. In Sec. V we obtain our final expression for
the 8-matrix operator, and conclude with some re-
marks on the process of pionization.

Our main conclusion in this paper is that high-
energy scattering phenomena may be viewed in
terms of a simple picture. Each step in this pic-
ture may be realized by means of an appropriate
canonical transformation on the basic Hamiltonian.
The final result of such transformations is to
change the basis vectors into coherent vectors with
respect to which semiclassical arguments describ-
ing the scattering phenomena may be phrased.

II. KINEMATICS AND MODEL HAMILTONIAN

In this section we introduce more precisely the
notation as well as the language that we will find
to be convenient for our later discussion. This
language is not a Lorentz-covariant language, but
will refer exclusively to the center-of-mass frame.
In this frame we picture the two incident hadrons
as. having momentum W in the. positive- and nega-
tive-z directions, respectively, W being large.
We will refer to particles moving in the c.m. frame
as right, : left, or "soft" in accordance with- their
p, ranges":
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R: ~&P, &xS',

s: x,R &p, &-x,R',

L xone &P'z

(2.1)

(P(x}= ())a(x) + ()),(x) + ll)~( x), (2.2)

As a matter of fact, we will build this distinction
into our field theory directly through the field op-
erators. Thus, we write for the fermion field

In (2.1) x, is a small parameter, but not "wee" in
the sense of Feynman, ' i.e., not of order 1/W.

where

())jx)= [»„, )) m g[u(p, s)a(p, s)e'~'" +v(p, s)b (p, s)e '~ "] (2.3)

and similarly for ())~(x) and P,(x). In (2.3) we have
used the invariant normalization

A„(x)=A~a(x) +A'„(x) +A~(x), (2.8)

[a(p, s), a (p', s')]= 5„.P,5(p-p') . (2.4)
where

p» = + x S', xo & x& ~ . (2.6)

If the operator is scale-invariant with respect to
8", then it is of order unity, while if the operator
has a scale factor S' remaining then it is of order
S', etc. An operator which involves only s states
will be defined to be of order unity.

By this prescription, the usual mass-renormal-
ization term

=Qyyg d x $ x x + ~ x ~ x)+ r. xfr, x

(2.7)

can be seen to be of order 1, 1/W, 1/W, respec-
tively. With respect to infinite-energy states, the
mass-renormalization term is of order 1/W.

Next we write down the corresponding operator
decomposition for the neutral-vector-meson field,
A„(x):

The advantage of (2.4) is that with respect to R
(right) and I. (left) particles, the normalization is
independent of 8'.

Next we introduce the notion of an order with
respect to 8' of an operator such as the free Ham-
iltonian. Consider the free Hamiltonian for the
fermions,

H, = d'p a~ p, s a p, s +b~ p, s b p, s

(2.5)

The matrix elements of H, with respect to infinite-
energy states, normalized in accordance with (2.4),
are of order lV as W -~. We refer to the operator
H, as being of order S'.

In general, we determine the order of any oper-
ator by expressing it in terms of particle operators
associated with invariantly normalized R, L, and
s states and to scale the R, L ranges in terms of
the Feynman x parameters,

(2.9)

and similarly for A'„and A~ fields [Af = (At, -A4t)] .
The quantization condition reads

[Ap(k))A+(k )i=by (db(k k ). (2.10)

The spin content of A„(k) can be expressed by the
relation

(2.11)

where

(2.12)

and a(k, X) and 8(k) are the annihilation operators
for the spin-1 and spin-0 particles described by
A„(R). Notice that a(%) is not a physical particle
operator since from (2.10),

[n(k), at(k')]= -(ub(%-%'), (2.13)

sg d x x p]ft/p x Ap (2.14)

which, in our language, can be split into various
configurations for the virtual emission and absorp-
tion of neutral vector mesons, viz. ,

Hr = H~ + He + gs + H

where

(2.15)

so that the spin-0 particle in A.„is a ghost state.
If we had used a pure spin-1 vector field, the

resulting interaction Hamiltonian, as is wellknown,
would have had a normal dependent contact term. '
For a conserved current interacting with the A&
field, the two formulations are equivalent. For the
sake of convenience as well as clarity, we will fo-
cus our attention on the St6ckelberg formulation.

The usual vector-meson interaction is thus
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Hb= d3X: ig R Xyp R X+gg L Xyp L X:Ap X, (2.16}

Hg=fg d X: R Xyp R XA~ X + L Xyp LXAp X (2.17)

+s Eg d X' s Xyp s XA& X:& (2.18)

II'=gg d3x: R xyp R x ALP x+ Lxyp L xAP x

+ [T))s(x)y& )I)~(X)P&(x) +Ps(x)y&))), (x)Ps&(x)+7))~(x)p& $,(x)A~&(x) +H.c.]): . (2.19)

Now we observe that the different interaction pieces of the Hamiltonian can be classified in terms of
their order with respect to 8', in the sense that we have noted above. Thus, we find that the bremsstrah-
lung interaction for right-moving particles is of order. unity, since

d'k 00

ig d'x: R x y» x:A'„x ~ " 2 """ d'pj. —a p~+k»xS" +k, a p»xS'
x X

-& (p, +k„xW+k, )b(p„xW)]A (k}+H cj..

(2.20)

and mat»x elements of (2.20) with respect to infinite-energy states (normalized invariantly) clearly will
no longer depend explicitly on W as W-~. In (2.20) we have introduced the notation

a,(k) -=x,(%)~ fA, (%) . (2.21)

Similarly, we find that the dissociation of a right-moving hadron into a hard vector meson and a hadron
is of order I/W, viz. ,

1 g X~Xp

W [2(2 )~]i,2 d kd p dx dy
( )a ((x —y)W, p —k )

rr, v. (x-) )'"
(

x )"')
(

x }"'s, () -)),g.

x —y
'" oo, p, k, x(x —y)'"

oe) Q~Xp

+ dy dx a~((y —x}W, k~- pJ
2xo xo xy y —x

x '" a, ~ (p —k)~o, o,
2[x(y —x)]'" '

y —x 2m

y-x '" o p o o k [x(y-x}]'"
h (x)), ) )A,())), kJ+H. c.

I
1 g 1

[2(2&)3)ly2 kd p dx dy ). I }p&2a((x—y)W, p, —kga(xW, p,)0 (yW, k~)
Xp g

pg +m ki +p, (p —k)i +m
2x 2y 2(x —y)

p. +H.c.

oo 9-Xp 1
+~I dy dx

[ ( )]„,a"((y —x)W, k~-p )f) (xW, p )g(yW, k )

kg'+p, ' pg'+m' (k-p), '+m'
2y 2x 2(y —x) nl +H.c. —g- 6

(2.22}
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III. CANONICAL TRANSFORMATIONS: HARD MESONS

To prepare the ground work for our discussion
of field theory in the infinite-energy limit, we pre-
sent here a brief summary of the time-independent
Lippmann-Schwinger formalism for the description
of scattering. " Let

H=Ho+ V

and introduce eigenfunctions y„, P' such that

Ho'4= ~nba y

(3.1)

(3.2)
Hg'=8„$' .

Then the scattering states g'„are related to cp by

g„=y +
@

. vq& =-Q,y, (3.3)

and the scattering-matrix element will be given by

S~=6S„2~5(g, g.-)(y;, V9.)—

= 6s, —2vi 6(gs —S„Xy~, T(gs)y„),

where

T(z) = v+v, . v
1

0

(3.4)

(3.5)

+V . V . V+ ~ ~ ~ . (36)1 1
E Hp + 'll E —Hp + sE'

Equivalently, the S-matrix operator may be ex-
pressed in terms of the 0, operators introduced in
(3.3), viz. ,

S=Q 0+ ~ (3 7)

Equation (3.6) is the so-called old-fashioned per-

In (2.22), A+ is the particle operator for the pure
spin-1 field defined as

A+ = Q c,(%, X)at(R, X), a= 1, 2 . (2.23)

In this way, we can construct a, figure (Fig. 1) for
the different pieces of the interaction. At the same
time we shall note for each piece of the interaction
the order with respect to S' of the energy difference
between the initial state and the final state after
the interaction has acted.

In constructing Fig. 1, we have obviously omitted
those interaction vertices that can be obtained by a
mirror reflection. Th'e role of the energy differ-
ences will be clear when we think in terms of the
old-fashioned perturbation theory. For the present
we shall simply note that if the energy difference
across the interaction vertex is of order unity or
smaller, we shall, following Feynman, refer to it
as an energy-matching interaction vertex, while
if the energy difference across the vertex is of
order W we refer to it as an energy-nonmatching
interaction vertex.

Interaction Vertex

R

R ~R+
S

R ~R+
S

S ~S+
R

R ~L+
L

R ~R+
R

R WS+

Order of Operator

O(1/W)

0(1)

0(1)

0(1)

0(1/MW)

Energy Difference

0 (1/W)

0(1 )

0(1)

0(W)

0(W)

0(I)

R

R

+
0(1)

0(I )

0(W)

0(W)

0(I/e) 0(1/N)

0(1 ) 0(1)

FIG. 1. A wavy line represents the neutral vector
meson, a solid line the proton, say, while the + charge
will serve to distinguish between particle and anti-
particle.

turbation theory which is not manifestly covariant.
The usefulness of this theory for infinite-momen-
tum analysis was first pointed out by Weinberg. "
However, this was still for the case of total c.m.
energy being finite, whereas we shall be interested
in the limit as energy becomes large.

In the context of the old-fashioned perturbation
theory, the relevance of the notions of the order of
the operator and the energy matching across ver-
tices becomes clear. Forgetting about the integra-
tion over intermediate states, the contribution to
the T-matrix element of an interaction vertex that,
though of order unity, does not match the energy
across the vertex will be suppressed by a factor
of 5' relative to the contribution of a vertex that is
of order unity and matches the energy. Energy
nonmatching, however, is not the only consider-
ation, for even where energy matching occurs, the
relative size of the contribution to the T-matrix
element depends on the relative order (i.e.,
strength) of the interaction vertices.

But what about the integration over intermediate
states? There are mell-known ultraviolet diver-
gences that come from the ~p~- ~ end of the inte-
gration of the momenta of all on-shell intermediate
particles. For a renormalizable theory, the diver-
gences can be handled through mass and vertex re-
normalization in a systematic way. For our pur-
poses, we simply note that where the divergences
occur in the dx integrals after W has been scaled
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0
U'=—exp -i dt'e 'H' t' (3.8)

(3 9)

out, they occur in diagrams on which the renor-
malization procedure is to be carried out, and this
procedure that makes the dx integrals well defined
does not depend on 8". It is important here that
xp, the lower limit of the dx integral, be small,
but not wee in the sense of Feynman i e xp
should not be of order 1/W, since otherwise the
remaining integral over dx will have a dependence
on S' which will spoil our notions of the relative
size of contributions of various interaction ver-
tices.

In this context, we should make a remark here
about the soft-range integration. %'e have hereto-
fore defined operators such as H, to be of order
unity since it acted only on particles moving "slow-
ly" in the c.m. frame. However, the range of P,
extends to xpS", xp being small. There can be a
dependence on 8' through the upper end of the "soft"
integration, but this dependence by a usual power
count can only be logarithmic: Our nomenclature
of order unity is thus to be taken as order unity up
to logarithms.

To proceed with the old-fashioned perturbation
theory, we could write down the systematic rules
for the time-ordered graphs and classify the graphs
in terms of their limiting behavior as 8'-~. '4

While this procedure may be well defined mathe-
matically, a better physical insight is gained by
examining the Hamiltonian itself.

Our terminology has been invented to guide us as
to which piece of the interaction is effective for
high energies. Our aim therefore should be to ex-
hibit the effective Hamiltonian that operates at high
energies. From the figure, we see that H„H„, and
H~ are all interactions that could contribute to the
T-matrix elements as lV- ~. In H', however,
there are vertices that survive (i.e., of order unity)
which do not match energy and vertices that match
energy, but whose strengths are relatively weak.
By our previous discussion, we expect that H' will
make a relatively small contribution to the T-
matrix element as 5'-~, although at the level of
the Hamiltonian itself we cannot say that H' is neg-
ligible compared with H„H„and H, . (In fact, H'

is of order unity as W- ~.) To exhibit the suppres-
sion, we shall perform a canonical transformation
which maps H' into an operator that is at most of
order 1/v W and which does not match energy
across the vertex. '

Define the canonical transformation

H' is the interaction Hamiltonian involving, from
Fig. 1, energy-mismatched vertices as well as
vertices that match energy but are themselves
weak as 5'- ~. %e note that E' is an operator
that is at most of order I/MW as W- ~.

Now the transformed Hamiltonian is
U'~HU'= H, +Ha+H„+H, +H

-i[F', H.]-—„[F',[F', H.]]+~ ~ ~

-i[F', H, +H +H, +H']

but

——
i
[F'[ F '& H&, + H~ + H, + H']] + ~ ~ ~,

0

(3.11)

[F', H, ] = -iH'.
Therefore,

U' HU' = H, + H, + H„+H,

i[F '& H-&, + H~ + H8 + 2H']

-~[F', [F', H&, +H~+H, + —',H']]+ ~ ~ ~ (3.13)

IV. CANONICAL TRANSFORMATIONS: SOFT MESONS

The Hamiltonian that concerns us thus at infinite
energy then is

H= Ho+H~+ H&+H, +O(1/MW) . (4.1)

The physical significance of each piece of the Ham-
iltonian is clear. Notice, in particular, the Hp
+H~ can be rewritten as HR+H~, where

Hs —— d P[a (p, s)a(p, s)+b (p, s)b(p, s)]
P~) 0

+ dkAq kAqk

=Ho+H, +H~+H, +O(1/v W ) . (3.14)

The last statement follows from the fact that E' is
of order I/vW and H&„H, are of order unity (H~
is of order 1/W). The commutator involves the
basic commutation relations (2.4) and (2.10), which
are invariant under scaling in 8', and thus the com-
mutators [F', H, ], etc , will .not introduce addi-
tional powers of W. To be sure, however, that the
operator O(1/MW) in (3.14) will not contribute to
the transition-matrix element, we have checked
that the energy difference across the effective ver-
tex O(1/VW) in (3.14) cannot be of order 1/W, so
that the energy denominator cannot overcome the
weak strength of the effective vertex.

where

H&(f) —&&Ho&H&& &Ho& (3.10)

(4 2)+2g dsx.
R xyp R

X.ARP x

and H~ is similarly defined for the left-moving
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system. Since

[H„H, J =0, (4.3)

the eigenstates of H~ and H~ are not confused with
each other, so that the eigenstates of HR+H~ are
direct products of 8 and I. states. Physically, H„
and H~ generate the time evolution of right- and
left-moving hadrons minus their virtual-soft-
meson cloud.

The structure of the virtual-soft-meson cloud
can of course be deduced from the full Hamiltonian
(4.1); it is, however, easier to exhibit the virtual-
soft-meson cloud by analogy with quantum electro-
dynamics'" and perform the following canonical
transformation.

Let

Another important fact to observe is that involv-
ing the commutators of currents. For this it is
convenient to work with the Fourier transforms

yH(x}y, ()H(x) =,2,2H
'" "js(k), (4.15)

iT,(2)r t,(%)=f (t,)*e
'" "),(x); (4.16)

then to order 1/W, F may be given in terms of js,
j~ as follows:

ig d'k jtt(k)A (k)
[2(2)T)2]ttk, (H k, -(H

jL( k)A, ( k)
k, +e

(4.17}
U=e'

0
=exp -i Hb tIe 'dt, n-0,

where

H tt) —et(Htt+HL)tH -t(Htt4HL)t—8 b

Then

(4.4)

(4.5)

(4.6)

E(luation (4.17) follows from the commutation rule

[H„,j„(k)]=k, j„(k)+O(1/W). (4.18)

In terms of the operators js(k}, a very important
property that emerges is the commutator

[js(k), j„(k')]=O(1/W), k, k'C s . (4.19)

U U' HU'U=H„+HL —,'i[F& H, ]——2[F, [F, H, J]+

+H, -i[F, H, ] --', [F, [F, H, ]]+ ~ ~ ~ .

(4.7)

At this point we make use of the vectorial nature of
the basic interaction to observe that, as W- ~,

H, =g d'x: R x)y, „x:A' x

-g d'x.'~ xy ~ x:A', x +0 1 W),

(4.8}

Because of (4.19) the transformed Hamiltonian
(4.7) terminates if we are only interested in O(1)
operators.

From (4.17), (4.19), and (4.13), it is easy to see
that the resulting Hamiltonian is

2 2

+H+R L (2&)2 k 2+~2

dsk jH(k)j'(-k)
s+ (2„)2

"
k 2+tt2

1r. -=2(r, airs),

A;(x) =A;(x)+ iA;(x),

(4.9)

(4.10) (4.20)

so that
0

F = — dt d't(, g[: T()„(x, t)y, (t)„(x, t):A*(x, t)

—:TI)L(x, t)y $L(x, t):A;(x, t)]+O(1/W) .

V. SCATTERING OPERATOR

We have finally an effective Hamiltonian that for
infinite-energy states has the form

(4.11) 3C = HH + HL+ V+0(1/v W), (5.1)

[A,'(x, t), At (y, 0)]=0,

while

[At(x, t},A,*T(y, t')]=2 (nx —y, t t'), —

(4.12}

(4.13)

d'k
ns( t) (etk.x tk.x)-

2(2)T)2
(4.14)

This property follows directly from the quantiza-
tion rule (2.11).

A very important property of the A, fields is the
fact that

where HR and H~ describe the dynamical evolution
of the right- and left-moving hadron systems minus
their virtual-soft-meson clouds. Or in more pic-
turesque language, it would be as if HR and H~ de-
scribe the motion of the hard-meson "core" and

that in this picture the soft-meson cloud always
follows the "core." U is the effective Hamiltonian
that gives the interaction between the hard-meson
"cores." Of course, this interaction comes about
through the overlap of the virtuaL-soft-meson
clouds.

Now a good basis for the application of pertur-
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bation theory is to use as H, the full H„+H~. This
would be the basis where we recognize that the ap-
propriate incoming states are not bare particles,
but rather, in the language of field theory, dressed
particles where the dressing is governed by

H~+H~.
To obtain the S-matrix operator from this final

form of Has given in (5.1), it is easiest now to
work in the interaction picture. In this picture

y(t) j(HR+Hg) jy j(HR+-Hg) j

2z' ) 3 3(3 j iR(k)jj(-k)
(

2g' (d3 jH j jR(k)j'(-k, t)+j;(k, t)j~(-k)

(5.2)

(5.2)

The S-matrix operator that follows from this is

( " 'I
S=T( exp i -dtV(t)

)

d.~ ) ()..)).(-).)
)(2)j)3 k '+(u3

~ ~

(5 4)

x T~ exp i-H, (t)dt exp i-, dt d3kej3&j
r

e
2 k 's -k t)+ ' k t)'I,(-k)

8 (2 jj)3 kj +p
(5.5)

If soft-current interactions were absent, the re-
sult (5.5) would correspond to the infinite-energy
limit first obtained by Cheng and Wu in their sum-
mation of ladder diagrams for massive quantum
electrodynamics. ' ' The simple exponential nature
of S, for the elastic-scattering matrix element
translates into a simple eikonal form. " There are,
however, differences.

Cheng and Wu, ' and others, 4 have considered the
ladder diagrams with point y„vertices and found
an exponentiation neglecting the H, interaction. In
our case we have the operators jR(k) and j~(k)
which can connect between different eigenstates of
H~+ H~ and thus, in principle, include the possibil-
ity of fragmentation of initial particles. Xn the lan-
guage of Cheng and Wu, "our So includes the dis-
sociation of hadrons into their component states.

So also coincides with the coherent-droplet model
proposed by Yang and co-workers, ' when expressed
in the operator formulation as given by Lee.~

Our major result however is to express how pion-
ization affects the basic S, at infinite energy. By
pionization we mean the production of soft mesons
in the c.m. frame.

An important feature that we note at this point is
the fact that the effective Hamiltonian at infinite
energy does not allow for physical bremsstrahlung
of soft mesons. This is easy to understand physi-
cally since at high energies the interaction Hamil-
tonian is finite and the momentum 8' of the incident
hadron is changed only by a finite amount. The
hadron thus maintains its initial straight-line path
in the limit as 8'- ~ and, to leading order, the
hadron will not radiate physical soft mesons. This

(5.6)

Now our picture would have it that instead of read-
ing off matrix elements for initial states with a
definite number of soft mesons going into final
states with another definite number of mesons, we
would read it off for initial and final states that are
coherent states. '"

In terms of the operator U, defined in (4.5), we
have then

fS=U S,T~ exp idtH, (t-) ~U. (5 7)

is easy to see also from the Feynman diagram for
bremsstrahlung, as was already noted by Cheng
and Wu."

Pionization, however, is a different matter. The
virtual soft mesons in a coherent state' act as a
semiclassical field which, however, can produce
soft mesons or pions.

An alternative physical understanding of the pion-
ization result is through the following: The infinite-
energy hadron carries with it, as we already know,
a virtual-soft-meson cloud in a coherent state. '
Instead of describing the scattering by following
the motion of the hard-meson "core," we can alter-
natively think in terms of following the motion of
the virtual-soft-meson clouds.

For this picture we may think of the incident had-
rons as being the classical source for soft mesons.
The soft mesons interact in accordance with the
Hamiltonian H, and the corresponding S matrix
would be simply
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Since S, commutes with U to leading order on S',
the resulting S-matrix operator is

this derivation we ignore the possibility of H, and
deal directly with a Hamiltonian

(
S=SOV Tj exp i-]I dtH, (t) IV.

)
(5.8)

H=H, +H, +H„

=H~+HI+Hq .

(A1)

(A2)
This form of the S-matrix operator agrees with the
form (5.5) obtained earlier.

A detailed study of the amplitude when one eval-
uates the $-matrix operator between coherent
states is now under way, and we will come back to
the pionization process elsewhere.

We have thus obtained the S-matrix operator by
utilizing the transformation properties of the Ham-
iltonian of the theory. It should perhaps be recog-
nized that our method is, in principle, applicable
to other field-theoretic models like those that pos-
sess chiral symmetry. In practice, however,
internal-symmetry operators tend to make the
manipulations more involved. The method, in any
case, provides a good complementary approach in
studying high-energy limits to those that exist in
the literature.

Finally, we make a comment about the nonunique
choice of xo. Our implicit and intuitive assumption
is that physical results do not depend sensitively on

x„provided that x, is small enough. The reason
for this observation is that if we set x, = 1, or 0.5,
or even 0.1, and then proceed to transform away

the "braking" vertex gsy„(,A&, we would be miss-
ing a large piece of the dissociation vertex which

by a mere quirk of definition has been shifted into
the braking vertex. But as we decrease x, and

make it smaller and smaller, we would be includ-
ing more and more of the dissociation vertex.
Transforming away then the braking vertex will
not mean dropping a large part of the dissociation
vertex, Experience with the Cheng-Wu calculations
indicates that, order by order, the dependence on

x, is a weak logarithmic one. However, this does
not mean that our total scattering phenomena do
not receive contributions from vertices including
particles with x, small, for these are now included
in H, . Such vertices are responsible for pioniza-
tion, and their net contributions, as we have indi-
cated earlier, are of order unity. Thus, contribu-
tions due to H, may not be dropped.

V'HV=H +H + (2w)', k '+ p,
'

=H~+H~+V .

If we define

V:—
~t d Q V(Q),

(AS)

(A4)

(A5)

an important property is that, to leading order of
W,

[V(Q), V(Q')l = O(1/W)

and also

[H„+H~, V(Q)] = 2Q, V(Q)+O(1/W) .

(A6)

(A7)

Because of (A7), the Me'lier operator defined
through

1
fl+Vn -Vn+

g-H H Vfa
of R L

(A8)

can be solved by direct iteration or by verification
to be

A+=exp . V Q (A 9)

Similarly,

Q =exp . V Q (A10)

so that

$ =Q Q, =exp -iw . d Q V Q&

(2v)' k '+ y.
'

(A11)

Calling H~+H~ the free Hamiltonian, the problem
is to find the S-matrix operator for (A2) as W-~.
Perform the canonical transformation U, as de-
fined in (4.5), and obtain
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APPENDIX A

In this appendix we give a simple derivation of
S, using old-fashioned perturbation theory. For

APPENDIX B

The physical significance of U is clearly exhib-
ited when we suppress H, . It is the dressing op-
erator for a one-particle state in the absence of
soft-meson dynamics. Turning on H, would, of
course, cause further "dressing" of the coherent
state.

Consider the one-particle eigenstate of H.as
given in (Al):
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Hp() = ))+
2 +0(—) (p)

To exhibit the soft-meson cloud, we do a canonical
transformation

But V acting on
I p) is zero, since if p is right

moving, it will have no overlap with a left-moving
current and thus V annihilates Ip). Therefore, we
have

Ip&, = &fp). (B2) (H, ~ H, ) I i) = ())' ~ '2~ IR,

(8, +8, +))Ig)=())'+ '2~ li) (B3)

If Uis chosen to be (4.5), then the vector Ip) will
satisfy a new equation

which shows that the structure in Ip) comes en-
tirely from the virtual-dissociation process, and
all the soft-meson structure has been obtained by
the U transformation.
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