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The mixing of xo, g, and%'(958) mesons has been investigated within the framework of the
broken-chiral-symmetry model of Gell-Mann, Oakes, and Renner. Considering SU(2) sym-
metry breaking of the Hamiltonian due to the nonelectromagnetic isospin-violation term (so-
called u3) and imposing the smoothness assumption on certain three-point vertex functions,
we calculate the mixing angles and the symmetry-breaking parameters in terms of the known
masses of the pseudoscalar mesons and one input variable, I" =fz/f ~. We obtain two sets of
solutions (e.g. , g-X mixing angle co ~ 10.5' or 19' for I' =1) and predict negligible mixing be-
tween 7ro-X compared to mo-q. The effect of the vacuum symmetry breaking on these mixing
parameters has been studied as well. In the case of an SU(3)-invariant vacuum, we repro-
duce separately the known results about g-X and 7( -g mixings and obtain the corrections to
the Gell-Mann-Okubo mass formulas.

I. INTRODUCTION

In most previous works, the prablem of the
pseudoscalar-meson mixing has been treated sep-
arately for q-X (Refs. 1-12) and q v(Refs. 13-1-6).
In a recent paper'7 Oneda, Umezawa, and
Matsuda have determined m'-g-X mixing param-
eters using the concept of asymptotic symmetry
in broken SU(3) and SU(2) symmetries. Here we
shall present a unified treatment of these mixings
based on a broken SU(3)I3ISU(3) model, given by
Gell-Mann, Oakes, and Renner (GOR)."

The importance of SU(2) violation of the Hamil-
tonian due to a nonelectromagnetic isospin-break-
ing term (u, ) has been pointed out by several au-

thors. "" One of the reasons for such a consid-
eration is the large failure of the Dashen sum
rule (DSR)'~ mr+2 —m„o' =m„+' —m, o', which is
derived from electromagnetic effects alone.
Moreover, if one considers the m -g mixing angle
from the diagonalization of the mass matrix and
uses this sum rule (DSR), one gets a vanishing
contribution of the electromagnetic effect to this
particular mixing. As a consequence, one may
look for the contributions of the nonelectromag-
netic effects to the whole phenomenon of pseudo-
scalar- meson mixing.

In this work, we start with a broken SU(3)3SU(3)
Hamiltonian which contains SU(3) and SU(2) viola-
tions explicitly. In Sec. II, the model as well as



- q -X MIXING IN BROKEN CHIRAL SYMMETRY 181

the necessary notations and the conventions are
explained. In Sec. III, the smoothness assump-
tion is introduced to get sum rules for the renor-
malizatien constants. Other sets of sum rules,
derived from our Hamiltonian, are given in Sec.
IV. In Sec. V, we solve the equations for the most
general case, i.e., a broken Hamiltonian and non-

invariant vacuum. For all the mixing angles, two
sets of solutions are obtained for different
F=f»/f, (see Table 1). The large solutions for
the q-X mixing angle ~ are effectively insensitive
whereas the smaller ones vary appreciably with
the variation of F How. ever, the SU(2) mixing
parameters (8 and (t) are less dependent on E.
Besides, a negligible mixing effect between m

and X is predicted. Section VI contains a few
illustrations of special cases with an SU(3}-sym-
metric vacuum and we discuss separately the
mixing of g-X, m'-g, and mo-X. In these cases,
the expressions for the mixing angles and the
modified Gell-Mann-Okubo (GMO} mass sum
rules, as given by other authors, ""'7are re-
produced. In the last section, we conclude with
some remarks about our results.

II. THE FORMALISM, NOTATIONS, AND DEFINITIONS

[F„u,(x}]=if...u, (x),

[E,, v, (x)]= if(„v,(x),

[E'„u( (x)]= i d, (ov,(x), .

[E',, v, (x)]=-id;;,u, (x),

(2a)

(2b)

(2c)

(2d)

where Q, =I', +E', are the generators of the
SU(3}I3ISU(3) group and i = 1, 2, . . . , 8, j, k = 0, 1, 2,
.. . , 8.

Using the local generalization of the equation of
motion for the axial-vector currents,

a„A", =- i[F',,a„], (3

we obtain the following explicit form of the current
divergences:

l. %e define a set of scalar and pseudoscalar
nonets u;(x) and v;(x) (i = 0, 1, 2, . . . , 8) which trans-
form according to the (3, 3}$(3,3) representation
of the group SU(3}C3SU(3), and choose the symme-
try-breaking (SB) Hamiltonian as

Hg(( = Eo[uo+ (»uo+ Puo].

The scalar and the pseudoscalar densities satisfy
the equal-time commutation relations"

a„A(( = (o) to[ 2 (»vo+(u 2 —(»)vo+ pvo]. (4e)

(5a)

(5b)

(5c)

(6a)

(6b)

(6c)

&O~a„A~ ..(m & =f,m.. .
(0 IaoA4-(o K+& =f»+ m»+

&O ~a„Ao „g'&=f„.m,.',
(0 la „A." ((('& =f,o m, o',

(0~8„A," g& =f» m»' (a=3 or 8).

Since the pseudoscalar densities v,. are probably
not physical fields, we also need to define the
matrix elements

(0iv. ..i(('& =Z„,'i', (7a)

&o~v, „g &=z.", (7b)

(0lv. ..I'& =Z."", (7c)

&o(v, (~'& =z,.", (8a)

(8b)

(O~v, [X& =Z» ' o (b=0, 8, or 3), (8c)

where the Z' "s are the wave-function renormal-
ization factors.

3. As we are considering a Hamiltonian which
breaks the SU(3) and SU(2) symmetries, mixing
must appear among the physical fields of m', g,
and X. Denoting an octet of Hermitian pseudo-
scalar fields by P, (i = 1, 2, . . . , 8). and a singlet by
P„ the physical pseudoscalar meson states may
be expressed as linear combinations":

(('= (-,')'"(P, + iP, ),
Z' = (-,')'"(P, + (P,),
Z' = (-,'}"(P, + iP,},

(»)
(9b)

(Qc)

((o = cos8cosg P, + (sin8cos((( —cos 8 sing sin(o)P,

+ (sin8 sin(((+ cosa sing cos((()Po, (loa)

(7 =- sin8 cos(t( P, + (cos 8 cos(d + sin8 sin&sin((()P,

From Eqs. (4d) and (4e) it is evident that (» gives
the mixing of the singlet to the eighth component
of the octet, whereas the mixing of the third to the
eighth and the singlet components of the pseudo-
scalar densities is due to nonvanishing P.

2. Vfe define here the matrix elements of the
divergences of the axial currents, given in Eqs.
(4), between vacuum and the appropriate physical
pseudoscalar-meson states

a ~A (( (o = ( o } co(W2 + (» )v((. (o(

a„A.".;,= (o)'" ~o[(~2 —o(») + o ~~ P]v.,(„
a„A„,,= (-', )' ' so[(W2 ——,'(») ——,'W3 p]v„„,
a„A(' =(-,')' 'e, [v 2 pv, +(av, +(W2+n)v, ],

(4a)

(4b)

(4c)

(4d)

+ (cos 8 sin(o —sin8 sin(t(coso()P„

X= —sing P, —cos8 sino(P, + cosQ coso(P„

(lob)

(10c)

where (o, 8, and P are the mixing angles between
the pairs ((},X), (((o, q), and (((,X), respectively.
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4. Because the symmetry can be broken by the
vacuum as well as by the Hamiltonian, we shall
assume that the vacuum not only transforms as a
pure singlet under SU(3} transformation, but also
includes a mixture of the eighth and third compon-
ents of an octet. Symbolically it can be represent-
ed as

Io) -=Ivac)=C, Isinglet)+C, I8, octet)+C, I3, octet) .

The matrix elements of Eqs. (7) and (8) may be
expressed in terms of the C's by using the Wigner-
Eckart theorem:

&0lv IP/} —(&} '5i/ci gi
+c mgdmsi+/csf dmSi/

(i, j= 1, 2, . . . , 8), (12a)

Z» ' '=(—')' '[-(v2 C,g, +C,g, )$
—C~,sin&a+a 2 C~,cosa],

Z» '/'= (-,')'/'[- C~, iP -(W2c,g, —C~,)sin(u (17)

+ &2C2g~cos(0] q

Z» ' '=(—,)' 2[-C~,Q —C,g4sin&u+C, g,cos&u].

Here we have made the approximations sining= ip,
cosij&= 1 and sin8= 8, cose= 1 assuming that 8 and

Q are small compared to ~.
Finally, when the vacuum is SU(3}-noninvariant,

we may have nonvanishing vacuum expectation
values of the scalar densities u„u„and u, . These
expectation values may be denoted by

&o lv,. IP, ) =(-,')"'g,(c,~,,+c,~,,)
(5=1,2, . . . , 8), (12b)

&o lv, IP,) =(-,')"g,(c,f„+c,~,,)
(i=1, 2, . . . , 8), (12c)

&o lv, IP,}= (-.')"c,g„ (12d)

where the g's are the reduced matrix elements

&0, sing llv, IIP/) g„=—

(0, oct llv, IIP,&=g„

(0, oct llv,. IIPQ =g„-
&o, oct llv, IIP,.}-=g„

&0, singllvoIIPJ= g, (i,j =—1, 2, . . . , 3).

Combining Eqs. (7)-(10) and (12), we finally get

Z, +' ' ——(—,')' '[2C,g, +~2C~, ],
Z»+'/' = (-,')'/'[2 &2c,g, —C,g, + &3C~,], (14)

oi/2 (1)l/2[2/2 C C ~3C ] .

Z,o'/' = (3)'/'[&2c,g, +C~, +C~,(ecos(u —ip sin&ii)

+u 2 C~,(esinu+ ipcoscu)],

Z,o'/' = (—,')'/'[C~, + (l2 C,g, —C~,)(8costs —iP sine)

+v 2 C~,(esin&u+ icos+)],
Z, o ' ' = (3)'/'[C~, + C,g, (e cos~ - p sinu&) (15)

+C,g,(8 sin&ad+ Q cos&u)];

Z„,'/'= (-,')'/'[-(W2c, g, +C,g, )e+C~,cos(u

+ v 2 C~,sin&a],

Z„,'/'=(g)'/'[. -C~,e+(W2c,g, —C,g,}cos(u (16)

+&2c~,sining],

' = (&)' '[- Csg48+C, g~coscu+C, g,siniLi]; .

III. SMOOTHNESS ASSUMPTION AND
Z RELATIONS

Here we shall derive relations among the Z's,
as defined in Sec. II, by assuming smoothness
condition for certain vertex functions, considered
by several authors. "" In other words, this
means that the vertex functions are as smooth
functions of momenta as possible after the re-
moval of the pole singularities. We proceed in
two steps: (1) without mixing, (2) including mix-
ing.

(1}As defined in Ref. 27, we also consider the
three-point functions

G,,, (p, ', p, ', q') = (p,
' . M, '. )(p,' -—M, ')-(q' m„')—

x (Z, Z, Z, ) ' ' d'xd'y e"i'" "i"
x &o Irb,.(»)v, (s)ii, (0))lo),

~(pi+Pi}pFiJl (Pi s', Pi y 'v )+ iepFiil (Pi i P/ t 7 )

= —(p, '-M, '){p,'-M, ')(z,. z,.)-"
x d4xd'yeiPt'" it~' 0T v~xv~ Vpl 0 0,

(20)

where q=p, —p~ and i,j are the pseudoscalar
indices and k is the scalar index.

When the particles are on the mass shells, 6,»
is the physical coupling constant of two pseudo-
scalar fields and one scalar field, and the E,',.~'s
are the physical form factors of the vector currents
between two pseudoscalar states.

We use the general form of the divergence of the
vector current,
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s8 l ~(
= '80(nfo(8+ pf3(8)u8, (21) /0 (g 0 / g /2 Z /2 g 01/2)/D

8

in Eq. (20), and follow. the same procedure given
by Auvil and Deshpande, "to get the relation

~8 (Z 1/2 g 1/2 Z 1/2 Z 1/2)/D
7I0 X3 X0 7I0 (25b)

z, = z/ (i,j= 1, 2, 4, 5, 6, 7).

This equation implies

g m'+ ZK+ ZK

(22)

(23)

A.3=(z "z " z "'z ")/a.ro X8 80

go (g 1/2 g 1/2 g 1/2 g 1/2)/DX

~8 (g 01/2 g 1/2 g 1/2 Z 01/2)/DX 7I3 g0 7)3 7I
0 (25c)

(2} In the case of mixing, we define appropriate
interpolating fields for m', q, and X as

g3 (g 01/2 g 1/2 g 1/2 g 1/2)/fl ~x -8 7

4,. = g &;v. (j=1(0,11, or X),
a=0,8,3

(24) Z 0/
7I 0

g 112 g 01/2
r8 W3

where the components of A& are given by

—(Z 1/2Z 1/2 g '/2Z 1/2)/Dr 118 3 XS 7l3

g 1/2 g 1/2 g 1/2
)0 8 n3

Z 1/2 g 1/2 g 1/2
X0 Xs X3

(25d)

g8 (Z 1/2 Z 1/2 Z 1/2 g 1/2)/D
3 Xo X ~0

Z3 —(Z 1/2Z 1/2 Z 1/2 g 1/2)/D.
0 Xs Xo Yls

(25a)
The expressions in Eqs. (25) have been obtained

by using the orthogonality condition

(oIC(ll', }=6,, (i, j=vo, q, orx).

In Eqs. (19) and (20), we replace v,./Z, '/' by 4/ given in Eq. (24) and follow the analogous procedure as
mentioned in the nonmixing case to obtain

1/2

(p( p& )F~(/( —co 2 (nfo&8+ p f3&8}G(&8 f(&8(p( M( )Z( (Z80-5&80+ Zo 5&8+Zr 6&&)

-f„,(p,'-M,.')g, '/2. (g,o'/25, ,0+Z„'/'5&„+Z '™5,)+(p&' M,.')Z /-' p f„,A&, (27)
a =0,8,3

(28)

where i=w', K', or K' and j=m', g, or X. To
derive Eq. (27), we have already taken the limit
q -0 and assumed no momentum dependence of
the E's and G in this limit, as required by the
smoothness condition.

Now equating the coefficients of the independent
variables P and P/2 in Eq. (27), we get

Z]A~ = Z7I0 5J7I0+ ZI) 5~7) + Zx 5)x
8 1/2 1/2 1/2

7I8 7I 8 I) S

g;A) =Z~0 5~~0+Z~ 5~~+Zx 5~X

g 1/2g 1/2'+ Z 1/2g 1/2 g 1/2g 1/2 p+ X X

(29e)

IV. BROKEN SU(2) AND SU(2) SUM RULES

1. For the first set of sum rules, we consider
the matrix elements of the divergences of the
axial-vector currents given in Eqs. (4), between
the vacuum and the single-meson states. For this
purpose, we use further Eqs. (5)—(8) and thus
obtain

(i=1(',K', or Ko; j=20, 11, or X).

These equations may be simplified to give the fol-
lowing Z relations:

f,m, , 2(-' )'3/2(8&02+ )nZ+' ',

fr™Q+ (3) ~0[(~2 2n) + 2 ~3 p)ZQ+

(30a)

g~ +Zg +gx —2 g~+~
8 8 8

Z o+Z& +Zx = —Z
3 3 3

(29a)

(29b) fgomro = (3) &0[(~& —2n) 2 ~&P]gro' ',
(30b)

g 1/2g 1/2 g 1/2Z 1/2 g 1/2g 1/2 p+ qs q3 + X X3

(29c)
f, mo„o'=( 3'}/e [0V2 nZ, O'/'

8 0

(30c)

g 1/2g 1/2 + g 1/2g 1/2 g 1/2g 1/2 0g0 q3 + X0 X3

(29d)

+(~2 —n)g o + pZ 0 ]

(31a)
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f om p2=(—')1/2e [W2pg o /2 f pg 1I2 +f Z 1I2 +f Z 1I2 — (2)1/2 (%8 II 0 7)8 7)0 X8 Xp 8 (35f)

+Pg, o' '+(W2+a)g, o' ']"3

2
( )1/2e [~2ug pl/2

8

+ (W2 —a)Z 'I'+ PZ„'I'],

f m =(-') I",ya pg"3

+PZ„'/'+ (W2+a)Z„'I'],

(31b)

(32a)

3. To obtain a relation between the parameters
a and P, we now make use of the concept that in
the limit of exact SU(3)SSU(3) symmetry, the octet
of pseudoscalar mesons becomes massless" while
they are raised to finite mass when the chiral sym-
metry is broken by the u, term [in Eq. (1)]. Con-
sequently, one may assume that u, and u, terms
in the Hamiltonian give the mass splitting within
the SU(3) and SU(2) multiplets, respectively. "
Thus we write, in the lowest order of H»,

m, +'= m„o'=(»" (Hso(m")

=so[(-')' 'h +(-')' 'uh ]

f m 2 —(1)1/2e [2Yaz
8 0

+ (vY —u)z», ' *+pz» '/'],

(32b}

(33a)

m + =(K+ (Hs (K+)

= ~p[(-')"h —-'(-')"ah, +-'Ph, ]

m,"=(K'(If„(K')

=~ [(-')"h '(-')"--uh 'Ph, j—-

(36)

f m 2 (1)1/2e f~gPZ 1/2

+ pZ», 'I'+
(v 2 + u)g„'I'j.

(33b)

f„,g.."=-2(-.')'/2(W2 t, + t,),

f»+Z»+'I' = -(—,')'I'(2 V 2 (p —&2+W3 t2),

f»oZ»o'I' = -(-', )'I'(2W2 &p
—

&2
—&3 t'2),

(34a)

(34b}

(34c)

Z 1/2+f g 1/2+f g 1/2 — (1)1/2(( +~2 ( )'3 "3

2. The next set of sum rules results trivially
when one considers the vacuum expectation values
of both sides of the Eq. (2d) and introduces a com-
plete set of states, commonly believed to be
dominated by the single-meson states, between the
F and e's on the left-hand side.""'7 In this man-
ner we obtain the relations

where h, and h, are the reduced matrix elements
of u, and u, (i= 1,2, . . . , 8}between pseudoscalar
octet states, respectively.

Eliminating h, and h from (36), we get

p / m»o —m»+
2

ck mz+ + mzp —2' (37}

V. THE GENERAL SOLUTIONS

In this section, the relations given in Eqs.
(14)-(17), (23), (29)—(35), and (37) will be used
systematically to estimate the mixing angles ~, 0,
and Q and the symmetry-breaking parameters a,
P, (2/$„and (2/gp. As we are here dealing with
an asymmetric degenerate vacuum, $2 and $2 (and
consequently C, and C3) are, in general, ' nonhero.
For consistency of Eqs. (14) and (23) one then re-
quires g, =0. Similarly, Eqs. (29a) and (29d)
together with Eqs. (15}-(17}give g, =g4=0. These
conditions simplify our equations greatly. Just for
the convenience of the readers, we shall rewrite
Eqs. (30)-(33) eliminating the Z' "s from Eqs.
(14)-(17):

1/2+f Z 1/2 f Z 1/2
( }1/2t

3 8

f pg p1I2+f Z 1/2+f Z 1/2 (2)1/2g
II 3 %0 g3 Qp X3 Xp 3 3j

f og'o' '+f Z ' '+f Z ' '=-(-')' 't
II 8 TT3 R. ri.

(35a)

(35b}

(35c}

(35d)

(35e}

f,m, ,' =W2A(vY+ u),

f»+ m„+' = W2A(vY - —,'u + -,' WS P),

f„.m,:=WaA(Wa- —,'a ——,
'

WS p),

(38a)

(38b)

(38c)

f,pm, o' =A[P+ ( 2 a)(8 cosp-1 —P sinu&)
8

+W2a(8 sinter+ Qcos&u)go/g, ], (39a)

f„om„o2 =A(W2+ a), (39b)

f„m„'=A[(W2 — ) u&ucosW2 +(siu&u) gn, /g, ],

(40a)
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fo mo2 -—A[-(W2+ a) 8+ p coso1+W2 p(sino))go/g, ],"3

(40b)

f» m»' =A[-(v 2 -1»)sinco+W2 1»(coso1)g,/g, ],
(41a)

B[f.,o—ufo, —Af», l = -(2)' '4 (44d}

B[f„coso1-f» sinor] =-(—', )' '(W2 (o- $2), (44e)

(go/g, )B[f„sin&a +f» coerce] = -(2)'/2&„(44f)
with

f» m»' =A[-(v 2 + n) p —p sino1+o 2 p(cos&o)g, /g, ],
(41b)

(Z)1/2C (45)

where

A= —,'v 2 e C,g, . (42)

From Eqs. (38a), (39b), (43a), and (44a) we see
that, within our approximation, one gets

(43a)

(43b)

(43c)

(44a)

It should be mentioned that P, 8, and P are of the
order of e' [SU(2) breaking strength] and that in
obtaining the above equations we have neglected
terms of order e4 in the presence of the lower-
order terms. We shall follow this approximation
throughout this calculation. From Eqs. (39a),
(40b), and (41b), it is observed that the couplings

f,o, f„, and f» are also of the order of SU(2)
violation.

Elimination of the Z's from Eqs. (34) and (35)
gives further

W2 Bf„=—2(-,')"(W2 ~o+ to),

W2 Bf~+ = -(2) (2 v 2 )o —$2+ v 3 $2),

W2Bf~o =-(2)'/'(2W2 (o —$2 —v 3 $2},

Bf..=-(-')"(~& ~. &.),

B[f,o (8coso1 —Q sino')+ f cos&o —f» sin&o]
3 n3 3

m + m» — »+ +mA=
m m~+ + mg0 2m m

(46)

where E =f»+/f, . —

Equations (38b) and (38c) give

~3p
02f»+ m»o ~2 1 1 ~3

(47)

Equations (43) give

f,o = (2)'/'f „, m. +' = m, o'.
3

Further, the expressions for the symmetry-break-
ing parameters are obtained in terms of the known

quantities given in Eqs. (46)-(49).
Equations (37), (38a), and (38b) give

(44b)

(44c)

(g/g, )B[f,o (e sin&a+ p cos&u) +f„si &unf+» coso1]'3 "3 3

(2)1/2 ~

3 F(1+X)
2 1+F+FX

~ z(1-x)
1+F+FX

(48)

For the calculation of o1, Eqs. (40a), (4la), (44e), and (44f) are used to give

f„=K,/cosoo, f», =K, /sin&@, (5o)

2 ' vY
(1 j Fx)»

~2(m» ™o) 3v 2 ~o m l2 +n

m2 1
K, = ',", ~2-~ (I+X+EX)

~2 (m» m„) 3~& &o m~ W2+ o,

(51)

T ' =— (tanto)2

mx' '' I' m ' -'' Z m2
+ —1+—+L ~ ~1 ——+L » 1+ +Lm„K, mo'

(52)

2 2
(1+z+Fx)~~ .

3O2 K1' (VY+n) mO &o
(53)
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In deriving Eqs. (50)-(53) we have used

f.(1+I'+ SX)
(54)

obtained from Eqs. (38a) and (43).
To calculate the SU(2) mixing parameters 8 and P, we must look for the linear equations in these vari-

ables because we have neglected throughout quadratic terms such as P', 8$, ete.
Eliminating the f's from Eqs. (40b), (41b), (44b), and (44c), one gets the required linear solutions:

8 = —
2 2 cos(d + W2 (sin(d) — — cos& + vY (sin(0) —E(1 —X)m&
1 gs p 8$~

(m, '-m:) g, Wa+n g'5
(55)

since —W2 (costs) — ' — sin&a —vY (cos~)—' E(1 —X)m»',
1 gg Pm, ' 1 &z

m» g| 2+o! 3 8'5
(55)

~g K, mq 2 ~K+
g, ~2(yT K, m„

(57)

as given by Eqs. (40a), (41a), and (50).
For the numerical estimate, we use the experi-

mental masses of the pseudoscalar mesons" and
take f, =133 MeV. With I as a parameter the
mixing angles have been computed for different
values of it. The results are quoted in Table I.
We observe that there are two sets of solutions
for &u (sets I and II), corresponding to the positive
and negative signs in Eq. (52). The former gives
a consistent but large value = 19' compared to the
experimental observations = 10.5'."" In the second
set, ~ corresponding to I' = 1 is in agreement with

the value predicted by the quadratic mass formula;
however, it is quite sensitive to the variation of E
and falls off rapidly as E increases.

The numerical values of 8 and P are found to be
consistent and insensitive to the variation of Il, as

expected. It is found that, .in general, Q is smaller
than 0; this is reasonable because of large mass
splitting between the pair m' and X mesons. Also,
the order of magnitudes of both 8 and Q are com-
patible with our assumption that the strength of
SU(2) breaking is much smaller than that of SU(3)
violation.

VI. SPECIAL CASES WTH SU(3)-
INVARIANT VACUUM

In the previous sections we have given the gener-
al form of the equations and the sum rules with the
condition of degeneracy in an asymmetric vacuum.
Here we shall present a few special cases with an
SU(3)-invariant vacuum, which means C, =C, =0
(and correspondingly, $, = $, =0). With this con-
straint we obtain the same set of equations (38)-
(45). Equations (43) give

f.+ =f»+ =f»o~

E=X=1.

TABLE I. Predictions of the mixing angles and symmetry-breaking parameters
corresponding to different values of f~/f~.

1.0

fE,"X=—

-1.26 -1.9x10 ' 1.0000

—1.27 1.9x 10-2 1.0001 -0.09 -0.8x 10 4

0.32
(=18')

0.36
(=20 )

0.008 -0.0008

0.008 -0.0010

tansy

(~)

0.19
(=10.5')

0,10
(=6 )

0.008 -O.OOO5

0.009 -0.0002

-1.28 -2.0x10 ' 1.0003 -0.17 -2.6x10-4 0.010 -0.0011 0.010 0

1;28 -1.29 -2.0 x 10"2 1.0003 -0.22 -2.6x 10 0.010 -0.0012 0.011 0



A. No SU(2) Violation

First we wish to consider the case with no SU(2)
vsOEQI'sot)~ l.e.y

P =8=/=0 (n o 0),

m++ m+0 mg p

Using Eqs. (58} and (59}in Eqs. (46), (51}, and

(52), one obtains

gives K, =0 identically, since in this case we have
the GMO formula [Eq. (64)]. Thus our equations
do not require an abnormally high mass for the
X meson.

B. no-q Mixing

In principle we may study a very special situation
when mixing takes place only between m' and q.""
Thus, we set &u = / = 0 and find from Eq. (55)

pm„'
(W2+ o.)(m„' —m„')

Now replacing the factor Pm, '/(W2+n) from Eqs.
(38}by

K~= (Sm»'+ m, '- 4m»')
SW2(m 2-m 2)

(3m„'+ m„' —4 m»'),
SW2(m»'-m„2)

(m» -m»+ ),
Pm, ' 1

2+n WS

one obtains

1 Bggo PPlg+
2

mq -m,

(67)

(68)

mx K
(tan'(u), =—

(tan'&u) = -K,/K, .

(62a) This expression may be compared with the form

1 (m»0'-m„+')+(m„+'-m„o')
WS mn'-m. '

Combining Eqs. (61) and (62), we get the modified
forms of the GMO mass formula:

4m» —Sm —m —Ssln (d+ (m» —mg )
X

(63a)

4m»' —3m„'. -m, ' —3 sin'(u (m„'-m„') =0. (63b)

Equation (63b) has been obtained by several authors,
such as Dalitz and Sutherland, x and Oneda et al;av
working with different formalisms. Equation (63a}
is new and is related to the large solution of u.

In the absence of all mixings (i.e., &o is also
zero), both of the equations (63}give the well-
known mass relation

(64)

We must point out a major difference between
our calculation and the approach of Auvil and
Deshpande. " When the vacuum is SU(3)-symme-
tric and there is no mixing, these authors need
m»-~ for the consistency of their Eq. (8). How-
ever, in our case, the corresponding Eq. (41a)
[together with Eq. (50}], viz. ,

K,m»'—-A. sinu[-(W2 —n)sinar+W2o. '(costs)g, /g, ],

given by Okubo and Sakita" since, as we already
mentioned, in our approximation, m, +'- rn„o'= 0.

We may consider that ~0-g mixing receives con-
tributions from the electromagnetic interaction,
u, term and other effects, so that one can write
symbolically

0«,» = 0,~+ (9„„,~ + "other contributions. "

(VO)

If 8 given in Eq. (69) corresponds to 8„„,, then
using the Dashen sum rule, '4

(m„o'-m»+'+m +'-m 0'), =0,

e find 9 =0 It may be then concluded that ~0

mixing gets a significant contribution from the u,
term as given in Eq. (68).

Another interesting aspect of this special case
is that the SU(2}-breaking correction to the GMO
formula is obtained easily. Equations (43a) and
(44c) give f„,=f„/v 2 and combining this result with
Eqs. (38a) and (40a) we get

It is to be noted that when m, -0 in this equation,
n becomes -v 2, which is its value in the limit of
exact SU(2)3SU(2) symmetry. " Comparing Eqs.
(46) (for F= 1) with (V2), we get

is self-consistent, because when &u =0, Eq. (61b)

2(m»+'+m»0') —Sm„' —m, '= 0.

This formula was first given by Glashow, as

(V3)
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pointed out in Ref. 1.
7to-X Mixing

Similar to the case of Sec. VI B, we may con-
sider m -X mixing alone by setting co = 8= 0. Equa-
tion (56) then gives

~2 g, pm, '
g, (mx'-m, ') (74)

One may test that our equations are consistent
with this solution.

VII. SUMMARY OF THE RESULTS AND
DISCUSSIONS

In this paper we have outlined a general method
for determining the mixing effects of the pseudo-
scalar mesons on the basis of a kinematical ap-
proach. We have considered a symmetry-break-
ing Hamiltonian which transforms as the
(3, 3)$(3, 3) representation of the group
SU(3)I8ISU(3) and contains explicitly SU(3) and

SU(2) violations, the latter being manifested by the

u, term. With the further assumptions of maximal
smoothness behavior of three-point vertex func-
tions and meson dominance of certain commutators
between the vacuum and physical states, we need
to use only one input parameter fz/f„, the value of
f„, and the well-known masses of the pseudoscalar
particles to calculate the mixing angles and the
symmetry-breaking parameters.

In our model, we find two different solutions for
the rt-X mixing angle v, both for an SU(3)-invari-
ant and -noninvariant vacuum. In the case of an
SU(3)-symmetric vacuum, we have only one
choice, E= 1 [see Eq. (58)], which gives (a) &u= 19'
and (b) v= 10.5'. The second solution is exactly
the same as obtained from the quadratic mass
formula. It is interesting to point out. here that
Schulke' has also reported the existence of a
small and a large solution from a different point
of view. '0

When the vacuum is asymmetric, we have two
sets of solutions as functions of the parameter E.
In this case when E= 1, we have approximately the
same solution as obtained in the case of an invari-
ant vacuum (because E= 1 gives X~ 1 and t', = (,= 0}.
Our large solution is not sensitive to the variation

From Eq. (62) it follows that when T-O, K, van-
ishes as T'; consequently g,/g, in Eq. (57) van-
ishes when there is no q-X mixing. Thus from Eq.
(74) we predict

=0.

of E whereas the smaller solution decreases
rapidly as E increases (see Table I). A plausible
explanation may be given in the following way:
When E = 1, the contribution to ~ comes from a
alone [SU(3}breaking of the Hamiltonian]; when
Et I and consequently $, wO [SU(3) breaking of the
vacuum], the terms involving (, are found to con-
tribute in the same order as given by a alone.
The larger solutions are due to the additive effect
of these two comparable contribution's (ot and $,}
while the smaller ones are due to their difference.

Regarding the predictions of the w'-q and m'--X

mixing angles, 8 and Q, we notice a few important
points:

(a) For the general case, the magnitude and the
sign of 8 are in agreement with the value for
8=0.0105+0.0013 given by Dalitz and von Hippel. "
This value is reproduced in our calculation for
f,/f, = 1.2.

(b) In the special case when the vacuum is SU(3)-
invariant and q-X mixing is absent, we give a form
for 8 which corresponds to that obtained by the
diagonalization of the g-m mass matrix.

(c) In our theory, Q turns out to be much smaller
(e.g. , by a factor of 8-10 in Set I) than 8, as
expected due to the larger mass splitting between
the pair m'-X relative to m'-g. However, we are in
contradiction with Oneda et al ., "who predj. ct
8= 0.03, /=0. 03 or 8= -0.01, P=-0.04.

(d) Considering w'-X mixing alone in the case of
an invariant vacuum, we obtain the solution /=0.
The reason why we get different results for 8 and

Q in similar special situations is perhaps that they
are not treated on the same footing in an SU(3)
symmetry model.

Finally, we mention that when vacuum symmetry
is not broken, our model gives modified GMO mass
formulas including q-X mixing and SU(2) breaking
separately [see Eqs. (63} and (73)]. One of these
is the standard GMO relation [Eq. (63b)], which
corresponds to the small solution for ~ in our
case. The other [Eq. (63a}] is a new one and
corresponds to the large solution for co. In prin-
ciple, one must have such modifications in the
general case when vacuum symmetry is broken;
however, the forms of the mass relations are not
as simple as in the special case.
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K&3 form factors are derived in the hard-pion approach without using vector- or axia1-vec-
tor-meson dominance and with more general consideration of symmetry breaking. Elastic
unitarity is employed for the vector form factor. The ratio f (0)/f+(0) is expressed in terms
of the symmetry-breaking parameter, b =(0[u 8~ 0)/(0~ u 0[ 0). It is found that current algebra
can provide a satisfactory explanation for the decay parameters.

I. INTRODUCTION

The current-algebra approach towards hadron
physics has proved to be most fruitful. Applied to
the problem of K» decay there have been numerous
theoretical treatises since the work of Callan and
Treiman. ' However, a good deal remains to be
said on the subject because of the ill-defined nature
of symmetry breaking and the uncertainty in the
experimental data involved. Recently, the hard-

pion approach of Schnitzer, Weinberg, and Ger-
stein' has been used to derive an effective-range
formula for the pion form factor with the applica-
tion of the principles of unitarity. ' Also, the
symmetry-breaking argument of Gell-Mann, Oakes,
and Henner' has been challenged and extended. '
With this and the updated experimental numbers
in mind, we intend to review and formulate the
K» problem without using the vector-meson or
axial-vector-meson dominance approximation.


