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Nonlinear Realizations of SU(3)XSU(3) and the Symmetry-Breaking Meson Lagrangian
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We show how an octet of pseudoscalar mesons which transform nonlinearly under SU(3)
&& SU(3) can be converted to the linear realizations (3, 3) and (3, 3). Our results are mani-
festly covariant with respect to redefinitions of the meson field. We use them to construct
an effective meson Lagrangian in which all the symmetry breaking occurs in the mass term
and belongs to a single representation ((p,p) + (P,p)}. From an analysis of rr-v scattering
lengths, we find it unlikely that the symmetry-breaking interaction belongs either to the
self-adjoint sequence (8, 8), (27, 27), ..., or to the triangular oneP =6, 10, 15, ... . There are,
however, many other representations, including ({3,3) + {3,3)}, which cannot be ruled out.
We also examine weak currents and find that the f form factor in K&3 decay gives rise to a
serious problem in the symmetry breaking.

I. INTRODUCTION

In recent studies of chiral SU(2), ' we analyzed
the relationship between nonlinear and linear real-
izations, and applied the results to meson dynam-
ics. Our approach bore a strong resemblance to
the nonlinear 0 model of Gell-Mann and Levy, ' for
we discovered that if the action of chiral operators
upon the pion field is given by'

[SC., rr,] =-r[d„f(rr')+s, v~(rr')],

g= (1+2ff')/(f 21r'f'), —

span the linear representation (-,', —,') of SU(2)
x SU(2),

[Ic„u]= -trr„[If„rr,] = t()„u,

and satisfy the constraint

(1.3)

(1 4)

The space-time derivatives B„u and B„S,trans-
form in exactly the same way as u and 0, them-
selves, and so we were able to construct effective
Lagrangians, with and without derivative coupling,
by the standard methods of linear representation

. theory. In particular, we studied the effects of
broken chiral symmetry upon w-w scattering
lengths and weak currents.

We now attempt to carry out the same program
in chiral SU(3). This means that, given the gen-
eral action of chiral operators on the octet of
pseudoscalar meson fields,

[K., rr,] =iF.,(rr) (a, b = 1, ..., 8),

then the quantities

u= f/(f'+rr')'" an-d rr, =rr, /(f'+rr')'" (l.2)

we must construct quantities

Z„=u —iv and & =u„+iv

(+=0, 1, ..., 8),

which transform according to the linear repre-
sentations' (3, 3) and (3, 3) of SU(3) x SU(3):

[Z„Z,] = d„,Z, + (-,')'r'd„Z„

[K„Z,] = (-', )'"Z„
[Z„Z ] = -(d,r„z, + (—',)'"d,

r,Z ),

[Z„Z,] = -(-', )'r'Z, .
Once we know Z and Z„, we can use them and
their space-time derivatives to form Lagrangians
which either preserve chiral symmetry or trans-
form according to a specific representation of
SU(3) x SU(3). Thus the symmetry-preserving
kinetic part of the meson Lagrangian will be pro-
portional to (8~Z„)(8&Z„) and the symmetry-break-
ing mass term will be a function, M(Z„Z, ), of Z,
and Zp.

Although we have no a Priori knowledge of how

M(zc, Zc) behaves, we shall assume that it belongs
to a single representation j(P, P) + (P, p)} of SU(3)
xSU(3). We also assume that M(Z„Z, ) is an ad-
mixture of SU(3) singlet and octet parts, and we
fix this admixture by requiring the Lagrangian to
reproduce the empirical masses of the n and K
mesons in the tree approximation. The next order
of this approximation corresponds to meson-meson
scattering, and it enables us to calculate 8-wave
scattering lengths in terms of m„, m~, and the
parameters of the SU(3) representation (P). Our
formulas agree with those of other writers' when
(P) represents the triplet, but they are more gen-
eral because they apply to all types of symmetry
breaking.
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The problem of constructing Z„and Z for SU(3)
x SU(3) is much more complicated than the corre
sponding one of finding u and fr, for chiral SU(2).
Associated with any octet vector m~ (5 = 1, ..., 8)
there are two SU(3) invariants and one dual vector:

X= nt, m» Y= d, ~, m, 7t~n„ II, d, ~gg7j'Ge (1.8)

Consequently, the commutation tensor F„(~) of

Eq. (1.5} contains more terms than the correspond-
ing SU(2) tensor [Eq. (1.1}], and the invariant
functions in it [i.e., the analog of f(n') and g(v')]
depend upon two variables, X and Y, instead of

' one.
'@here are, in fact, seven terms in F,~(m), but

because of the constraints of chiral algebra, not
all of them are independent. ' These algebraic con-
straints give rise to a set of partial differential
equations analogous to the one for g in Eq. (1.1),
and as a result, any two of the seven terms can
be used to determine the remaining five.

It is not difficult to show that, given the pseudo-
scalar quantities v, (a = 1, 2, ..., 8) in Eq. (1.6), we

can determine u„u„and v, from the commutators
[K„v,]. Now for a particular choice of F„(v), v,
will be of the form um, +Pll„where u and P de-
pend upon X, Y, and the invariant functions of the
commutation tensor. Our objective, of course, is
to find out this dependence; before doing so how-

ever, we find it very helpful to consider an ex-
ample of the inverse procedure. That is, we as-
sume that v, = n„and then determine the appro-
priate form of F„(v). Armed with this knowledge,
we are able to construct the Z„and Z for any
choice of commutation tensor, and also to deter-
mine the constraints upon these quantities analo-
gous to Eq. (1.4) for the o model. Our results,
which are described in Sec. II below, are all co-
variant with respect to redefinitions of the meson
field.

Since the kinetic Lagrangian is proportional to
(B&Z„)(B&Z„), our chief problem in constructing
the meson Lagrangian is the mass term. If the
SU(3) scalar part M, belongs to the representation
((P, P) + g, P)J, then it must be an eigenfunction of
the operators KjC, and d„QQQ, with eigenvalues
determined by the parameters of (P). Now M, is,
in general, a function of X and Y [see Eq. (1.8)],
but we can also write it as a function of Z, and Z,.
The latter choice of variables is particularly con-
venient because it enables us to convert the eigen-
value conditions into relatively simple partial dif-
ferential equations. We then pick out the appro-
priate solution by noting that M, must be'a poly-
nomial in Z, and Z, and not an infinite series. In
addition, we can derive the octet part, M„of the
mass term by operating on Mo with K, and d»+Q, .
The details are given in Sec. III.

In Sec. IV we analyze meson-meson scattering
by expanding the Lagrangian to fourth order in the
meson fields. We obtain general formulas for any
representation (P) and then consider the special
cases when P represents the 3-, 6-, and 8-dimen-
sional representations. In Sec. V we discuss weak
currents and the problem of accommodating the
K» form factor f within the framework of chiral
SU(3). Behavior under redefinitions of the meson
field is discussed in an appendix.

II. THE (3, 3) SYSTEM

Macfarlane, Sudbery, and Weisz (MSW)' have
shown that the most general, nonsingular form of
F„(v) [see Eq. (1.5)] is

F,~(gr) =F5,~+ Bd,~z, + Cd, h il, + Gw, vg

+Sp,ll~+ Typal +JII,II, (2.1)

A,F —FG —3(BX+CY)S = ——„
A+ —FT ,' (BX+ C Y)j=-0, —

h~B+XCS+ —,BC —2ES= 0,

42B+XCJ —3C —2EJ=O,

A, C+ 2SB+ CG+ C' = 0,

62C+ 2JB+ C T= 0,

B'+ 2ZC ——,'XC'= -r
where

& =2(F+ —',XC+XG+ YS)—B1 BX

+ (XB+2 YC+ 3 Y'G +X S)—,BY'

(2.2a}

(2.2b)

(2.2c}

(2.3)

(2.4)

B 2 B—:2(B+XT+ Yj)—+(3F—XC+ 3YT+X j)—.
2 BX B Y'

Although no more than two of the seven functions
in Eq. (2.1) are independent, we shall generally
find it convenient to work with three of them,

where I', B, C, G, S, T, and J are all functions
of X and Y [see Eq. (1.8)]. Since F„(s)has even

parity, E, C, G, and J are actually functions of
X and Y' and they need not vanish when X= Y= 0;
B, S, and T on the other hand are each products
of Y times a function of X arid Y', and they do van-
ish at the origin.

In order that the chiral algebra be satisfied, in
particular, that

[K., Kb] = if.„F„
where F, is a generator of SU(3), the functions in

Eq. (2.1) must satisfy a set of conditions enunciated

by MSW. Rather than repeat all of them here, we

quote only those necessary for our analysis. They
are'
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namely, E, B, and C. Equation (2.3) then serves
the very useful purpose of expressing any one of
the three in terms of the other two.

A. General Form of Z and Z

When the commutation tensor has its most gen-
eral form the pseudoscalar octet is given by

v~- art, + /II',

where o. and P are as yet unknown functions of X,
Y, F, B, and C. It is easily seen from Eqs. (1.6)
and (1.7) that [K„2)b] contains no SU(3) represen-
tation greater than the octet. Consequently, in
order to eliminate decuplets and (27)-plets from
the commutator, e and P must satisfy

[Xb 2)o]=+2( } ' ub (2.12)

aa [c, -a]+a [a, -a]a)=), ().)))

holds valid.
Having shown that the realization is algebraically

consistent, we must now determine the unknown
functions a and P. %'e find it convenient to work
not with n and P directly, but rather with up and

vp; these latter quantities are of direct group-
theoretical interest, and they are equivalent to a
and P on account of Eqs. (2.8) and (2.9). In fact,
we can use the identity

A, o. + eG+ ', P(B+XS) =-6,e+ a T+ ', P(2 XZ —-C) = 0,

(2.6)
4,P+ aS+ P(c+ 2G) = b, P+ c(Z+ 2PT = 0.

1I-
,

0
0 0-1

1 0

"b(BX+CY)

We now argue that these conditions are sufficient
to give a, consistent linear realization of SU(3)
x SU(3}.

%'e begin by using the commutation relations of
Eqs. (1.6) and (1.7) together with certain proper-
ties of the d coefficients, i.e., '

8 8

~ dbbc 0b Q dabcdfbc 2 5af~ (2 7)

to identify the remaining members of the (3, 3)
system:

u, = - 2(-,')'f'[Z. , u.] = (-,')'"[ns+ p& —,'(BX+ C Y)],
(2.8a)

D=[a, 5]e[9

to invert the expressions for up and vp:

Q Q 1= —(-, )
f (~g-u, [9)

P P

From Eqs. (2.3) and (2.9) it follows that

and so the expression for n' and P' is

Q =—(-,')'"(u,f+ 2), [9)

(2.14}

(2.15)

(2.17)

ua = -abdab [Kb, Vc] = Q )2a+ P IIa, (2.8b) For future reference we note that the transfor-
mation

2), = -'2(-,'-}'"[K„u.] = -(-,')»'[n'p'+ p'x-,'(Bx+ C Y)],

(2.8c)
is equivalent to

(u(), 2)()) (-2)()) u()). (2.18b)
I
a

p(f

Next we observe that if the commutator

[X„u,]--2(-,) '
2)b

is to be satisfied, then o. and P must obey

~,[o.F+ (8x-', (BX+CY}]= --,'a,
~,[nz+ (8~-', (BX+ C Y}]= --', P.

(2.9)

(2.10)

(2.1 1)

Zb = (ub+ 22)b)
(2.19)

Using Eqs. (2.15) and (2.17), we can write down
expressions for Z~ and Z~ in terms of up, vp and
E, J3, and C:

Zp —Qp —2Vp, Zp —Qp + 2',

That this is indeed the case follows from the alge-
braic requirements for E„(22) [see Eqs. (2.2) and
(2.3)] together with the conditions of Eq. (2.6).
Finally @re note that o.' and P' obey exactly the
same conditions as n and P [see Eqs. (2.6) and
(2.11)], and so [K„ub] contains nothing higher than
an octet, and the relation

Now the quantity Q'~=c ZzZz is chirally invariant:

[Z„QZ, Z,]=0, (2.20)
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and so it must be equal to a constant. Calling this
constant n, we find from Eqs. (2.19) and (2.15) that

and C as

E= cLE+ px ', (BX-+CY},

QZ, Z, =n=Z, Z, 1+—,2E

' )'=0

(2.21) Cn' —2m PB —(2 E —3XC) f}
a' —nP'X —3P Y'

(2.29}

where

(2.22)mk, IIk $8, S8 =S6.
k=g k~

The second part of Eq. (2.21) relates u, '+ v, ' to a
known combination of E, B, and C; consequently
we need only one more relation to be able to ex-
press up and v, separately in terms of E, B, and
C. To get at this relation, we consider a special
case of E,b(v).

b, ~ E+= = b2 E+= = 0 (2.30)

Substituting these expressions into Eq. (2.27), we
obtain a new relation between o. and P in terms of
E, B, andC.

We can verify this relation by using the condi-
tions on n and P in Eqs. (2.6} and (2.11), together
with the algebraic requirements of (2.2) and (2.3),
to show that

B. A Special Case and Its Uses

Suppose that we choose

@=1, P=O, (2.23)

when E and C are as given in Eq. (2.29). Now we
have already observed that 0.' and P' obey exactly
the same equations as u and P [see discussion
preceding Eq. (2.12)], and so, in addition to Eq.
(2.30), we can also conclude that

and denote the corresponding fields and functions
by 'carets; for example,

v, = Fr„u, =(-,')'"E. (2.24)

G=S= T=i=0. (2.25)

Consequently the remaining invariant functions
obey

Our problem now is the reverse of what it was be-
fore: Instead of having to find e and P in terms of
the commutation tensor, we must now find the
appropriate form of E„(w) for our choice of o. and

P.
The general conditions of Eq. (2.6) plus the par-

ticular values of o. and P in Eq. (2.23) imply that
in the commutation tensor of Eq. (2.1),

' E"3C =' E'3C =' (2.31}

where P' and C' are the same as E and C except
that n' and P' take the place of e and P. In the
v, = ~, system, we find that

E ' = BE+ C x ,(BX+C—Y),

C'= C/(B' —BC'X ——,PY) .
(2.32)

At the very beginning of Sec. II, we remarked
that B must vanish at the origin X= Y= 0, while E
and C need not; in fact, because of the last item
in Eq. (2.6), E and C cannot vanish at this point.
It then follows from Eq. (2.32} that (P'+ 2/3C'}
vanishes when X and Y are zero. When combined
with Eq. (2.31), this means that

~,E=0, E'+2/3C'=0 (2.33)

2,C=-C, a,C=O,

ka+2EC- —', XC =-1,

(2.26) for all values of X and I'. Equation (2.33) is there-
fore the second solution to the set of partial dif-
ferential equations in Eq. (2.26).

as can be seen from Eqs. (2.2) and (2.3). One so-
lution of these equations takes the very simple
form

E+ 2/3 0 = (-') '"k, (2.2'l}

where k is a constant which can take all real values
except zero. There is also a second solution, as
we shall see below.

To make use of the relation between E and C,
we treat the identification of v, with fr, as being a
redefinition of the meson field:

me= era+ PII (2.28)

Then, as shown in Appendix A, we can write E

C. Solutions for Zp and Zp

Now that we have new relations for n and P, we
need to translate them into relations for Zp and Z, .
In principle, this is not a difficult task, but in
practice it involves some tedious manipulation.
We begin by reexpressing E and C in terms of Qp

and vp, and then we show how the corresponding
results for E' and C' can be obtained by a simple
transformation. From the relations thus obtained,
we are able to express Zp and Z, as functions of
E, B, andC.

Comparing Eq. (2.29} with (2.8a), (2.9), and

(2.14), we see that



NONLINEAR REALIZATIONS OF SU(3)&&SU(3) ~ . . 1837

F= (-', )'"u,

and that the numerator of 8 is

(2.34} definition of D in Eq. (2.14), and the properties

(2.38}

L =Cn' —2aPB —(2E ——,'XC)i}'= -[o., P] 8
P

(2.35)

From the expression for [n, P] in Eq. (2.15}, the

we find that

(2.37)I =-2(up +vp')/3D.

To evaluate the denominator of C, we need the
result

—,'P(o'X+ PY} -4up' a 2 «, &)& 2 ] ,'b(aX—+bY)
1XP2 3D y SD2$4 0 0 0 0 2 lXP
3

(2.38)

which can be derived by straightforward manipulation; we then obtain

2v2. . . g
3~3 D 2uo + vo(vo uo }Dp +up( vo uo }Dp 7 (2.39)

where
', b(aX+ bY—)

) 2 1gb2

,b(aX+ b Y)—
H= —a) b 6 a2 ——'Xb

(2.40)

3/2

Zp'=(up+ivp)'= 4, [(2H-D')+2Ki],

g 3/2

Z, '=(u, —iv, )'= 4, [(2H —D') —2Ki],

(2.44)

When applied to Eqs. (2.2'l) and (2.29), these re-
sults enable us to rewrite the relation between P
and C in the form

up(3vp -up )(D —2H) —vp(vp' —3up')(2K)

= 3(u, '+ vp')D'k.

(2.41}

Another relation of this kind comes from Eq.
(2.33}for P' and C'. Since the functions F' and C'
are derived from P and 0 by substituting (o.", P')
for (o., P), and since this substitution is equivalent
to the interchange of u, and v, in Eq. (2.18b), it
follows that the second relation can be obtained by
applying Eq. (2.18b) directly to Eq. (2.41). Thus
we have

—v, (3u, ' —v, ')(D' —2H) —u, (u, ' —3v, ')(2K) = 0.
(2.42)

The right-hand side vanishes by virtue of Eq. (2.33).
The coefficients of (D' —2H) and (2K) in Eqs.

(2.41) and (2.42) are the real and imaginary parts
of (up a ivp)'. Therefore, by taking one relation
plus or minus i times the other, and using the re-
sults

(2H —D')''+4K = ,DoC, ——

D Properties of Zk and Zk

As we mentioried in the Introduction, there are
two independent SU(3) scalars in this theory, and
all other scalars must be functions of them. Now,
in the (3, 3) system we are given two scalars, Z,
and Zp, and we can manufacture seven more, for
example, (Z,Z,) and (d;,„Z;Z,Z,). Therefore, if
we treat Z, and Z, as the independent scalars, the
manufactured ories will be functions of Z, and Zp.
This means that there must be several nonlinear
relations among the elements of the (3, 3) system.

We have already encountered one such relation
in Eq. (2.21):

8

Zp ZQ n Zp Zpg
k=1

(2.45)

where n is a constant. The other relations express
Zk and Zk in terms of Zp and Z„and relate quan-
tities like d;,kZ;Z, to Zk and Zk. To derive them,
we shall need the identity

Thus we have found expressions, albeit rather com-
plicated ones, for Z, and Zp in terms of E, B, C,
and the constant n.

ZpZp —up + vo ——onD/4,

4 = (~zD+E)

[see Eq. (2.21}], we find that

(2.43) S ™S+ ™=[i(2E —XC/3) —2mB —nC]8$,mn mn
(2.48)

which holds for any symmetric matrix, and also
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(2.47)

The last term does not contribute to Z„Z~ because
it is antisymmetric, and so from Eq. (2.47) and
the definitions of H and K in Eq. (2.40) we can
write

-(8S+i 8)( EI+ 2—8XS) —iE 8. (2.49)

where E is given in Eq. (2.22).
Let us begin with Z, Z, . From Eqs. (2.19) and

(2.46), we have

2Z2
Z»Z»= 2 [a, 5](-2S XS+E8S+2iXS)

(2.48)
Using the properties of S and 8 in Eq. (2.36), we

can write the term in round parentheses as

Z»Z»=, 0 (2H+2iX).2ZG (2.50)

Z,Z, = 2(&n 2, + Z, ').

In a similar way, we can also show that

Z»Z»=2(v n Z, + Zo').

(2.51)

(2.52)

We now consider products involving d coeffi-
cients. From Eq. (2.19) we have

With the aid of Eqs. (2.43) and (2.44), this becomes

—'X
—Xm —Ym ——XII b (2.53)

Using the identity of Eq. (2.47) and dropping the

antisymmetric part of the matrix sandwiched be-
tween the [a, 5] vectors, we find that

We also note that because'

if;;»v; v, =if;,»v;II, = 0, (2.60)

and hence that

(2.54)
all products involving the antisymmetric coeffi-
cients vanish:

(2.61)

d;, ,Z;Z, = -(—,'}'"(Z,Z»+ Zoz»). (2.55)

In the ease of d;,.„Z,Z, , we require some lengthy

algebraic manipulations to show that

d...Z,.Z, = ', 2[v„tl,](i-iS) ',a' ——,'Xb'

(2.56)

d...Z, Z, = (-', )"'(Z,Z„—v n Z,).

Similarly,

d;,„Z;Z, = (3)'"(Z,Z» —v nZ, ).

(2.57)

(2.58)

Combining these results with those for Z„Z„
Z,Z„and Z~Z~, we obtain the following expres-
sions for trilinear scalar quantities:

d...Z; Z, Z, = (-', )'"[2Z,'+ 3V n Z, Z, —(V n)'],

d;, »Z;Z, Z»= -(—,')'"(nZ, + Z, 'Z, + 2v n Z, '),

d;, »Z; Z~Z» = ( ',)'"(nZ, + Z,—'Z—,+ 2' Z, '),

d;, »Z; Z, Z» = (-', )'"[2Z,'+ 3&n Zo Zo —(Wn)'].

Inserting the identity of Eq. (2.13}between [v„II,]
and the rest of the first term, and using the defi-
nitions of Eq. (2.40) together with the results of
(2.43) and (2.44), we find that

Besides our argument about the number of in-
dependent SU(3) scalars, there is another way of
understanding the relations described above. If
we consider the Kronecker product of the repre-
sentations (3, 3) and (3, 3) we can, in general, pick
out a term corresponding to the (8, 1). For Z» and

Z~ this term is
8

(if;; +d;, )Z;Z;+(—) ~ (5; 6;„+5, 5; )Z;Z,

(2.62}

and it corresponds to converting the nonlinear
meson field to the linear realization (8, 1). There
is, however, a general theorem' which states that
the only linear realizations to which the meson
field can be converted are of the form (m, m);
therefore the expression in Eq. (2.62) must van-
ish. A check of Eqs. (2.55) and (2.61) reveals that
it does indeed vanish. In other words the above
relations ensure that we can never construct rep-
resentations from Z, and Z„which violate the gen-
eral theorem of Coleman, Wess, and Zumino. '

E. Expansion of Z and Z

When we construct effective Lagrangians and

apply them to physical processes, we have to ex-
pand them in powers of the meson field. In par-
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ticular, for meson-meson scattering we must go
as far as the fourth power. Since the Lagrangians
are functions of Z& and Z&, we expand these quan-
tities to the appropriate order.

We begin by considering the functions E, C, G,
B, and S. On grounds of parity, the first three
are functions of X and Y', and so, to fourth order
in w„ they can be expanded as

«, =[«],(1 — +,+,(2FP;+«)+ -).X iY X

(2.69)
In a similar way, we have

X iY X~

(2.70)
where

XE=E +XE„+,E„„+", [Z()](&= Vn-= [Z()]() . (2.71)

XC=C +XC +—C + ~ ~ ~0» 2~ »x

XG=G +XG +—G + ~ ~ ~0» 2t »»
3

(2.63)
To calculate the formulas for Z, and Z~, we note

that the matrix factor in Eq. (2.19) has the form

-,
)

[.„rr, ([2* )m) =,", 1 «, (2«P, .~))
0 0

where quantities with subscripts are constants.
For the same reason the functions B and S are
given by

3 ~ ~ $ Ys p ~ ~ ~ (2.64)

mY . wq X
4+i—1 ——E» +.".

0 0 0

(2.72)
Now using the expansion of Z, and Z„we find that

(2.65)

Since B' and S(BX+CY) are of sixth order in the
meson field, they can be neglected in Eqs. (2.3)
and (2.2c), and the resulting equations, namely,

2EC ——,'XC =-1,

2(F + —,XC+XG)——FG = ——„j.

ax and

+1—1—,(«g, + —,

)
+"

0 0
(2.73)

0 0 0

0 0
(2.66)

G() =—(FQ, 3), G„=2F,„+ ", (4F+, + 3).
0 0

With the aid of Eq. (2.66), we can expand the
formula for Z,' in Eq. (2.44):

X

enable us to express C and G in terms of the ex-
pansion coefficients of E:

-1 1
0 2F ) «2F 3(FX0 12))

0 0
1 —,(FOF, +3) +" . (2.74)

0 0

These formulas and the ones for Z, and Zo hold
for all choices of F, and F, (except F,=O), but as
a check we apply them to the special case of E in
Sec. IIB above.

In the system for which v, = 9„ the functions F,
B, and C can be expanded as in Eq. (2.63), and
they satisfy Eq. (2.66). In addition, they also obey
Eq. (2.27), which when expanded to first order
in X becomes

(2.67)
From this expression we find that, when X= Y=o,

Jls

0 0
(2.75)

[Z,],= -W~,
-8Z, [Z], Setting the coefficient of X and the constant term

to zero, and using Eq. (2.66), we find that

-8 Z, 2[Z],
+

BZ 3[Z )
gY 9E

(2.68)
Now, by definition [see Eq. (1.6)]

Z& Z& 2 s v& &

but from Eqs. (2.73), (2.74), and (2.76),

(2.76)

Here, and hereafter, square brackets with a sub-
script zero around a single term are used to in-
dicate the value of the enclosed quantity at the
origin. We now use Taylor's theorem to write

2™A

in the caret system. Thus our expansions for Z~
and Z~ are consistent with the system in which we
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start by taking v~= fr~.

III. HIGHER REPRESENTATIONS

As a result of the Coleman-Wess-Zumino theo-
rem' and the relations in Sec. IID, the only SU(3)
x SU(3) representations we can construct from
products of Z, and Z, a.re those of the class (P, P).
The distinctive feature of this class is that the
Kronecker product of (p) and its conjugate repre-
sentation (p) always contains an SU(3) singlet in
addition to octets and other multiplets. This sin-
glet is important because we can generate all the
other members of (p, p) from it, and because we
can compute it for all choices of (P).

Let us denote the singlet by S. It commutes with
the SU(3) generators F;,

[F,, s] =0,

and so from

[F K~]=&fi~»K»

and the Jacobi identity

(3.1)

[E,, [K,, S]]+[K,, [S,E;]]+ [S, [F;,K ]]=-0, (3 .2)

we find that

sentation.
For a fixed (P), the Clebsch-Gordan series of

(P &&P) runs from the singlet up to some maximal
representation (k) and then stops. Consequently,
when we commute S with a succession of chiral
operators, we generate new representations until
we reach (k); then we either annihilate S or begin
to repeat ourselves. For example, the operator

K+ K~ + 'EK2 (3. t)

raises the isospin by one unit every time it is
applied to S, and so there will be some number

corresponding to the maximum isospin con-
tained in (k), such that the (N+ l)th commutator
of K, on S will vanish:

[K„[K„..., [K„S]"] = 0, (N+ 1 factors). (3.&)

When we convert the eigenvalue equations (3.5) to
differential equations, this result will serve as a
boundary condition upon the solution.

To proceed further, we need to know the exact
forms of the operators L, and the eigenvalues l, .
We describe the representation (p) by two integers
(i»„ i», ) which represent the number of quark and
antiquark indices, respectively. For (P) the role
of quarks and antiquarks are interchanged:

[F;, [K;, S]]=if;, [K, S]. (3.3) (p) -=(u„p»), (p) =(v „)»,). (3.9)

This means that the commutator of S with the
chiral operator K, behaves as an SU(3} octet. By
a similar argument, the double commutator
[K;, [K~, S]] behaves as a second-rank tensor, the
triple commutator as a third-rank tensor, and so
on. Thus by commuting S with ehiral operators
enough times, we can generate a, series of SU(3)
representations with zero triality.

If S belongs to (P, P), then the members of this
series must also belong to (P, P). To show this
we note that the algebra of SU(3) XSU(3) contains
four Casimir operators L, (a= 1 —4) which com-
mute with the generators,

The dimension of (P) is

D(u „i».) = -'(i»»+1)(u»+1)(i», + V, + 2) (3.10)

and the eigenvalues of the quadratic and cubic
Casimir operators are"

m. (w», i»2}-.[i»» +i 2 +(v»+)»2) +5(i»i+i». )1

m»(V1, P») =~9(P» u, )[( i»+-2P»)(P. +2i», ) (3.11)

+9(p, , + i», +1)1~

respectively. The statement that S belongs to the
representation (P, P) of SU(3) &&SU(3) then means
that

[F,, L,] = [K,, L,] = O, (3.4) —,'[F, *K„[F,+K, , s]] = ,'m, (i»„ i»—,)s, (3.12a)

and whose eigenvalues serve to define an irredu-
cible representation. The singlet S is an eigen-
state of L„

[I... s]=f.s, (3.5)

[L„[K,, S]]= I.[K, , S]. (3.6}

Similarly, the double and higher commutators of
S with ehiral operators are also eigenstates of L,
with l, .as their eigenvalue. Thus commuting S
with the K; never takes us out of the (p, p) repre-

and so, from the Jacobi identity for L„K;, and S,
it follows that [K„s]is aiso an eigenstate with the
same eigenvalue as S:

where we have made use of

m»(pu p») ™»(p»,i», ),

m. (u „u') = -m. (i»., u, ).
(3.13)

Since S is a singlet, these equations reduce to

[K;,[K;, S]]= 2m, ( p, „p,,)S,

d;; [«[K; [K., sl]1=-4m (), i.)s.
(3.14a)

(3.14b) .

We can convert these conditions to partial dif-
ferential equations by observing that S must be a

,'d;, ,[F,*K„[E,~—K,, [E,.+ K„]S]]=+-,'m, (p, „p,,),s
(3.12b)
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function of Z, and Z, . Then, with the aid of the relations in Sec. IID, we obtain

(Z,' +WnZO), +(Z,Z, —n) —+(Z,'+HZ, ) 8
—,+4 Zo +Z, — = —', ~(P,„P,)S

and

(3.15)

3 a3 a 3$
[2Z,'+ 3' Z, ZO —(Wn)'], + (3Z,'Z, + 6&nZ, '+ 3nZ,),——(3Z,ZO'+ 6&n Zo'+ 3nZ, )

0

—[2ZO'+ 3&nZOZO —(Wn)3] —,+ 15(ZO'+ v n Zo) 3
—15(ZO'+ v IZo) —,+ 20 Zo —Zo

as 2 — as a' s as as

0 0 0

= -9m, (p„p.,)S.

(3.16)

Since quarks have isospin zero or -„ the largest isospin contained in (P, P) is

&=() i+~.) ~ (3.17)

Accordingly, the (p, + p,,+1)th commutator of K, on S must vanish as in Eq. (3.8). This means that all the

(g, + p, + 1)th partial derivatives of S must vanish,

aN+lg aN+y~ aN+y

az N+1 az Naz az E+z
0 0 0 0

(3.18)

where N is given by Eq. (3.17). Therefore the required solution of Eqs. (3.15) and (3.16) is a polynomial of
degree Kin Z, and Z, .

If we write this polynomial as

S=g a „(Z,) (Zo)" (3.19)

and substitute it in Eqs. (3.15) and (3.16), we obtain two recursion relations for the coefficients a „. The
general solution is too cumbersome to quote, and so we shall, instead, cite a few illustrative examples.
In the (3, 3) case, lj, , = I, g, =Q, and 8 =Z, as expected; in representations for which y, ,-+g, =2, 3, we have

(6, 6): g, =2, p, =0, S = Z, +3(Z,'/v n),

(8, 8): p, = p, ,= 1, S =1 —9(Z,ZO/n),

(10, 10): p, ,= 3, p,,=0, S = 1 —18(Z,Z0/n) —27(ZJ&n)',

(15, 15): p, , =2, p, = I, S = Z, —3(ZO'/Wn) -9(Z,'Zo/n).

(3.20)

For higher representations we recommend that each case be handled on its own.
Although the general formula for S is unwieldy, it does reduce to manageable proportions when it is ex-

panded as a power series in the meson field, and only the first few terms are kept. Up to fourth order 8
is given by

Bs as 1 a' sS=[S]0+ —X+ —F+—, 2 X + ~ ~ ~,
0 0 -0

(3.21)

where the square brackets with subscript zero denote values at the point m, =X= F= 0. The coefficients of
X and Y can be written as products of partial derivatives of 8 with respect to Z, and Z, times partial de-
rivatives of Z, and Z, with respect to X and k for example,

-Bs -as az, as az,
ax„= az, ax'az, ax, , ' (3.22)

The derivatives of Z, and Z, at the origin are already contained in Eqs. (2.68)-(2.71), and those of S can
be computed from Eqs. (3.15) and (3.16). In this way, S is found to be

S =[S]0[1—am X/Eo -~20fmsF/Eo + g~(~0m +FOE~+ ,")X /Fo +"]. — (3.23)

We have already pointed out that once we know S we can determine the remaining members of the (p, p)
representation by commuting 8 with K, . Of particular interest are the two octets
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(3.24)

and

M, = d...[Z„[Z„S]]

a's a's a's, „, as as

0
(3.25)

For the (3, 3) representation 8 is equal to Z„and M; and M, are both proportional to Z, . For the special
cases of Eq. (3.20), we find that

(6, 6): M,. = (-', )'~'[(6/W~)Z, Z, —Z,],

(8, 8): M; = (-9/n)( —', )'~'(Z;Z —Z;Z),

M; =+M;,3

M; = -(v 6/g)(Z Z;+ Z Z;),

(10, 10): M, = (3v 6/n)(-2ZZ, —(9/V n) Z, 'Z; + 2ZZ), M;=3M
(3.26)

18Z Z 2Z 3Z' 17 66 2Z 39Z '
(15 15)' M =( ) Z; 1 — +3Z; + M =(—

)
~ Z ———ZZ Z,

If we expand the general formulas for M; and M& by the same techniques as we used for S, then we obtain

M; =[8],~ — ', —(3E,E,+ —,',m, +N), '—,' —i[3],—' 1—,(E,E,+~om, +~~5) + ~ ~ ~ (3.27)

2 3
-II, 2~+9 "r F E 22M+57 XII

40EBX560 E ' 21x24 20

m, ' 2',. XII, . m~ p; X
0 0

(3.28)

When p, , = p, , the representation (P, P) is self-conjugate and m, vanishes [see Eqs. (3.9)-(3.11)]; the octet
M; is then of purely odd parity and M; is even. When either y, , or y,, is zero, the SU(3) representation (P)
is triangular and the product (P XP) contains one octet instead of two. In this case we find that M; and M;
are proportional to one another:

M; = —', (2y, ,+ 3)M„y,, = 0,

=--', (2y., +3)M, , p, , =0.

These simplifications will be very useful when we come to consider meson-meason scattering.

(3.29)

IV. MESON-MESON SCATTERING

The meson Lagrangian consists of two parts, a
kinetic term which involves derivatives of the me-
son field, and a mass term which contains no de-
rivatives. The kinetic term need not break the
chiral symmetry, but the mass term always does.
Accordingly, we consider a model in which all the
symmetry breaking occurs in the mass term, and
none in the kinetic one.

We shall assume that the symmetry-breaking
term belongs to a, single representation, ((P, P)
+ (P, P)], of SU(3) && SU(3), and is an admixture of
its unitary singlet and octet components. We de-
termine this admixture by fitting the Lagrangian
to the observed masses of the pion and K meson,

and then we can calculate general formulas for
meson-meson scattering in terms of the repre-
sentation (P). Our results for S-wave scattering
lengths agree with earlier calculations for the
case P =3, ' and they indicate that certain higher
representations are not likely to occur in the real
world.

In terms of Z~ and Z~ the chiral-invariant kinetic-
energy term takes the simple form

Zx E
——-G Q BqZ„BqZ~. (4.1)

A=P

The constant G is chosen so that when ZK E is ex-
panded in powers of the meson field, the coeffi-
cient of the leading term is (--,'). From Eqs.
(2.67)-(2.74) we find that up to fourth order in the
meson field,



NONLINEAR REALIZATIONS OF SU(3)~SU(3) . . ~ 1843

~r&.E. =-2(8pwa)(8wwe) 1 F 2(FoF + &)
0 J

+,(8„X8„X)(2 F,F„+-,') —,(8„11„8„11„).

ao(KK) = a,(KK) = 0,

(4.8)1,17+3 m2 19+6m2a1(~} 24wm F E +
10 28~3

(4 2)

The mass term of the Lagrangian can be written
as

57+ 22m2 — 48m3
m, (2m, + 3) 84&3

Finally, the w-K scattering lengths are
= --,'(dS, + bk, + 52,), (4.3)

--,'[dX+ (5+ I )rl,]. (4.4)

where 0 is proportional to the unitary singlet
function 8 of Eq. (3.23), and 2, and 2, are pro-
portional to the octets M, and M„respectively
[see Eqs. (3.27) and (3.28)]. These expressions
are normalized so that the quadratic terms of
are

a„,= „,[-,(m, '+mr') —m„mw+A'],
8 F0 (m~+mK)

(4.10)

1/2 8FE021',m„+mK)

where

17+3m2 19+6m2
15 84W3

To fit the pion and K-meson masses, the constants
d, b, and 6 must obey

48m '
+ 57+222-~ 2m2+3 252 3

' (4.11)

d = —,'(m. '+ 2mw'),

t + 5 = (&)'"(m, ' —m, ').
(4.5)

In all of the above equations, subscripts on scat-
tering lengths correspond to the isospin of the two-
meson state.

When P=3, the Casimir eigenvalues are

Notice that in general we cannot determine all
three constants by fitting masses; we shall return
to this point below.

To calculate S-wave scattering lengths from the
fourth-order terms in the Lagrangian

(p, =1, p, , =0) m, =w- m =-~
and the scattering lengths become

7m. -2m.
P 32 y 2) 2 32~g 2P

(4.12)

(4.13a)

C=ZK E +8,
we use the formula"

(4.6) —2mKKK: (4.13b)

-iM(12- 1'2')
8 w (sit, +Stt,)

(4. t)

m mK a —— mmmK

4wFO (m, +mr)' ' '
8wFO (mw+m, )

'

(4.13c)

24am, F02

a,=,(-4m, '+2A),
24mm, sp

17+3m2 19+6m2
20 28&3

(4.8)

48m, '
+ 57+22m2

2 +3 84 3

where m2 and m, are the Casimir eigenvalues of
Eq. (3.11). For K-A scattering we obtain

where M(12-1'2') is the invariant amplitude taken
with respect to normalized and properly symme-
trized two-meson states at threshold, and M, and

M2 are the meson masses. We then find that for
w- m scattering,

2a, —5a, =3m, /4wF, ' (4.14)

is exactly the same as in the chiral SU(2) case.
Another combination is proportional to the quan-
tity A:

These results agree with those of Cronin' if his
parameter f is given by 2f' =1/F, '; they are also
consistent with the work of Turner. ' It is inter-
esting to note that the w-w scattering lengths in
Eq. (4.13a) are identical with the predictions of
chiral SU(2) with the mass term in the (-,', -', ) rep-
resentation. " This is not surprising because the
relevant representations of SU(2) && SU(2) contained
in ((3, 3)+(3, 3)) are (0, 0) and (2, w).

Suppose now that we consider the properties of
w-w scattering lengths for larger representations
(P). From Eq. (4.8) we see that the combination
2a, —5a, is independent of the parameters of (P).;
moreover, the actual value of the combination,
namely,
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4a, —a, =3A/4vm, E,'. (4.is)

A= -2m,

and that a, and a, are both negative and of com-
parable magnitudes. As we increase p, , A becomes
more and more negative and the ratio a,/a, tends
to 0.4. Thus if we always want ao to be positive
and much larger than ~aJ,

"we must rule out all
symmetry breaking in which (P) is self-adjoint,
i.e., (8), (27), (64), ... .

If (P) is a triangular representation then y, , = 0,
and the octets M, and M, of Eqs. (3.27), (3.28) are
proportional to one another [see Eq. (3.29)]. Thus
for all practical purposes we can drop bR, from
the Lagrangian. In this case A is given by

A =m, '[~~ +~) (&+3)]+2, ml [~so Ai (i +-3)l

p, ,= 0. (4.17)

Except for the simple case of (P) a triplet with

g =1, the predictions of this set of representations
are unsatisfactory: For p, =2, a, is much larger
than a, in magnitude, and for higher values of p, ,
the objections are much the same as in the self-
adjoint case. Thus we have grounds for ruling out
symmetry breaking by triangular representations
larger than the triplet, i.e., P=6, 10, 15, ..., .

If (P) is neither self-adjoint, nor triangular, then
we have no reason to drop bS, from the Lagran-
gian. We therefore have one free parameter, and
we can choose it in many ways. For example, we
could fix b so that

(4.18)

no matter what the representation (P) may be. In
this case the v-w scattering lengths would be ex-
actly the same as for f(3, 3)+(3, 3)}breaking [see

In general, we cannot predict the magnitude of A
because we cannot calculate both constants b and
5 from observed masses [see Eq. (4.5}]. There
are, however, certain types of representation for
which one of the constants is effectively zero.

If (p) is a self-adjoint representation, then p,
= p, , = p, , and the eigenvalue m, vanishes [see Eq.
(3.11)]. The even-parity part of M, [Eq. (3.27)] is
then zero, and we can drop the term M, from R
[Eq. (4.3)]. With 5=0, we can determine 5 from
Eq. (4.5), and hence the quantity A:

A =m,'[~«+P'g(g+ 2)]+2mr'[ —,', -~e,op(p+ 2)],

u, =i.=V" (4.16}

Because the K-meson mass is so much larger
than the pion mass (m„' = 12m, '), the value of A
is always negative and fairly large. For example,
in the simple case of (p) an octet with p, = 1, we
find that

Eq. (4.13a)], and the model would have to be tested
in K-K and m-E scattering. The simplest represen-
tation of this kind is a 15-dimensional one with
parameters p, , = 2, p, ,= 1.

We see from this analysis that our present
knowledge of m-m scattering lengths allows us to
put fairly strong restrictions on the manner of
chiral SU(3) breaking. Knowledge of v-K and K-K
scattering would help us even more.

V. WEAK CURRENTS

The currents associated with weak decays of
pseudoscalar mesons are usually assumed to be
members of the (8, I) representation of SU(3)
&&SU(3). We can construct them directly from Z~,
Zs, and their derivatives, or we can derive them
from the Lagrangian of Sec. IV [see Eqs. (4.1)-
(4.6)] by means of Noether's theorem. Whichever
method we use, we obtain the same answer:

= a[&f ia+d»(~)

J„=, [if „m,B—„m +2iF,B„m, &iXB„v,(2E,E,++)

iv, a„X(2E,E,—) zd. „ii,a„—vr ], (5.3)

where the first term belongs to the vector current,
and the remaining ones to the axial-vector current.
I rom the linear term we see that K-meson decay
and pion decay are described by a single constant,
namely, F,:

fr=f, =E,=95 MeV, (5 4)

and from the cubic term we see that E is deter-
mined by the form factors of K«decay.

Because there is only one vector term in J&
"

[Eq. (5.3)], the K» decay modes are described by
a single form factor which corresponds to f, in
the standard notation. In fact we obtain from Eq.
(5.3) the result that

(5.5}

Now it. is known from experiment" that f is not
a small quantity, and so, if we are to accommodate
this result within the framework of chiral SU(3),
we must find an additional &S= 1 current some-
where.

If we limit ourselves to the (8, 1) representation,

(s.i)
where g is a constant chosen to yield the correct
normalization for the vector part of J„,and

AB„B~A(B„B)—(B„A)B. (5.2)

Using the analysis of Sec. II [see Eqs. (2.69)-
(2.74)], we can expand the current in powers of the
meson field. To third order we obtain
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Z

~ (2XB~ Y' —F8~X)+
0

(5.7)

the only possibility for another current is given by
Eq. (5.1) with 8„(Z,Z ) replacing Z, 8„Z„. The
power series for this modified current begins with

a term of degree three in the meson field, and so
it cannot contribute to K» decay in the tree ap-
proximation. Therefore we must introduce AS=1
currents belonging to representations other than
the (8, 1). This can be done in many ways, and

we shall not attempt to pick a particular one here.
The need to go outside the (8,1) may seem rather

surprising when compared with the SU(2) analysis.
In chiral SU(2) we had no trouble constructing two
independent (—,', 0}currents corresponding to the
two form factors of K„decay. ' However, we must
realize that, from the viewpoint of SU(3), K» de-
cay is a transition between two members of the
basic meson multiplet. The analogous transition
in SU(2} is not K» decay itself, but rather pion
P-decay 7T n +e + p.

In chiral SU(2), we can construct only one cur-
rent of the type (1, 0), and so we have only one
form factor for pion P decay instead of the two
that are allowed by kinematics. The reason for
this is, of course, conservation of the vector cur-
rent-a feature which is automatically built into
chiral-symmetry theories, and which makes it
difficult to construct extra currents. Thus our
difficulties with K» in SU(3) xSU(3) come from
having an octet of conserved vector currents.

The breaking of this conservation law by the ad-
ditional 68=1 current has some interesting conse-
quences for the Lagrangian. We remarked before
that the current J„'~"of Eq. (5.1) can be derived
from the Lagrangian of the previous section; in
fact it comes solely from the kinetic term S« .
Now, if we are to derive the additional current
from the Lagrangian, then we must add extra
terms to gK E . These terms cannot be chiral in-
variant, and so our hypothesis of a symmetric
SK z in Sec. IV may be subject to some doubt. "

To conclude this section, we wish to draw at-
tention to a curious feature of the current in Eq.
(5.1). In addition to the octet of (8, 1) currents, it
also gives rise to a ninth, chirally invariant axial-
vector current:

8
(0) gg(2)x&2(& (5.6)

1 =0

When we come to expand A„~'~ in powers of the
meson field, we expect, on grounds of parity and
SU(3) invariance, that the leading term will be
B„F. However, when we actually substitute the
expansions of Eqs. (2.67) —(2.74) in Eq. (5.6), we

find that the cubic term cancels out, and that the
lowest term is of fifth degree in the meson field:

This suggests that some selection rule is at work,
but we are not sure what it is.

APPENDIX: REDEFINITION OF THE
MESON FIELD

Suppose that we redefine the meson field by
means of the expression

g, = A. m, + pII;, (Al}

where A. and p. are, in general, functions of X and
We must then determine how the other quantities

in the theory, especially E~(v), behave
The dual vector presents no problem:

VI. SUMMARY

We have constructed the analog for SU(3) of the
nonlinear 0 model of Gell-Mann and Levy. ' That is,
given the most general action of chiral operators
upon the octet of pseudoscalar meson fields' [see
Eqs. (1.5) and (2.1)j, we have been able to deter-
mine the elements, Z and Zs, of the (3, 3) and

(3, 3) representations. Since we have not specified
the commutation tensor E~(v) any more than is
necessary, our results are valid for all definitions
of the meson field. Consequently they must be
covariant with respect to redefinitions of the meson
field. The formal proof of this is given in the Ap-
pendix.

From the Z and ZB we have constructed higher
representations of SV(3)xSU(3) and we have used
them to construct a model for meson-meson scat-
tering. In this model, all symmetry breaking
occurs in the mass term and is made to fit the
observed masses of pion and K meson. Our results
show that if the S-wave, m-m scattering lengths are
such that a, is always positive and much larger
than a„ then the symmetry breaking cannot occur
in representations like (8, 8), (27, 27),..., or ((6, 6)
+ (6, 6)), ((10, 10) + (10, 10)j, ... , . There are, how-
ever, many other representations consistent with
our requirements, and the choice between them
will depend upon the properties of K-K and m-K

scattering.
We have also studied the form of weak currents,

and have found that it is not possible to allow for
the form factor f of K» decay without breaking
the chiral symmetry in the kinetic term of the
Lagrangian. The consequences of this have yet to
be explored.

The problems we have considered so far involve
only the transformation properties of the meson
field itself. In a subsequent paper we shall con-
sider the transformation of other fields, with ap-
plication to such problems as m-nucleon scatter-
ing.
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11; = d;, ~ v, w, = 3 p, (XX+ pY,)w;+(X' -—,Xp')ll; .
(A2}

For convenience we combine this with Eq. (Al) in-
to a matrix expression

—'
p, (LX'+ p. Y) X2 ——',Xy,~

then use Eq. (A7) to recast the expression in terms
of the new fields, and we identify F, B, and C by
their roles as coefficients of 6,b, d~, w, , and

d„,II, , respectively. In this way we find that

,'(BX+—Cl) & ,'(BX—+CY)
F

(AS) B 2F =3XC B 2F -3XC

C -B (A.9}

detR =-6 =—A. —A.p. 'X —3 Yp, 3

and an associated matrix

&' --,Xp, ' —', p, (kX+ p, Y)

(A4}

To invert this relation, we define the determinant
of R

~ b(CX+ bY) 1 , b(a—X+bY)=-8
g2 j Xg2 Q g2 1X/2

3 BX+C

(Tt)T&B =BT&R =Zb, (A6)

where I is the unit, 2 && 2 matrix, and hence that

where 8 is given in Eq. (2.14). We then find that

These results are sufficient to show that our ex-
pressions for Z and Za in Sec. II are covariant
with respect to redefinitions of the meson field.

It is helpful in the analysis of Eqs. (2.27)-(2.29)
to note that

(A7)

E =RE+ ,'p, (BX. + C1'—),

C = [CX -2Xp, B (2E =',XC-) p, '] /b .
(A11)

To determine how E„(v) transforms, we evaluate
the commutator [K, , H, ]=8„ in terms of the orig-
inal fields using Eqs. (Al), (1.5), and (2.1). We B'+2FC -3XC'= B'+2FC -3XC'= -1. (A12)

Also, if we take the determinant of both sides of
Eq. (A9), we find that

S, P. Rosen, Phys. Rev. D 1, 3392 (1970); Phys. Rev.
188, 2542 (1969).

2M. Cell-Mann and M. Levy, Nuovo Cimento 16, 705
(1960); M. Levy, ibid. 52, 23 (1967).

3S. Weinberg, Phys. Rev. 166, 1568 (1968).
~See, for example, M. Gell-Mann, R. J. Oakes, and

B. Renner, Phys. Rev. 175, 2195 (1968).
J. A. Cronin, Phys. Rev. 161, 1483 (1967); L. Turner,

Nucl. Phys. B11, 355 (1969).
A. J. Macfarlane, A. Sudbery, and P. Weisz, Proc.

Roy. Soc. (London) A314, 217 (1970).
~See, for example, D. Carlstone, S. P. Rosen, and

S. Pakvasa, Phys. Rev. 174, 1877 (1968).

S. P. Rosen, J. Math. Phys. 12, 673 (1971).
~S. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177,

2239 (1969).
See, for example, S. P. Rosen, J. Math. Phys. 5, 289

(1964).
~~See, S. Coleman, in IIadyons and Their Interactions,

edited by A. Zichichi (Academic, New York, 1967), p, 39.
2F. T. Meiere and M. Sugawara, Phys. Rev. 153, 1702

(1967).
~3D. Haidt et a/. , Phys. Rev. D 3, 10 (1971).

A. J. Macfarlane and P. H. Weisz, Lett. Nuovo Cimen-
to 2, 25 (1969).


