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In order to gain insight into the problem of factorization of multi-Regge amplitudes, the
dual-resonance model is studied in detail. The full amplitude, as well as its total-energy
discontinuity, are shown to factorize in the multi-Regge limit, although this is by no means
a trivial consequence of the well-known factorization of a single generalized beta-function
term. Factorization is found to depend crucially upon taking into proper account the singu-
larities in energy variables which are dependent due to nonlinear Gram-determinant con-
straints. This result suggests how the apparent nonfactorization of the full multi-Regge ampli-
tude recently pointed out by Dash may be generally circumvented. An application of the fac-
torization of the total-energy discontinuity to the phenomenology of inclusive cross sections
is discussed.

I. INTRODUCTION

In order to gain some insight into the important question of whether or not multi-Regge amplitudes fac-
torize, we study here the dual-resonance model (DRM) in detail. It is well known that a single generalized
beta-function term factorizes in the multi-Regge limit. ' However, for reasons we will review below, fac-
torization of the full amplitude, which is a sum of such terms, by no means follows trivially from the fac-
torization of a single term. Nevertheless, we find that the full amplitude, as well as its discontinuity in
the total energy, do factorize in the multi-Regge limit.

In order to bring out the possible relevance of this result to the general problem of factorization of multi-
Regge amplitudes, let us review the issues involved. Consider the possibility of a generalization of the
"proof" of factorization for single-Reggeon exchange' which proceeds along the same lines. That is, one
first defines signatured amplitudes which allow a continuation of the partial-wave unitarity equation to com-
plex angular momentum and then uses this equation to prove factorization of the Regge residues and thus of
the signatured amplitude. The factorization of the full amplitude then follows directly, since it is asymptot-
ically related to the signatured amplitude by the simple multiplicative signature factor E =e ""+v., where
the signature ~ is +1. The generalization of signature and the treatment of the unitarity equation for many-
particle amplitudes certainly presents very formidable difficulties'which may never be overcome. In addi-
tion, Dash has recently pointed out that even if we assume that this has been accomplished and factorization
of the signatured amplitudes has been established, factorization of a single multi-Regge contribution to the
full amplitude may not follow. I et us discuss this last difficulty in more detail.

Suppose we have an expression for the full amplitude, A, „, in terms of generalized multi-Froissart-
Gribov amplitudes, ' A""'"'&-~:

A ~ f
2 n( Olt 1S'2't't n-2, tt -lt "It "2t '''t "n -1~ nit 2 1'1''tt ~n-2)

A t lt2 ' ' ' tel 1 fP (I lI 2 @142nn '( 1SOlt ~2212t ' 't ~n -1 n -2,n -lt "lt tnt '''t "n -lt «lt ~2t '''t ~n 2)

where 7, =+1, v; =+1, and

1p v] =I
LLi, ) =

In writing (1.1) we have used the usual complete set of Sn-4 BCP variables' (see Fig. 1), wlmre

1 ]Sj ]+1 ~(ftt it+it ml )
2S] y g y Ir tf 0 tf y COSCO' +Pl)

The remaining variables are dependent upon these either through linear relations (e.g. , s02, s„, etc. ) or
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Fig. 1. Definition of the BCP variables. Fig. 2. Diagrammatical representation of Eq. (1.1).

through nonlinear relations (e.g. , s„, s»», s,»„etc.). A useful mnemonic for the sum over v, in (1.1) is
shown in Fig. 2. The presence of a cross indicates a twist of the diagram about the crossed line. Each
twist changes all the incoming (outgoing) lines to its right to outgoing (incoming). Asymptotically, this has
the effect of changing the signs of the energy variables which span the twist (e.g. , s„, sn„s,», s»», etc
in the term multiplied by 7,}

We have motivated the expression (1.1) as a plausible generalization of the expression for n= 2. However,
it may be that such an expression is valid, at least in the multi-Regge asymptotic region, even in the
absence of a generalization of signature to production amplitudes. Some further comments about this pos-
sibility are made in Sec. III. Therefore, the problem of the relationship between the factorization of the
individual terms in (1.1) and that of the sum discussed here may be of relevance even if it is not possible to
generalize all the other steps of the proof of factorization for n =2.

The signatured amplitudes A,"~"„"'n-' are assumed to have only right-hand singularities and to be real
for s, ;„&0and ~, &0 (or, equivalently, s, , ; „,&0). It thus appears plausible that the phases of the
contributions to (1.1) for various v, can be determined by continuation of the appropriate s; „,and s;, ;;„,
to positive values using the +is prescription. 4' The contribution to the full amplitude of a multi-Regge-
pole contribution to the signatured amplitude can then be readily obtained. Thus, suppose the signatured
amplitude has the factorized asymptotic behavior'

~2 n (sOlt s»t '''t sn -2, n -It tlt '''t "n 1t lt '"t -n 2}-
-p(t, )r( n,)(-s,) p-(t„t„s,)r(-,)(-s»)" p(t„t„,) . r(-n„,)(- „,„,)"-p(t„,),

(1.3)

where o.; = (to, }. If the residues p(t„ t„„v;)have no 'cuts in 2„Eq. (1.3) leads to a factorized contribution
to (1.1) since the sum over v, merely generates the product of the signature factors (; = e ""t+7', ; thus,

A „-R(t,)[r(-nt, )~,s„']R(t,t„~,)[r(-nt, )(,s»"jR(t„t„~,) . [r( a„,)(„,s„-,„," 'jR(t„,), -

(1.4)

where in this case R = p. However, if there are cuts in II.„Dash showed that factorization of the full ampli-
tude will not generally obtain, since a given ~, will in some terms be continued to above its cut and in other
terms to below its cut.

We believe the study of the DRM in Sec. II suggests the solution to this difficulty. A single generalized
beta-function term can be regarded as a model for the signatured amplitude since it has only right-hand
singularities in the energy variables (s„, s», s»„s»», etc.). For negative values of the energy variables
it indeed has the behavior (1.3). However, the continuation to positive values is not properly obtained by the
simple prescription given above. When the singularities in variables dependent by virtue of the nonlinear
constraints (related to the four-dimensionality of space-time) are properly taken into account, we find that
the multi-Regge-pole contribution to the signatured amplitude does not factorize for every individual term
in the sum over v; in (1.1), but the full amplitude does factorize. ' Thus, as will be discussed further in Sec.
III, we believe the key to the consistency between the factorization of the multi-Regge-pole residues and
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K, -(E', K
the factorization of the full amplitude lies in the
proper treatment of the cuts in nonlinearly depen-
dent variables. '

We also show in Sec. II that in the DRM the total-
energy discontinuity of the amplitude also factorizes
in the multi-Regge limit"':

(Xy cfa

ft(t ) 1( +1) (t t z) 1( 1)

S -an 1 ~-j
x D(t„ t„' z, ) ", '"

)
R(t„g) .n„,+ I

(1.5)

This result is particularly interesting since it
shows that the DRM is consistent with the result
of multi-Regge or multiperipheral models for
b, ,A, „. Factorization of b, , A, „ in such mod-
els is expected to follow from the Fredholm nature
of the integral equations involved. This factoriza-
tion may well be a general result which again does

Fig. 4. Terms contributing to A.2

not follow trivially from the factorization of (1.3).
The factorization of discontinuities of Regge-

behaved amplitudes is also of interest in the pheno-
menology of inclusive cross sections. As one
example, by a trivial generalization of Mueller's
recent analysis for single-particle production, "
one sees that the inclusive cross section for the
production of n —2 particles in the "uncorrelated
pionization" region is given by the total-energy
discontinuity of a multi-Regge amplitude like that
of Fig. 1 but with two particles at each internal
vertex. Thus, the factorization of such a multi-
Regge amplitude has a direct experimental conse-
quence.

For the DRM this factorization follows directly
from the results of Sec. II." Asymptotically, the
amplitude with two particles at each vertex can be
shown to be an integral over the amplitude with
one particle at each vertex":

1 i 1
A„„- dz,z, ' '(1-z,)-»-'

~ dz, z, " '(1-z,)» ' . dz„,z„, '-&-'(l-z„,}-&o-&-'
0 0 0

A, „(so&& ~ ..
& s„, „„'t„..., t„„'«,/z, (1 —z,), K&/z&(l —z&)»... K„&/z„&(1—z„,}),

where P; and y, are certain Regge trajectories. Hence, factorization in the DRM follows from (1.5) with"
I

D(t, & t), ~&' z() dz(z) & (1 —z() ~& 'D(t;& t(+~& «(/z((1 —z()} .
0

H. DUAL-RESONANCE MODEL

After reviewing the calculation of the two-Reggeon vertex function from the 2- 3 amplitude, "we prove
factorization of the 2-4 amplitude. This result is then generalized in a straightforward manner to prove



J. H. WEIS

factorization of the 2- n amplitude.
As noted in Sec. I, the generalized beta function can be regarded as a model for the signatured amplitude.

Indeed, the full amplitude is given in terms of the individual beta-function terms which contribute in the
multi-Regge Omit considered" by an expression of the form (1.1) (see also Fig. 2). This expression is
given explicitly for the 2-3 amplitude in Fig. 3. We show in Fig. 3 the relative signs of the asymptotic
energies in the various terms W. . e also show the phase of s, as determined' from Eq. (1.2) and the +i»
prescription for the energies, s;&...2=(-s,&...2)e "when s,&...„&0. Thus, for example, for the first term
we find

Ol 12 Ol 12 ( ) t 2s s (-s )e "(-s )e-"
so12 ( so12)e

whereas for the last term

» 12 ( s )elw s t»
8 8

1 ( ) -1 1 1

The generalized beta function also has multi-Regge behavior corresponding to (1.3}for the signatured
amplitude. We find, using the usual exponentiation substitution in the Bardakci-Ruegg form, ' "

B,(s()„s121so2) ( sol) '(-s12) ' t dyldy2y ' y2
' exp -yl-y2+

~0 0 K~

=-(-s„)"1(-s„)2V(n„n„~,).
Using p(tl) =1 (determined from the 2 2 amplitude), we obtain the two-Reggeon residue,

p(t„t„„s,) =[I (-n, )I"(-n„,)] '
V( n„n„„ 11).

(2.1)

(2.2)

The full amplitude is written in the factorised form (1.4) in order to def2'ne the two-Reggeon vertex func-
tion

&(tg, tg„,'s, ) =4; 'Cg„, '[I"(-n,)1'(-n„,)] '[e '""1V(a„a„„K,+t»)e " 1'1+7,V(n„a„„s,+i»)e ""11

+8 1 V(nll ng~ll Kl +2»)Tl~l +Ty'(Valnlg~ 11 Kl —$»)Tl~l]. (2.3)

We will find it convenient to rewrite (2.3) using the following expression for V:
eo C(y

V(nl, ay+11 Kg+2») =I (-ng) dyy ~+1 1 — e
0

=I'(-n ) dyy "~+1 ' 1 —— e '+e"'"JI'(-n ) dyy &+1 ' ——1 e '
0 Ky K ~ Kg

= I'( nl )[fl(nl i ay+la &~) + e ~12(ay 1 ay+1 1 sg)l ~

where I, and I3 are real for II.
&

~ 0. Therefore, we have

ft(t„t„„s,) =[~„,r( n„,)] '[e *'-"~ 1(1,+e""v,)+~„,(f, +7,I,)]
=[(l„i'(-nj„)] '[5)„1 (1'+""e"e'"+~lr„,)&.],

(2.4)

(2.5)

(2.6)

where we have used v&' =1.
The total-energy discontinuity of A2 2 comes only from the first term in Fig. 3 [or Eq. (2.3)], since only

this term has singularities in s„=s»2. From (1.2) we see that asymptotically the cut in s, represents these
singularities. Hence"

tXy tXp

(2.7)

where

D(t„t,„„s,) =e ' "&e * '"&+ll'(n, +'1)I'(n„, +1)&„,V(n&, nj„,'s, )

e+12 cye 1 w (xg+1F(n + 1}I (2.8)

From (2.4) and (2.8) we see that (2.7) has no poles for integral values of n, and n, as expected.
We now turn to the proof of factorization of the 2- 4 amplitude. The eight terms contributing in the triple-



FACTORIZATION OF MULTI-REGGE AMPLITUDES 1781

Regge limit are shown in Fig. 4." The usual exponentiation substitution gives the asymptotic behavior

40 e oo goo

+6( 01t s»t »& 0»s»8& ab) (») (») ( 23) d$1dg2d$3 g1 P2
+0 ~0 0

+012 &123 +0123X eXP -P1-$2-$3 + 3 13 '2 3 23 3 ~1~2Y3
+01+12 +12+23 ™0112 23

(2 9)

where n, ~...„=s,~...„+a,~..., . It is useful to derive a formula analogous to (2.4) by doing the integral over

y, and making the change of variables

y, -y, (1 -y, /~, )

where

0 40 K1 —$3 K2 K2

-=(-so,)"~(-s») (-s„)"Sr(-n,)I'"(n„n„ n„ g„ y„ y), (2.10)

0123 +23

+012+123
(2.11)

In the triple-Regge limit, P =1, as a consequence of the nonlinear Gram-determinant conditions on the
invariants. 's For P =1, clearly (2.10) factorizes' into the product of two double-Regge residues [see Eq.
(2.4}]. However, since (2.10) has a cut in p we must be careful to specify the phase of P. Indeed, two of
the terms in Fig. 4 have P =e""'. We discuss the interpretation of this phase below.

To obtain the asymptotic behavior of B, in the general case, we must study the continuation of the factors

c
~y [I-(ys/~a}4] "'

I
K~ [1 —ym/Kg] K2

(2.12)

as the appropriate energy variables are continued into their right-half planes from their left-half planes
where (2.9) and (2.10) are initially defined. We see that the sub-brackets in the first factor of (2.12}, and
thus P, only have an effect when y, & a, and also y, & z, . We show the phase of (2.12) in Fig. 5 for P =e"'"'
where it factorizes into separate functions of y, and y, . Comparing with Eqs. (2.4) and (2.5) we see thatI' can be expressed as

I"'(n„n„n„(-~,)e'"" (-~,)e'"" y)

=I,(1)I,(2) + e '"&""21,(1)I,(2) + e '"~'~iI, (1)1,(2) + e '"~"~&e '"2'~my "i12(1)1,(2),

(2.12)

where I;(1) is shorthand for I,(n„n„' v, ) and I,(2) is shorthand for I,(n„n„' z,).
%e now group the eight contributions to A2 4 into pairs of successive terms in Fig. 4 and express them

using (2.12) and r, =1:

A, ,-[i'(-n, )),s„~&]s»~2s»~pe '"~'e '""~[I,(1)I,(2)+e""21,(1)I,(2)+e'""'I,(I)I,(2)+e"~'e""'I,(l)I,(2)]

+v', e '" 3[1~(1)I,(2)+e' 21~(1)13(2)+r,12(1)I,(2)+v,e'" 312(l)12(2)]

+ e ""2T,[1,(1)I,(2) +e""21,(1)1,(2) +e™~~I,(l}I,(2) +v,e"" 2(11)I,(2)]

+erne, [I,(1}I,(2) +e '" &I~(l)12(2) +v,12(l)I~(2) +e'""'e ' 212(1)12(2)]].

(2.14)

Grouping the terms in (2.14) again by pairs, we find using r,' = 1,

A, ,-[i'(-n, )),s»"&] s» &s»"3([$,1,(I)+(e""~e ""2+v,T,)1,(1)]e ""~[I,(2)+e'""&I,(2)]

[+~It,(1) (e+'" ~e ' "3+v,v~}12(1)]v~[1,(2)+v~12(2)]]. (2.15)

Comparing with (2.6), we see that (2.15) has the factorized form (1.4) as asserted Factoriz. ation would not
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have been obtained if we had not taken into account the phase of P.
The cuts in rr„rr„and Q in (2.10) are asymptotic representations of the poles in s,», s»„and s,», = s„.

In particular, the poles in s„are represented exclusiveIy by the cut in P, since, when only the phase of
s„changes, only the phase of P changes and conversely. Thus, the correct phase of P means we are. taking
the asymptotic limit with the proper +i s relationship to the cut in s„. For example, taking rjr = 1 in the
third-to-last and last terms in Fig. 4 wouM correspond to taking s, l, -+~ —i~ in A2 4 as far as these two
terms are concerned. Therefore, the essential ingredient in the proof of factorization is the correct rela-
tionship of the asymptotic limit to the cut representing the singularities in s„, a variable which indeed
does not even occur in the BCP set due to the nonlinear constraint (2.11).

From the above discussion; wre see that the tot@1-energy Nscontinuity of A, 4 is given by the discontinuity
in P of the first term fn Fig. 4. From (2.10) and (2.13) we easily obtain

1,-so, 's„"'s„"e""s ""'
( )

I,(I)f,(

(2.16)

which factori, zes as asserted.
We now prove factorization for arbitrary multi-Regge amplitudes by induction, using the proof of factor-

ization of A, , as a guide. We follow steps analogous to those leading to (2.14) and (2.15) in order to show
that the amplitude with n Reggeon exchanges factorizes into the two-Reggeon vertex and the amplitude for
(n-1) Reggeon exchanges.

The usual exponentiatkoa; substitution gives the asymptotic behavior

rro p oo p 00

&...-(-s»)"'(-s )"'"(-s.r.)"" " dyrdy2 "dy.yr "' '»-"-'"y. "" '
0 ~0 +0

0!@I'xexp -y —y —~ ~ ~ -y + y y +- ~ ~ +
01 12

&n-2 n-r n . . . ~ I)n 0'' ~ nyn-1yn+ ' +&
n-2, n-1+n- I, n +01+12 +n- 1, n

yn ~

(2.17)

The generalization of (2.10) is obtained by integrating over y, and making successive changes of variables
on y„y„up to yn, in order to rexpove the n dependence from the expeeential:

&„„-(-s»)"r(-s») ' .(-s„, „)""F(-nr}
OC'

dy dy ~ ~ ~ dy y2 2 y 3 ~ ~ ~ y n e 2 "3 "'""nX 1X2 2' 'X
"0' "0 0

where X, is defined recursively by

(2.18)

+l -1,..., l+ 1 1
&r =1 —

rr, "rrr
r yr„r~ ~

1
+l -1, ..., 1+2

, yr+2 -„, , (-

with

X 0n-2, ..., n
n-1 n '

+n-2, n-l™n-l,n

The nonlinear Gram-determinant conditions are numerous' in this case." We have

Qr, ..., r+r r-l, ..., r+r 10
(O~~-~ ) —1,N), ..., t el, l+1 nl -1,l 0'l, l+1 K

(2 19)

(2.20)

and thus the coefficient of each y„, in (2.19) is just rrr
' and X, =1 —y„r/rrr. Thus, with this naive applica-

tion of the conditfons (2.20), 88, clearly factorizes into the product of rr —1 double-Reggeon vertices How-.
ever, just as in the case of the 2-4 amplitude, we must be careful to take into account phases e"'" in

(2.20).
In order to study the phase of (2.18) we break each integration into two ranges, 0 &y„, & rrr and Kr + yr

With (2.19) and (2.20). the integral in (2.18) can be written. in a form, generalizing (2.IS):
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[(t)(1)I,. (1)][P(2)I, (2)] ~ ~ [Q(n —1)I;„,(n —1)] . (2.21)
=12 2

E

We must now determine each phase (t)(l) which arises from the bracket X,. Since for i}=1, 0&y„2 & g„we
see clearly from (2.19) that P(l) =1. For i, =2, we see from (2.19) that the phase will depend upon the
ranges of integration of the variables y, for j& l+1. If y&„~ z&, then the nested parentheses in (2.19) beyond

y~ have no effect. With this in mind. , it is not difficult to see that the phase of $(l) in the term

~ - I (l)I (l+1) I (j)I (j+1)
of (2.21) is determined by the phase of n}, &„/o(. . (o, ,

2(()=(- - - - — -'--"
)

'Q' Q
(2 22)' ~

l-~ f+~ ... ~+1,' ~-'~ I+~ .~ [+1

lt is easy to see using the +ie prescription that (!}(l)=e"'"2 unless the lth Reggeon is twisted. If the lth
Reggeon is twisted, (!}(l)=e' ' '}, where n is the number of twisted Reggeons from l+1 up to and including
j+1. We summarize these results pictorially in Fig. 6. It is important to note that the phase (t)(l) does
not depend on the ranges of integration of variables to the left or on tourists in nonadjacent Reggeons to the
left.

We are now in a position to carry out the calculation analogous to that leading to (2.14) and (2.15):

A2-))+2 F( Q2)SO2 '822 ' ' ' Sn-2, n

x e '" ~e '""2 Iy 1 Iy 2 +e" 2I, 1 I, 2 +e" &I, 3.'I, 2 +e" ~e""'I, 1 I, 2 ~ ~ ~

+T2e " ' I (1)I2(2)+e'"~'I,(1)I,(2)+e""2I,(1)I2(2)+ „.e'" 2I,(1)I,(2) [ ~ ]1

I 'lf 0!2 fmn2
+ e " 2 v, I,(1)I,( )+;„~, I,(1)I,(2) + e" 'I, (1)I,(2) +e""',, I,(1)I,(2) [ ]

es 1f c2 -I n'n f urn

ee,e, . 1,(1}1,(2)+,, ( )l,(2))+e2" '1,(1)l,(2)~,. .. 1,(1)1,(2} .( ~ ~ ~ ]I (2.23)

We have suppressed the I, (l) for /& 2, since these affect the phases above only through the number of twists
contained among the I, in the sense of Fig. 6(c). Where this affects (2.23) we have shown the phase for an
even (odd) number by the upper (lower) term in:a bracket. ln (2.23) we show only one choice for the remain-
ing I,(l) and twists; the sum over aQ choices is to be imagined.

Grouping the terms in (2.23) pairwise, we arrive at expressions analogous to (2.14) and then (2.15):
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Ag ~»+1 [F( Dl)$1S01 jS12 RS28 ' ' ' S»

~ j%'Cf

Ij &Ij 2 +8 I~1Ip 2 +8 ~II &I~2 + e' "2I21I22

(2.24)

&jfte2
I Q2 $~2 S23 3 ''S~

~ ~
ff 3 I~ 2[ + I 2 (2.25)

In (2.25) we have been able to factor out a signatured propagator and a two-Reggeon vertex function (2.6).
The remaining bracket is the 2- n amplitude:

A, „-r(-a,)s„' s," s„, „ Ie ""'[l,(2)+e' t(R")][,:I+v, l(R) ~ (,, +)l, (2) [ ]I

This completes the general proof of factorization by induction.
Factorization of the total-energy discontinuity follows easily from (2.21). From (2.19) and (2.22) we see

that s„=s, „only enters in X, and only has an effect for all p„,~ z, . %e obtain

(2.25)

which has the form (1.5) as asserted.

III. MSCU8 SION

The calculations in the DRM of Sec. II have shown

that factorization of the full amplitude and its total-
energy discontinuity depends crucially on the
proper treatment of the cuts in variables dependent

by virtue of the nonlinear constraints. It may ap-
pear to the reader that these constraints were
treated rather cavalierly in Sec. II in that we ef-
fectively treated all the variables in B„as indepen-

dent, i.e. , treated the dimension of space-time as
greater than four. However, this was only a con-
venience for the sake of discussion and not a neces-
sity. Our loose description of specifying the phase
of the dependent variables as if they were indepen-

dent is just a shorthand way of describing where

the limit is to be taken in relation to the cuts in the

independent variables which arise from the normal
thresholds in the dependent variables through

(2.20). This is illustrated by an example in Fig. 7.
Thus, what is important is where the asymptotic
limit is taken in relation to the cuts due to the nor-
mal thresholds in these dependent variables. %e
therefore expect that in a general proof of factori-
zation, it will be crucial to distinguish'between
various contributions to the singularities in the in-
dependent set of variables according to their origin
from singularities in the dependent variables, and

in the separate terms of (1.1) take different limits

Correct Limit

S)p

Incorrect Limit ($ = t)

Correct Limit

(
-2W()

S12 due to thresholds ~n f2 and sea for
(a) B, (sof sf2 s23 sof2 sf23 s j, ) and (k)) 88(—sof sf2
—sof2, -sf23, s,~). For visual clarity the cuts have been
displaced slightly from the real axis.
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in relation to these singularities as illustrated in Fig. V.

Let us speculate briefly on one possible mechanism by which factorimation could be generally true which
is suggested by the above discussion. We first suppose that a decomposition of the form (1.1) can be made
in which A.'21'2„'"'n-1 contains asymptotically only right-hand cuts corresponding to cuts in the variables
s, ,„„,In other words the right-hand singularities in variables corresponding to nonadjacent lines in

Fig. 1 (which are linearly dependent on the above set) are "flopped over" in forming the "signatured" ampli-
tude when necessary. As already noted, the DRM indeed incorporates the expansion (1.1) and this property
of the signatured amplitude. It appears that other known models of Regge behavior —the ladder model in
perturbation theory, Gribov's Reggeon calculus, ' and the van Hove-Durand model —also naturally give an
expansion of the form (1.1) with the above property for the signatured amplitudes T.hus, for reasons not
yet understood, (1.1) might be true in the multi-Regge asymptotic region even if signature cannot be gen-
eralized to production processes.

Factorization may then be derivable if the various contributions to the cuts in the independent variables
are properly taken into account as described above. To distinguish between the origin of these various con-
tributions, it may be useful to write a Laplace- (or Fourier-) transform expression which exhibits the
left-half-plane analyticity assumed for the signatured amplitude":

AT1T2 '''Tn 1 — ~ ~ ~2~n
0 0

zol de-2, n-l zo» z0 ... , n-lf(zolt "'t zo, ... , n-lt lt "'t n-l}
40

p(+01 01 Zn-2, n-1 n-2, n-1 +012 012 + ZO, ~ ~ ~, n-1 0,n-1} ' (3 1)

With the changes of variables

yl —X01(-S01}t...tyn-1 Xn-2, n-l(-Sn-2, n-l} t

X012 X0123
x0, ~ ~ ~, n-1

1=
X X

y" y 12=
X X X

'" y 1,",n-2= X01X12'''Xn-2 n-1 '
01 12 01 12 23 2

we obtain

"-'=(-&.) (-2») '"(-s-2 -) 'I) jdzl dzl

f'l 5-1
g Ll 2 1/ 0ylt '" t & sn-2, n-lt yn-lt zlt ' "tzl, ..., n-2t tlt "'t tn-11

S012 n-1 S0 ~ . n-1xexp -y, -y2 —~ ~ ~ -y + zyy + ~ ~ + -1n ' ""~" 1 z y ~ ~ ~ y
01 12 01 12 n-2, n-l

(3.3)

where g is related to f in an obvious way. A sufficient condition for Regge behavior of the signatured am-
plitude would be

H 01} yl) t( n-2, n-l} y1] n tl'(zlt '''t zl, ..., n-2t tlt '''t tn-1} (3 3)

for s01 s 2 1 ~ with the assumption that the limit could be taken inside the integral. Factorization
would then follow, if, for example,

f(zlt tlt t2) ' ' 'f (zn 2t t„2t tn 1)5(z» —zlz2)5(Z23 —z2z3) ' ' ' 5(zl . n-2 zl zn-2}

Combining the conjectural expressions (3.3} to (3.4), we have

A)~2 "' ~n-1 ( 2 )tttl(- S )nt2 ~ ~ ~ (-S ) ttn-1

(3 4)

X ~ ~ ~

4O 40 40
dz, dz, dz„,f(z„' t„t, )f(z„t„t, ) f(z„„'t„„t„,)

oo OO

40 +0 ~0

x exp -y, -y, —~ ~ ~ -y„,+ z, y,y, + ~ ~ ~ +(-1}"S012 n S0

S01S12 S01S12 Sn
Z, Zn-2 yly2' 'yn-1

(3.5)
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Comparing with (2.17) we see that (3.5) is an integral over the DRM result and

If the integrations over zj in (3.5) introduce no further singularities in z&, then the arguments of Sec. II are
sufficient to prove factorization as before.

We have not attempted to prove the validity of a representation like (3.5) or (3.1) in models other than the
DRM. However, it is at least plausible, since it has been shown (with some reasonable additional assump-
tions) for n=3 in the ladder, Gribov, and van Hove-Durand models by Drummond etal. ' Factorimation of
the full amplitude in the Qribov model has in fact been shown by Campbell, ' but the relationship of his
derivation to the preceding arguments is not obvious. Finally, we note that in writing (3.1) and applying
the results of the preceding discussion, we have essentially taken into account only normal threshold singu-
larities. It may (or may not) be that only such singularities are important in tlie multi-Regge asymptotic
limit in the physical region.

In conclusion, we believe the results of the DRM calculation provide some source of optimism for the
validity of factorization of multi-Regge amplitudes and also suggest some directions for further work on
the problem.
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We investigate possible second-order radiative corrections to the axial-vector divergence
anomaly in spirior electrodynamics. Our procedure is to directly evaluate the shift terms
which lead to the anomaly in zero-fermion-mass, Landau-gauge electrodynamics. This
version of electrodynamics is chosen because it makes the electron propagator and vertex
function finite, so that no infinite renormalizations need be dealt with in the anomaly calcu-
lation. We find that the second-order corrections to the anomaly do vanish, in agreement
with the work of Adler and Bardeen and with calculations (by different methods) of other
authors.

I. INTRODUCTION AND SUMMARY but rather obeys the modified equation

Ward-identity anomalies have been a subject of
considerable theoretical interest during the past
few years. ' The simplest example of an anomaly
arises from the axial- vector-vector-vector
(A-V-V) triangle graph in spinor electrodynamics,
illustrated in Fig. 1. When this diagram is calcu-
lated in a manner which preserves vector-current
conservation, its axial-vector divergence does not
have the expected, naive canonical value. The de-
viation from the expected value (the so-called
anomaly) is compactly summarized by the state-
ment that the axial-vector current in spinor elec-
trodynamics does not satisfy the usual divergence
equation

s~ jsg(x) =2im, j'(x),
where

j', (x) = y(x) y, y, y(x), j'(x) = y(x) y, y(x),

j~(x) = 2im

with I'"' the electromagnetic field-strength tensor
Equation (2) has a direct analog in the o model,
where one finds that the usual PCAC (partially
conserved axial-vector current) equations for the
neutral axial-vector octet currents also have
anomalous electromagnetic modifications propor-
tional to Ft"F"e„,„„aresult which implies re-
markable low-energy theorems for the decays
z -2y and q-2y. ' More complicated examples
of anomalies arise from box and pentagon dia-
grams, ' and they in turn lead to low-energy theo-
rems for such processes as the colliding-beam
reaction y+y-3m. ' Clearly, the significance of
the low-energy theorems derived from anomalies
depends greatly on whether the coefficient of the
anomalous term i.s given just by the contribution
of the relevant lowest-order ring diagram [e.g. ,


