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1'To the order in the fine-structure constant to which we
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18n rewriting the expression for I, in the final line of
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usual » — -~ and reverse-ordering operations, the fact
that IF is a pseudotensor function of one four-vector q.
This means that If has the form €,,,,4°f @*/m?, and
therefore is odd under interchange of the indices p and
v,
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the order in which the other Feynman-parameter integrals
are done turns out to be immaterial,

203, D, Bjorken and S. D. Drell, Ref. 14, pp. 220-223;
R. J. Eden, P, V. Landshoff, D, I. Olive, and J, C. Polk-

WONG, AND YOUNG 4

inghorne, The Analytic S-Matrix (Cambridge Univ, Press,
Cambridge, England, 1966), pp. 31-33.

sThe reason we expect the left-hand side of Eq. (61) to
still be a polynomial is that taking absorptive parts ren-
ders the integrations in Egs. (52) and (61) more conver-
gent, and therefore should give the same result for both
orders of integration, This may explain why integration-
order problems do not seem to be present in the usual
radiative correction calculations of quantum electrody-
namics (QED): In QED the polynomial parts of the am-
plitudes are always readjusted at the end of a calcula-
tion to satisfy the renormalization conditions. Clearly,
the question as to whether integration-order problems
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do, they could be handled by the techniques which we
have developed, We note that the integrals appearing in
the earlier anomaly calculations of Adler and Bardeen
(Ref. 5) and of Young et al. (Ref, 10) do not_exhibit in-
tegration-order dependence,
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The dependence of the tree-approximation solution of the SU3 0 model for mesons on the
SU4XSU; symmetry-breaking parameters has been investigated in detail. From the explicit
relations of the model we establish the existence of a radius of convergence of power series
expansions about the symmetry limit. This radius of convergence is an order of magnitude
smaller than the value determined by fitting the model to the pseudoscalar nonet masses.
The mixing angles and scalar masses implied by the model are in surprisingly good agree-
ment with (fragmentary) experimental data. Using the experimentally determined parame-
ters, it is possible to compare the behavior of the several possible solutions in the limit of
SU;XSU; symmetry. Of these, only that having SU; symmetry of states and a pseudoscalar
octet of massless Goldstone bosons is stable under symmetry-breaking perturbations. This
result provides a dynamical reason for this frequently used assumption. The symmetry-
breaking parameters turn out to be such that the Lagrangian has approximate SU,XSU, symme-
try. The physical point can be reached by first turning on either the SUjs-invariant or the
SU, XSU,-invariant SU;XSU; symmetry-breaking operators to their physical values and then
using perturbation theory. In each case the perturbation expansion converges.

I. INTRODUCTION

The success of current algebras™? has estab-
lished the importance of the group SU,xSU, for
particle physics. Recently attempts have been
made to understand the low-lying states in terms
of effective Lagrangians with simple transforma-
tion properties under this group.® The question of
how the underlying chiral symmetry is realized in
light of the large mass splittings has been the sub-
ject of many investigations.®~® Difficulties arise

when corrections to the symmetric limit are com-
puted in perturbation theory.®” These difficulties
may be traced to the way in which chiral symmetry
manifests itself by the spontaneous-breakdown
mechanism and the associated occurrence of an
octet of massless pseudoscalar mesons. Li and
Pagels have recently shown’ that perturbative
closed loops involving massless bosons give rise
to nonanalytic (logarithmic) behavior at the origin
in symmetry-breaking parameters. In a recent
letter® we suggested that the failure of perturbation
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expansions about the SU,XSU, limit can be under-
stood in the SU, o model® without considering
closed loops. Singularities were found in the sym-
metry-breaking parameters that rule out the use
of perturbation expansions when the parameters
are taken to their physical values. In this paper we
give the details of the calculation reported in Ref.
8. We also go on to show that the stable solution
in the SU, X SU,-symmetric limit is uniquely that
spontaneously broken solution exhibiting SU, sym-
metry.

It may be questionable whether the SU, 0 model
should be taken seriously in describing the real
world. Although it can be solved only in a very
crude approximation, that crude solution gives
surprisingly good predictions. Further, the al-
lowed domains of symmetry-breaking parameters
found by Okubo and Mathur® from very general
considerations are contained in this model.'* Our
conclusions about the failure of perturbation ex-
pansions could very well be general since the trou-
blesome singularity has a simple interpretation in
terms of neighboring symmetric solutions.

We choose to examine a particularly simple form
of the SU, o0 model given by the Lagrangian

=4 Tra, M 0" 9M + £,(Tr M) + £, Tr MMM M
+g(detIM+H.c.) — €,0, - €405 .

Here 9 is a 3X3 matrix'**® transforming as (3, 3).
In the limit €;~0 and €;~0 £ has SU,; XSU, symme-
try.* Note that there are no bare-mass terms.
(The effect of the mass term was considered in
Ref. 8.)

The basic approximation used to solve this model
is the semiclassical or “Hartree” method.'” The
ground state of the Lagrangian is determined self-
consistently where the fields are allowed to have
nonzero vacuum expectation values. Small oscilla-
tions about these equilibrium values determine the
masses.

The cubic term in £, g(detIM+H.c.), is essential
for describing the pseudoscalar nonet. In the ab-
sence of this term the n’ and 7 are degenerate.>!
Its contribution to the masses is interesting in that
it pushes the corresponding scalar and pseudosca-
lar masses in opposite directions. It also has an
interesting effect on the normal vacuum when ¢,
and €, are small. (The “normal” vacuum is the one
in which the vacuum expectations of the fields van-
ish in the limit of €, €,~0.) For small €, and €4,
the g term dominates the f; terms and hence at
least one (mass)? is negative. This means that al-
though the normal vacuum is acceptable in the ab-
sence of the breaking terms, it is unstable under
an infinitesimal breaking of the symmetry.

In Sec. II we calculate the masses in this model.

Four masses are needed to fix all determinable pa-
rameters. (We choose them to be 7, K, n, and ’.)
The parameters of the SU,;XSU,-symmetric La-
grangian are then held fixed at these values. In
Sec. III we find the solutions to the Lagrangian in
the SU, X8U, limit. There are five possibilities,
characterized by different vacuum expectation
values of the field. Three of the possible solutions
are ruled out from general considerations. In Sec.
IV the problem of matching the physical solution to
the symmetric limit is discussed. Only one solu-
tion remains that can be matched. Hence there is
a unique symmetry limit in this model. It corres-
ponds to a spontaneous breakdown of SU,XSU, while
preserving SU, and having an octet of massless
pseudoscalar mesons. It has been conventional to
assume that the limit of SU, XSU, invariance has
this property. To our knowledge this is the first
dynamical explanation of why this solution is to be
preferred over other possibilities.

II. MASSES AND NUMERICAL FIT

In order to find masses in this model we use the
semiclassical approximation, as in our earlier
papers.®!! We start from the Lagrangian (1.1) with
no mass terms, allow for the fields to have non-
zero equilibrium values (vacuum expectation val-
ues), redefine new fields that have zero equilibrium
values and consider small oscillations of these
fields. The only fields that get displaced are g,
and o,. Define the new fields og and o4 to be

00=00 = &0,

(2.1)

03 =05 — &g,
where £,=(0,) and £,=(0,). In terms of the new
fields the Lagrangian contains powers of the fields
from 1 to 4. The linear terms are eliminated by
choosing £, and ¢, appropriately and then the
masses are identified as coefficients of the bilinear
terms.

Eliminating the linear terms ¢ and o; gives rise
to equations for €, and ¢, in terms of £, and £;. We
define the variable b=£,/V2 £, and find these ex-
tremal conditions to be'®

€0=Eo154,G(b) +y(1-bY)],

(2.2)
€5/V2 = £,°0[45,H(D) - v(1+0)],
where ‘
G(b) =3f,(1 +2b%) + £,(1 + 6b% - 2b°) ,
H(b) =f,(1+2b%) +f,(1 =b+0?), (2.3)
y=2g/V3.

We further define a variable a as in Ref. 10:

a=¢,/V2¢,.
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TABLE I. Mass terms in the Lagrangian. For unmixed
fields the coefficient in the Lagrangian is —3m2¢?, for
mixed fields —%(m 20 o2 +m gl 52 +2m5*P¢g). The m? val-
ues listed in the first column are related to the A; by the
formula m?=22£2f Ay — 2§ 2fy Ay —vE4As.

[

The values of €, and €, give for the parameter
a=¢€y/V2 €, the values —0.919 and -0.938 for solu-
tions I and II. This is quite close to the value
-0.89 given in Ref. 4. (The quantity c of that work
is related to a by ¢=v2 a.)

Solution I has some additional interesting results
already noted in Ref. 8. The nn’ mixing angle is
2.4° and is smaller than that computed using the
usual lowest-order mixing scheme. The SU; break-
ing in this model is not linear in €, and so the
higher-order corrections appear to make the n
more purely octet than usually expected. The sca-
lar mesons exhibit an unexpected correspondence
with the quark model. The mixing angle 65 corres-
ponds to the linear combinations:

m Ay A, A,

T 2(1+28%) 2(b+1)? (1—20)
K 2(1+20%) 2182 -b+1) (1+d)
Ngo 2(1+20%) 21+20%) -2
Tgg k 2(1 +20%) 230 —2b+1)  (1+2d)
Tog 0 2/2b(b-2) vZb
Ty 2(1 +28°%) 2(b+1)> —(1—2b)
K 2(1+20% 2(b2—b+1) —(1+b)
Ooo 2(3+20) 2(1+20% 2

O3 2(1 +60) 2(30° —2b+1)  —(L+2b)
Og 4bV2 22 5(2 ~b) —V2b

The masses are given by somewhat lengthy ex-
pressions and are recorded in Table I. For the un-
mixed fields the mass terms are of the form
-3m?$*. For the mixed fields'” we list the matrix
elements of the quadratic form

1 2, 2.
=2(mos” o’ +Mag” Pg” + 2’ bos) -

The masses depend on four independent quanti-
ties. They can be taken to be £,%f,, &7fs 0¥, and
b. We fit these parameters to the pseudoscalar
masses 7, K, 1, and n’. Two solutions were found.
The predictions for both solutions are listed in
Table II.

According to current wisdom, solutionI is to be
preferred since for solution II the « and € states
occur at too low a mass. [A few years ago, when
k(725) and 0(400) were popular, we would clearly
have made the opposite choice.] The 7, is some-
what lower than the value 980 MeV preferred by the
experiment. k and € have been very elusive, though
claimed to exist by pole extrapolators.’® Again the
predictions are slightly low compared to the mass
values preferred by experimentalists. (However,
some choose to identify « with activity in the K7
mass range of 1100-1200 MeV.) The meson €’ has
mass 1094 MeV in our model; its near-canonical
mixing would give dominant KK decays. There is
a good candidate for such a state at 1070 MeV: the
N} or S*, which does indeed have a predominant
KK decay mode.’ Considering the small number
of parameters occurring in the model, and the
probably crude nature of the approximate solution,
the numerical results are surprisingly good. Fur-
ther facets of the possible scalar nonet have been
considered in Ref. 20.

—e=0.790+0.61 0.~ (2)"/ 254+ ()" %0y,

—€'=0.610)=0.719 0~ (1) %04 = (2)*/ 20} .

(2.4)

If the fields ¢} and o4 are replaced by quark scalar
densities u, and u,, the € corresponds to the non-
strange-quark combination while €’ corresponds to
strange quarks only. Solution I also has a smaller
absolute value of b, —0.2102 compared to -0.3610
for solution II, indicating that the states are more
nearly SU, symmetric. For these reasons we feel
that solution I is the preferred solution, and we

will use it in the discussion below.

For the remainder of this paper we hold f,, f,,

TABLE II. Numerical fit to masses, and predicted
mixing angles and scalar masses. 0p and 0g are the mix-
ing angles for the 7n’ system and €€’ system, respec-
tively, defined in Ref. 17. &,p is the physical value of
the variable £,. Only Solution I was used for the analysis
in this paper. The input masses were (units of GeV?)
mi(r) =0.019 06, m%(K) =0.2450, m?(n) =0.3003, m?(n’)

=0,9178. The unit is taken to be 1 GeV.

Solution I Solution II
tan0p 0.040 66 0.2371
m(my) 0.9110 0.9049
m (k) 0.9025 0.7174
me’) 1.094 0.9989
mie) 0.6035 0.4106
tanfg -1.283 —0.9903
Eopofi —0.07575 —0.085 69
£0pifs —0.056 92 0.01144
£0pY 0.2522 0.2362
b —0.2102 —0.3610
€o/t0p -0.1861 —-0.1974
€gN2 &op 0.1710 0.1852
a -0.9189 -0.9382
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and y fixed at the values determined by this solu-
tion. In a related paper'! we needed the freedom
to vary f,/f, as we turned off the symmetry break-
ing, in order to get positive masses in the joint
limit of scale and chiral invariance. We do not
need that freedom here. Varying the parameters
of the SU,XSU,-invariant Lagrangian we regard as
an unmotivated complication for the analysis of the
present paper.

It is possible to express certain masses as sim-
ple functions of a and b. Using Eq. (2.2) we find

_ & (a+1)
mﬂz“gz G+1)"

2 _% (a=2)

my ——‘E—(; (b—Z) 5.

& (a
m=-=2 (—) .
£o \b

In terms of the variables a and b the domains of
positive real mass are easily found and are shown
in Fig. 1. There are further domain boundaries
arising from the conditions that the other masses
be positive, but they are complicated curves and
do not particularly concern us. The boundaries in
the absence of the term gdetIM + H.c. can be found
in Ref. 11. The coordinates corresponding to the
two fits are also marked on Fig. 1.

The gdetIN term is essential in fitting the
masses. Infact, without this term the ' and 7 are

(2.5)

b

2 1

NN

W\,

.

_ _

FIG. 1. Allowed domain plot in terms of the variables
a=egN2 eyand b=£g/V2 &), The shaded areas correspond
to positive m, K, and « masses. The locations of the nu-
merical solutions I and II are indicated. (The domains
can be slightly sharpened by further stability conditions.)
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degenerate. This term further has the property
that it gives equal contributions with opposite signs
to the corresponding scalars and pseudoscalars.
The large value of g needed to split the (n’, 7) de-
generacy then results in a large splitting of the
scalars and pseudoscalars, which is in good agree-
ment with experiment. This situation gives numer-
ical detail to the qualitative arguments previously
presented® in favor of such an interaction. The
presence of this term has the interesting conse-
quence of making the normal SU,XSU, solution:un-
stable under small perturbations, and hence only
spontaneously broken SU,;x8U, is allowed, as we
show in the following sections.

III. SOLUTIONS IN THE ABSENCE OF
EXPLICIT SYMMETRY BREAKING

The numerical fit in Sec. II contained no assump-
tions about the behavior of the model as a function
of €, and €,. In this section we find all solutions
(five in number) in the symmetry limit (eq, €,=0)
in preparation for Sec. IV, where we learn how to.
make a smooth connection between the physical
solution and a symmetric solution. In fact, it
turns out that only one symmetric solution can be
connected smoothly to the physical fit. This is a
solution that has spontaneous breakdown: of
SU,x8U,, but preserves SU, symmetry.

Let us examine Eq. (2.2) for €,, €;=0.

0=£.73£,6(0) +7(1-0%)],
0=£,0[4£,H(b) - y(1+D)],

(3.1a)
(3.1b)

where G and H are given in Eq. (2.3). These equa-
tions have several solutions (see Table III for a
summary):

(i) £,=0, |b|<w. This is the normal solution in
which the symmetry is realized by degeneracy. In

TABLE IIl. Allowed values of b and £, in the absence
of explicit symmetry breaking (€y,€3=0). Comments on
solutions (i) and (iv) are discussed in Sec. IV; (iii) and
(v) in Sec. III.

(i) |b]<eo, £&,=0 Normal solution,
unstable
is -3y  _3
b:O‘ [ —t A—— Good
(ii) ) 1G5+ Ty & 0

(iii) b=-1, £,=0 Normal solution,

unstable
fi1+f3=0 Disagrees with fit
(iv) b=2, &=—%&, Acceptable, but too
far from physical fit
@) b=1- E%yf—z , £ Eq. (3.1b) £, and b complex,

unacceptable
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fact, all masses vanish since there are no explicit
mass terms in the Lagrangian.

(ii) b=0, £,#0. We can find &, from Eq. (3.1a):

-3y .
b= 1@+ o 3.2

This solution corresponds to the spontaneous
breaking of SU,XSU,, but preserves SU, symmetry
(b=0). This defines £,. There are several cases
for which b# 0 and £,# 0. There are three solutions
of this type. To find them take the difference of
Eqgs. (3.1a) and (3.1b):

(b =20+ DEG - D fr+7]=0. (3.3)

This equation together with either of Egs. (3.1)
gives the following results:

(iii) b=-1, Eo(f1+f2)=0' (3.4)

£,=0 is the normal solution (already discussed) and
fi+f,=0 conflicts with our experimental fit of
Sec. II.

(iv) b=2, 4£,(3f,+f,) =v=0. (3.5)
This gives an expression for &,.
(v) b=3-3/8&,f;, (3.6)

4(1+ 207, f, +4(B% = b+ 1)E  f, = (1+b)y=0.

If we take f,/f, =0.74 from the numerical fit, Eqgs.
(3.6) give complex b and &,.

Table III summarizes these results. The only
acceptable solution is the second [see Eq. (3.2)].
The reasons for rejecting (i) and (iv) will be dis-
cussed in Sec. IV. It is gratifying that there is only
one acceptable solution and that it corresponds to
that spontaneous breakdown of SU,XSU, invariance
which preserves SU,. In this limit the pseudosca-
lar octet appears as a set of massless Goldstone
bosons.

IV. EXPLICIT BREAKING OF SU, X SU,
SYMMETRY; ANALYTIC PROPERTIES
IN THE PARAMETERS €, AND ¢,

A. Introduction

Having found the physical values of the parame-
ters in our model and the possible solutions in the
SU,x8U, limit, the remaining task is to match the
two. In order for the SU,XSU,-symmetric Lagran-
gian to be a good starting point for describing
physics, (1) there must be a path that corresponds
to possible physical worlds in between. The crite-
rion we use to satisfy this is that all (mass)® re-
main positive along the path. (2) We further de-
mand that the masses be holomorphic functions of
€, and €,. If there are singularities in the path then
perturbation theory is useless. We also are con-

cerned with singularities near the path since they
control the convergence of perturbation expansions.
As a preliminary step we must choose appropri-
ate variables. The variables &, and &, (or equiva-
lently £, and b) can be taken to describe the path
of interest. However, the scale of £, is not deter-
mined in this model. We normalize £, to §,, its
value at a symmetry point, 5=0, £,+# 0 [see Eq.
(3.2)]. We define the variable x = £,/£,. The value
£,p (see Sec. II) refers to &, at the physical point.
Using Eq. (3.2) and the numerical fit we find

1 éo 3 Y€op
— =2 - 20— - (),6656. (4.1)
%p  &op 4 (3f1+f2)€oP2
The variable b takes on the value —0.2102 at the
physical point and 0 at the symmetry point.

B. Singularities in the Symmetry-
Breaking Parameters €, and €,

We will first show how to find the singularity
structure of masses as a function of ¢, and €;. The
essential point of this discussion is explained in
detail for the special case €¢;=0 in Ref. 8. We give
here a full discussion allowing €z# 0.

The extremal conditions written in terms of x be-
come

go':" Eo/go
=xq4(1+2b%)xF, + 2(1+6b% = 20°)xF,+ (1 - b?)G],
(4.2)
€/V2 =¢€,/V2E,
=bx[4(1+ 20%)xF; +4(b% - b+ 1)xF, - (1+b)G],

where
Fi=E0P2f{/xP21 (4-3)
G=t,py/%p.

The numbers F; and G can be calculated from
Table IT and Eq. (4.1). Using Table I, the masses
can be expressed in a similar fashion in terms of
these variables. We give the 7 mass for purposes
of illustration:

m,?==x[4(1+26%)xF, + 2(b + 1)*xF,+ (1 - 20)G] .
(4.4)

The masses are polynomials in x and b and are
hence analytic in these variables. However, we
are interested in the masses as functions of €,
and €;, the parameters of the symmetry breaking.
Equations (4.2) are thus a transformation of vari-
ables from x and b to €, and €;. The transforma-
tion is singular when the Jacobian vanishes:

0(€y, €
J=det—§f;’z)) -0. (4.5)
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This expression is lengthy and we do not give it
here. It is of the form

I =xx —x,(0)][x - x,(0)] . (4.6)

The Jacobian vanishes at x =0 and at the real roots
%,(b) and x,(b) shown in Fig. 2. Along these curves,
x and b have branch points as a function of €, and
€,. The functions x and b are clearly multivalued
functions of €, and €, since both spontaneously
broken solutions marked on Fig. 2 have €, €,=0.
The spontaneously broken solutions at x=1 and
b =0 can be connected to the physical point by a
path that satisfies our criterion of holomorphy. In
Fig. 3 we show the mapping of this region onto the
(€, €;) plane. The solid curve in Fig. 3 is the map-
ping of x,(b) in the neighborhood of the path. The
dashed curve is also the mapping of x,(b) but it
corresponds to large . This singularity is not on
the branch of the function that is exposed. This
can be seen, for example, by holding &, fixed and
real, and looking in the €, complex plane. There
will be two square-root branch points given by the
intersection of the €,=constant line and the two
curves. An examination of the complex plane shows
that the branch point at the dashed curve lies on the
second sheet of the branch point at the solid curve.

2.0 T T T T T T
®<4——Physical Point
1.0 #-<+——Spontaneous -
Breakdown
X, (b)
X
o
X, (b)
Spontaneous
Breakdown
bl o —
-2.0 1 1 1 1 | 1
-3 -2 =1 | 2 3

FIG. 2. x4(b) and x,(b) are the roots of the equation
detld(€y,€5)/0(x, b))l =0. In addition there is a third-order
zero at x =0 independent of b.
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-5 —4 -3 ) - 0
A
€% /o

FIG. 3. This figure shows the curve of singularities in
the (real) (€),€g) plane. The dashed part of the curve cor-
responds to second-sheet singularities, The two paths
composed of straight-line segments show two important
ways to reach the physical point (solid circle) from the
origin (i.e., the SU3xSUz-symmetry point).

w(Z5)
VZéo

—— 03 -olf ol 03 Re< g >
' —t ot , R
-04 -0.2 . .
— 0 0.2 0.4 JEEO

FIG. 4. Nearby branch points and associated cuts in
the € complex plane for fixed (physical) value of €,. The
origin corresponds to SU; symmetry. The physical point
is denoted by a solid circle.
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T T T T T T T T T T T T
1.3F .
.
- € .
LiF .
n
T,
TN
.
n
K -
] -
™
€ / T 1 1 1 1 1 | — 1 I
0/%00-04 -z -.20 -.28—-.28‘
A
0—————  0.04 .2 .20
€g/V/2¢, .255

FIG. 5. Mass-level diagram as a function of symmetry-
breaking parameters €, and €5. The SU3xSUj-breaking
parameter €, is taken to its physical value first, keeping
b=0 (conserving SUs). Then the SU;-breaking parameter
¢ is taken to its physical value.

The turnaround point of the singular curve in the
third quadrant indicates that there is a complex-
conjugate pair of branch points in the complex
plane. These are found below for a particular
choice of &,.

There are two paths joining the origin and point
P which have special physical interest. (1) We
first turn on €, to its physical value, holding €,=0,
and then turn on €,. The first step has been dis-
cussed above. A power series will be limited by
the singularity at (0.03,0). The second step is a
long distance on this scale, but the physical point
lies within the radius of convergence. There are
complex branch points nearby, as suggested by the
lower part of the curve. All the nearby branch
points and associated cuts are shown in Fig. 4.

(2) In the second case we first turn on €, and €,
together along the line €;=~V2¢, (corresponding
to SU,xSU, symmetry) to the physical value of ¢,
and then take €, to its physical value. The path
corresponding to the first step has a singularity at
(0.02, —0.02) and hence perturbation theory is use-
less. Having reached the value indicated by Fig. 3,
one can safely reach the physical point by pertur-
bation theory.

Qur reasons for discarding the solution at b =2

=—% are now clear from Fig. 2. In order to get
from this point to the physical point we must pass
through three points where the transformation is
singular, i.e., x=x,, x,, and 0. In terms of the €,
and €, variables this means that we must encircle
three branch points.

The normal solution also encounters difficulties.

[ >

o

m2 (Gev?) _
O v o b 0 » N ® © O

€ /é'\ 1 L 1 1 L
0/%0 0 -0.04 -0.08 -.I2 ~-.16 -20 -.24-.255-.255

A 4 O 4
0 0.0 .08 .12 .16 . .24 | .
/1/- E 20 255 .280

FIG. 6. Mass-level diagram as in Fig. 5 but with €,
and €4 constrained to their SU,XSU, value for the first
step; then SU,XSU, is broken to SU,.

It corresponds to x =0, |b|<». The path to the
physical point must still cross the curve x =x,(b).

C. Positivity of Masses, Stability of Solutions

The criterion that the symmetry solution be ac-
ceptable [i.e., that the path to the physical point
be characterized by positive (mass)?] is now ex-
amined. Again the only symmetry-limit solution
that satisfies this criterion is that having b =0 and
x=1,

We first consider this solution. The results are
shown in Figs. 5 and 6. We plot (mass)? for the two
paths indicated in Fig. 3. Figure 5 is the case in
which we break SU,XSU, explicitly while preserv-
ing SU, and then break SU, to SU,. Figure 6 is the
case in which SU,XxSU, is preserved in the initial
breaking and then SU,xSU, is broken to SU,. In
both cases the (mass)? are all real and positive
with the exception of the 7 which remains zero
along the SU, xSU, path.

In Sec. III we stated that the normal solution
£,=0, |b| <o was unstable. For this solution the
masses are all zero; however when ¢, is turned
on, at least one (mass)® must go negative, which
we now show.

When £,~0, i.e., x <1, then the mass formulas
are dominated by the term coming from gdetdN.
Four masses will illustrate our point:

m*= -m, *~ -x(1-2b)G,
(4.7)

mg~ -m %~ —x(1+0)G .

There is no choice of b for which all four (mass)?
are positive.
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Effective Lagrangian models, constructed from fields transforming as (3,3) + (3, 3) and (1,1)
in SUyx SU;, are studied in the tree approximation to learn how solutions having broken scale
and chiral symmetries are related to underlying limit solutions exhibiting spontaneous
breakdown of these symmetries, The requirement of a smooth transition to the limit of scale
invariance leads to restrictive conditions on the structure of the model and its solutions, For
a special case of the general model, it is possible to compute explicitly the squared masses
of the single-particle excitations in terms of symmetry-breaking parameters, The condition
of stability (m?=0) leads to the allowed domains of Okubo and Mathur, and hence, provides
a physical interpretation to their result. It is noted that there are several ways to normalize
the ninth axial-vector current by placing its divergence and the trace of the energy-momentum

tensor in a representation of Uy x Uy,

I. INTRODUCTION

The study of Lagrangian models has provided
considerable insight into the nature of approximate
chiral symmetry.! Much of this work has been
concerned with “nonlinear realizations” since
current-algebra soft-meson theorems are auto-
matically satisfied, and the coordinates of heavy
or dubious particles can be eliminated. A similar
situation obtains in much recent work on models
of scale invariance and its breaking.?2™* For many
purposes®® it is useful to study ordinary linear
realizations, not only because the particles in
question might actually exist, but because the dy-

‘namics of the underlying spontaneous-breakdown
mechanism is much clearer at this level. Further,
the nonlinear realizations can be regarded’ as
certain limits of the usual linear theories.

The present paper is concerned with the phenom-
enon of spontaneous breakdown of scale invariance
and the additional stringent requirement that such
solutions change smoothly when scale-invariance-
breaking operators are turned on. The calcula-
tions are carried out in the semiclassical (tree-
graph) approximation, with canonical commutation
relations assumed. (Modifications due to renor-
malization will occur in the next approximation to
the self-consistent ground state used here.) The



