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Computations of gravity-modified hadron electrodynamics are performed using nonpoly-
nomial Lagrangian field-theory techniques. In particular, it is shown that the infinity en-
countered in a standard Lagrangian approach to the electromagnetic mass difference of
pions is removed. The numerical value obtained for the mass shift is a little high, but con-
sideration of the effects of tensor-meson dominance of gravity leads to a closer agreement
with experiment.

I. INTRODUCTION

The idea has recently been revived' ' that the
universal and nonlinear coupling of gravitation to
matter may provide a natural mechanism for the
damping of ultraviolet infinities in field theory.
The reality of the built-in cutoff was demonstrated
in a calculation of the electron's self-mass and
self-charge, "in which the traditional logarithmic
infinities of quantum electrodynamics are regu-
larized with an effective cutoff mass equal to ~~

'
(x,' is 8v times G, the Newtonian gravitational
constant). Conventional electrodynamics, of
course, treats these infinite quantities as unmea-
surable, so their appearance causes no inconsis-
tencies. However, in hadron physics, electromag-
netic mass shifts are observable through the
breaking of the internal SU(2) symmetry. For ex-
ample, the value of the n'-n' mass difference is
experimentally well established. We present in
this paper, then, the first prediction of this grav-
ity-modified theory which can be compared direct-
ly with experiment. A simple model shows how
the inclusion of gravity removes the infinity en-
countered in the calculation of the electromagnetic
mass difference of pions from a physically reason-
able Lagrangian. This model is also used to in-
vestigate the implications of "strong gravity" as
proposed in Ref. 4. Here, hadrons do not couple
directly to gravitons but only through massive
spin-2 mesons, in analogy with the vector-domi-
nance model of hadron electrodynamics. The role
of Einstein's gravity in strong interactions is then
naturally played by tensor mesons, which provide
a built-in cutoff at a, much earlier than z~ '.
(Here x is the universal coupling constant of the
strongly interacting tensor meson to hadronic
matter and, to within an order of magnitude, is
equal to the inverse of its mass. }

The plan of the paper is as follows. Section II
briefly reviews the standard prescription for intro-
ducing gravity into a Lagrangian theory. The La-

grangian to be modified for our calculation is the
chiral Lagrangian used by Lee and Mich, ' de-
scribed in Sec. III. Whereas for soft pions they
obtain a result close to that observed experimen-
tally, for massive pions the electromagnetic mass
difference becomes logarithmically divergent.
The same result was obtained independently by
Wick and Zumino. 6 In Sec. IV a calculation is
carried out with a simplified version of the grav-
ity-modified chiral Lagrangian. Finally, Sec. V
gives the numerical results. Pure gravity modifi-
cations yield a mass difference of 6.9 MeV for
nonzero-mass pions compared with the experi-
mentally determined value of 4.6 MeV. Extrapola-
tion of a to values typical of the tensor-meson
model leads to a significantly lower value (be-
tween 4 and 6 MeV).

II. INCLUSION OF GRAVITY INTO A

LAGRANGIAN THEORY

The standard way of introducing gravity into
any theory is by the requirement that the equations
of the theory be invariant under general coordinate
transformations. In Lagrangian language this
means that the action integral f d'xZ(x) must be
invariant under this group, implying that the La-
grange function must be constructed so that it
transforms as a scalar density with weight -1.
Such a Lagrangian can be generated from any
Lorentz-invariant one by the following rules.
Firstly, replace the Minkowski metric, g"'
= diag(1, -1, -1, -1, ), wherever it appears in the
Lagrangian, by the Einstein metric, g"'(x). Sec-
ondly, replace the ordinary derivatives of the
fields by the standard covariant derivatives of gen-
eral relativity. Finally, adjust the total weight
of each term in the Lagrangian to -1 by adjoining
to each a factor

~ detg„„] ~' which transforms
as a Lorentz scalar with weight zo. The crucial
point about this last step is that it renders the
new Lagrangian automatically nonpolynomial. To
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the Lagrangian generated by means of these rules
it is of course necessary to add a purely gravita-
tional term. The graviton field p""(x) is defined
by

«P"'( x) =g"'(x) —q'"

so that g"' reduces to the flat-space metric, q"",
as Q"' -0. It has been established' that the sca-
lar gravity replacement

WUW"

(b) (c)

and so

( detg„„~- (1 + KQ) (2) (e)

gives numerical results essentially the same as
tensor gravity, and use of the scalar field P(x) is
a very convenient simplification. Denoting the
fields in the original Lagrangian by A„(x), the
over-all modification now reads

FIG. 1. Feynman graphs from the chiral Lagrangian.
The wavy line, single line, double line, and thick line
represent the photon, pion, p, and A&, respectively.
(a), (b), and {c) differ by the powers of momenta at the
vertices; similarly for (d) and (e).

Z(A„, a„Ae, q")-g(A (1+Kg) ' ~, D„A&(1+Kg) ' B,q"'(1+«p) '}+2(gravity) .
se„ is the weight of the field A.~, and D„ is the appropriate covariant derivative.

(3)

III. THE LAGRANGIAN OF LEE AND NIEH

Lee and Nieh' construct a phenomenological Lagrangian appropriate to the group SU(2) x SU(2) which in-
cludes pions, p mesons, and axial-vector mesons (A, mesons). The v'-v' mass difference is then calcu-
lated to order e' by considering all the tree diagrams for the process m'+ p'- m'+p' and closing the p'-y-
p' loop as shown in Fig. 1. The relevant vertices are given by

g = -g p„(Kx a„v) +-,' g(g 2 m, )-'(a„p„-a„p„) a„vx a, v + ,' g'(p„x-v )' =', g(W2m, )-'(a„a'„—a, a'„) ~ (a„p, —a„p„)x v

—2g(~2m ) '(a„p, —a„p„) ~ (p„xa,v-a', xa, v) —,'g'(~pm, )-'[(a„p, a„p„)xm]'+(e/g)m, 'p'„A„, (4)

where'„, m, p„, and a„denote the photon, pion, p-meson, andA, fields respectively; m is the mass of
the p meson.

For zero-mass pions ( p, -0), the answer is finite and in reasonable agreement with experiment
(n = e'/4v):

ag' = (3n/4 v)m~' x 2 ln2,

which gives the mass difference 5g = 5.0 MeV, the experimentally determined value being 4.6 MeV. When

the pions are massive, however, (p, eO) the calculated mass shift is logarithmically divergent. To order

(p/m p)',

3Q ~ p. Mp 19 5 1 A'
5p'= —m ' 2ln2+ ln +—ln2--+ —ln

4g P .m 2 g2 4 2 8

where A is the ultraviolet cutoff momentum. This relation may be expressed in the form

5g = 6.0 MeV+ ——ln —.So. p. A

4mB m,

It is this logarithmic infinity which we will seek to remove by the introduction of gravity.

(6)

IV. GRAVITATIONAL MODIFICATIONS

We modify the Lagrangian of Lee and Nieh using the techniques of Sec. II. The most convenient coordi-
nates for the calculation are those in which the weights of all the fields are equal to zero. The Lagrangian
of Eq. (4) now becomes
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Z =-g p„~ (vxs„w)(1+ ~ y) '+-,'g(&2m, )-'(s„P„—s,p,) s„pxs, v+-,'g'(p„x v)'(1+ gy) '

—~zA'(~&~p) (sya —s ap) '(8 A
—8 pp) "v 2g-(~&~p) '(Bpp, —B,pp) '(&px~, v-a', x~pv)

——,'g'(v2 m )-'[(s„P, —s„p„)x v]~+(e/g)m, 'p'„A„(1+ay)-'.

Covariant derivatives D„(which would involve couplings to S„P) do not appear in the above since

DpV„-D, Vu = ~vV„—~, Vp

for V a vector (or axial-vector) field, and

(10)

for m a scalar field. Note that only the p-photon and some of the p-pion vertices are changed. Those in-
volving A., mesons remain the same. These modifications correspond diagrammatically to the inclusion of
superpropagators between some of the vertices in the diagrams of Fig. 1 as shown in Fig. 2. However, the

explicit calculation of diagrams involving more than one superpropagator is at the present time an unsolved
technical problem, and we make the approximation of including only one superpropagator in each graph as
shown in Fig. 3. Since only one superpropagator per diagram is sufficient to make the theory finite, this
approximation still retains the main features of the gravitational regularization. The originally divergent
diagrams have only one superpropagator anyway [Figs. 2(c), (e), and (f)], and diagrams in which super-
propagators are neglected gave finite contributions. The inclusion of the other superpropagators would

serve only to modify slightly this already finite answer.
The calculation is performed by the standard Volkov-Salam-Strathdee momentum-space method for non-

polynomial Lagrangians. We refer the reader to Refs. 8 and 9 for detailed discussions of the procedure.
The superpropagator in configuration space is given by

where

which gives in momentum space the (massless) superpropagator

G 2)-1 4 )2 d
~ 2 z-2 I'(~+I)

4w tansy@ sinv@ I'(g) I'(g —1) '

where -1&a&0. The pion mass difference may now be computed from the diagrams of Fig. 3,

(12)

~Mp, k Dp, , A. G k-q

where (with p'= p' and theA, mass m, =v2 m„),
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FIG. 2. Full gravity-modified graphs. The dashed
line represents the multigraviton propagator. FIG. 3. Single-superpropagator graphs evaluated.
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22„„(k ) =(+,) (n„, —

(14)

kp kq. j.
-(2 )2. ,)(( )s 2) -Ds +)s.(2 2) s-s()s 2).(-(s 2) s-s)s. )s s) in,.nss

- (m W2) 'g„(pa~ kz —Ask(, )+(-,'}'(m 2(2 ) «(q,„k' —k, k„)(ps~ 0' —)2,,k„)]

~ n.,-' ' .' " n"u'-k. k. q. -".'
a p

and D„„(qz, y) is the photon propagator. In will. be instructive to work in an arbitrary covariant gauge pa-
rametrized by A.:

n„.(2,.) =(.„„-.'",l ) . .
~ ~ t

In E(I. (13) the internal integral around the photon-graviton loop may be carried out first and the result
written in terms of a "modified photon propagator" D„„(k'},

Sls (2') f'.n„.s.ls. (a')&((2-2)'. ) .

Explicitly, using E(ls. (12) and (15},
a+™ z " 1 1(z+1) d'q xq(q„

Dp, (u )=-,w(4w) dz 4 t .
( ) ( 1} ( ), qp„— g p[-(k —q) ]'

Here me have changed the order of integration, the contour integral will always be performed last in ac-
cordance with usual nonpolynomial techniques. Evaluating the q integral,

)" 2i, ,„sinvz tanvz I"(z) "' 2(z + 1) 0' z + 1

Substituting this expression into E(I. (16) and performing the momentum integration, we obtain to order
( p'/~, ')

3c( i "'" dz(mp'z'/16m')'
4w 2v', ;„sin'vz tanwz I'(z}

~

~

+1 2 z

(21)

which is linear in ~. The contour along which the integral in E(I. (20) is taken stands to the left of z =0,
where the integrand has a double pole. Collapsing the contour around the positive real axis also picks up
the singularities at g =1, 2, 3, .. . which are tripoles. For A. =0,

6p,
' = (6 g'), ,+ Q. C„(z)(Prn, '/162(')",

ft

30', P. fgp ~9 5 I 16+
(5p, ') =—m 2 21n2+ ln +—ln2- —+—ln +212(1)

4 m' p.
' 4 2 8 2m '

p i p

and the power series coefficients are

C„(z)=-—m ' [2(2" —1)+4q (n) ln(z -'24 (n) ln' a —2""q('(n) ln2a+ 2""4(n) In'(2a)]
24m (' (n —1)!

(22)

2+,( (-,'n' ——,'u+ —", )2" —(-,'2«+ 3-,' }—2[2"(n ——,'}——,
'

] q (n)+ 2"C (n) +[2(-,'n+3-,')4'(n) —3C (n) J Ina
P

-(-,'n+2 )n( )ln'as((nn —2)n( ) —2(-', n —-', n —2—)2'(n))2"ln(2a)+(-', n —-', ns22)2"n(n)ln'(2a))),

(23)
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where

a =m 'z'/16m',

4(n) =@'(n) -4" (n},

8
4"(n) =—4 (z)88 8=N

It has been pointed out in Ref. 3 that computation
with only one superpropagator is not a gauge-invar-
iant procedure. In this calculation, the gauge
dependence of 5p, is made manifest by the explicit
appearance of the gauge parameter X in Eq. (19).
As a multiplier of k„k, /k' it is harmless; after
integrating over k this part will vanish by sym-
metric integration. As a multiplier of zq„, /2(z+1),
however, it exhibits the nongauge invariance of
our result, since, as can be seen from Eq. (20),
~ still remains in the expression for 5p. ' even
after the momentum integrations have been carried
out. However, on evaluating Eq. (20), the coeffi-
cient of X is only 0.005 MeV when K=A, of graviton
theory (-2x 10 z'm, ') and still only 0.01 MeV
when z=z of tensor meson theory (-1 BeV ').
The smaQness of such gauge-dependent effects in-
creases our optimism that the problem of gauge
invariance is not as serious as one might first ex-
pect. All numerical results in Sec. V are quoted
with A. =0.

V. RESULTS AND DISCUSSION

Gmvi ton theory. The power-series contribution
of the tripoles [Eq. (23)J is negligible (2x10 "MeV)
when z is put equal to z, of graviton theory (z, =4.3
x10 "MeV ~}. The contribution of the leading di-
pole [Eq. (22)] clearly reproduces the ordinary
zero-gravity result of Lee and Nieh [Eq. (6)] ex-
cept that there remains a dependence on a in the
form of an effective cutoff

A -4&/a' ~ (24)
The important point is that the ultraviolet infinity
in the old theory has disappeared via the mechan-
ism of the induced cutoff. The ultraviolet infinity
still leaves its mark as a singularity in the z plane
and reappears if the limit z-0 is taken. Equation
(22) gives

5p. =6.9 MeV

for massive pions. Thus gravity-modified hadron
electrodynamics produces a finite pion mass differ-
ence not much greater than that observed.

Tensor meson theory. A rigorous calculation of
the effects of tensor-meson dominance of gravity
is not possible at the present time since the analy-
tic form of the massive superpropagator is un-
known and also the effects of our approximations
in neglecting superpropagators become more
serious. However, if one assumes that the be-
havior of the zero-mass propagator provides a
good approximation to the massive case, ' the ef-
fects of strong gravity may be estimated by extra-
polating to large values of ~. For values of the
order of one (BeV) ' the contribution of the tri-
poles is no longer negligible, and the whole of Eq.
(21) must be taken.

Taking as a typical tensor-meson mass that of
the f(1260), one has for 10 ' & zm~ & 10,

5.'7 &5g) 4.1 MeV.

This indicates that a full tensor-meson theory
wouM give a more physically reasonable predic-
tion.
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