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We investigate the suggestion that the internal SL(2,C) invariance of the generalized Vira-
soro model is in fact related to the same SL(2,C) group which generates Lorentz transforma-
tions on the external momenta. We use fields which transform according to the representa-
tions of the homogeneous Lorentz group and derive the zn-point Virasoro model.

I. INTRODUCTION

Some time ago Domokos et al.! obtained the
Veneziano model from a consideration of the scat-
tering amplitude in terms of representations of the
Lorentz group. Although some clarification and
justification of the concepts and methods in that
paper would be welcome, its main theme is very
suggestive. The authors make the important point
that the internal group of invariance in dual models
may not be independent from Lorentz transforma-
tions which affect the momenta and spins of exter-
nal particles.

If indeed the internal symmetry group(s) of dual-
resonance models can be reinterpreted as the
Lorentz group of space-time transformations, new
avenues might be opened for the understanding of
the duality concept, as well as for the construction
of physical models and the classification of their
spectrum.

In this paper we do not discuss the implications
of this idea. Instead, we give an example for the
construction of a dual model, through the use of
irreducible representations of the homogeneous
Lorentz group, in such a way that the internal
SL(2, C) symmetry group is simultaneously iden-

tified with the Lorentz transformations of the ex-
ternal momenta.

We use a somewhat unconventional formalism
for the Lorentz group which is briefly presented
in the Appendix, the full details of which are
given in a separate paper? Using fields which
transform in a definite way under the Lorentz
transformations we construct a dual vertex, which
has the same form as the conventional vertex, with
the exception of an important property. That is,
under a Lorentz transformation ot the momentum
and the internal integration variable get changed.
Moreover, taking fields which transform according
to the supplementary series of the Lorentz group
and then going to the limit of integer points, we
find that the vertex also transforms like a repre-
sentation. Using these facts we construct a dual
model in the conventional way® which gives the
Virasoro-Shapiro* model.

II. THE DUAL-RESONANCE MODEL AND THE
LORENTZ GROUP
We would like to realize the dual-resonance mod-

el by using representations of the Lorentz group
in such a way that the SL(2, C) transformations of
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the Koba-Nielsen variables are identified with the
simultaneous Lorentz transformations of the ex-
ternal momenta.

Our notation for the representations of the
Lorentz group is explained in the Appendix, so we
urge the reader to study it before proceeding
further.

We work with the supplementary series of the
Lorentz group for which

2j,=2j,=p-1=€, -2<e<0, 1)

where p is also given in the Appendix as p=j, +jf
+1, We will be interested in the limit € =0, which

takes us to one of the integer -point representations.

We denote the states as |e,z), and define the
operator -valued functions (see Appendix)

oL (2)=(p"|€,2), n=0,1,2,3. (2)

We demand that ¢% (z ) transform under Lorentz
transformations like the direct product of two
representations, namely,

D)0 A)= gt (EE2 ) ez vl
)

It is due to the extra A ™! that we will be able to
unify the transformations of the momenta and the
z variables. A, is the 4X4 representation of the
Lorentz transformation defined by the matrix

ab )
cd
We also define the Hermitian conjugate of ¢£(z),

ot @)=((p" e, N, (4)
and demand that the following commutation relation
be satisfied:

[96(2), 0¢ (2] =G (2", 2)8"" . (5)
That is, the right-hand side of Eq. (5) is the prod-
uct of the metrics of the two representations.
G.(2’,z) is defined in the Appendix, Eq. (A17), and
is given as
I'(-€)

Ge(zlaz)=<€’z’|Gl€’z> =m

l2" —z|<. (6)

We use the metric g"” =(~1,1,1,1). Notice that as
€ approaches zero, G.(z’,z) diverges:

Ge(z’,z)e—:0 %[1+2€1n|z’—z|+0(€2)]. (7)

We can also define the field Q" (z) = ¢"(2) + ¢" T(2)
"which obeys the commutation relation

[Q(2),Q¢(z")]=0. ®8)

The infinitesimal form of Eq. (3), gives the com-
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mutators

(572, o(a)]= ~280 () +5% (2,5 ) 921,
(9a)

where the differential operators J*8(z,8/82) are
given in Refs. 2 and 5. They will not be used ex-
plicitly in what follows. ZJ} is given as

Deb=-ilglel -g5gl). (9b)

The generators of the Lorentz group which satisfy
Egs. (3) and (9) can be written in terms of ¢%(z)
and c;b'é*(z) as follows:

J“B=fd2zd"’z'¢2*(z)[=f:‘“(z,z')],,vcpz(z'), (10)
where
[JSB(Z,Z')]H,,=Eﬁ‘3(e,z’|G"’|e,z)
—8y, (€, 2" | TG €,2) . (11)

The matrix elements of J**G™ can be evaluated
by introducing 1=Jd?z|z){z]| and using the fact
that J*® on |2) are differential operators given in
Refs. 2 and 5. We do not do it here, since it will
not be needed explicitly in this paper.

Equations (2)—(11) could also be realized in terms
of an infinite number of harmonic oscillators as
in previous works?® Although it is not necessary
to introduce an infinite number of degrees of
freedom we wish to present it here in order to
make contact with other formalisms in the litera-
ture. This is done by introducing a complete set
of states which characterize a representation of
the Lorentz group

2 ny(n| =1. (12)

The states |n) could be chosen as the canonical
representation of the Lorentz group |€,jm), where
j(j +1) is the eigenvalue of J*=angular momentum
squared, and m is the eigenvalue of J,. A different
set for |n) could be the set |e,m,n), where m,n
are eigenvalues of X, and X;r (the operators X; are
introduced in the Appendix). Using Eq. (12) we
rewrite Eq. (2) as

pk(2)=(¢"|€,2) =§)<¢"In><nle,2) , (13)
and then identify the harmonic-oscillator operator

ab=(¢"|ny . (14)
Similarly,

PE()T = (¢ e, 2N =T ahT(nle, )" (15)
Thus, writing "

[a), a2 ]=8" 8 » (16)
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we get

[p¥(2), % T(2")] =3 (nle, 2 (nl e, 2) g

=(le,)) |e,2) g
=(e,2' |Gle,2) g
=Ge(zlyz)g“u’ (17)

which is the same as Eq. (5).
The generators J*® could also be written in terms
of @ and a! " as follows:

JB=2al " (T*®)yp ymat,, (18)
where
(Jaﬁ)un,um=25‘55m—g,m<n|JaB|m>~ (19)

(n|J*¥|m) can be evaluated according to the com-
plete set of states chosen.

We would like to mention that the set | ) contains
a state (e.g.,j=0 and m=0 in the case of canonical
basis) for which (z|€, 2) diverges like € /% as €
approaches zero; therefore, ¢*(z) also diverges
like €~1/2, This is also obvious from Egs. (5) and
(7) (compare also with Clavelli and Ramond®). This
infinity will be canceled by a zero when we build
our dual model, and take the limit properly. In
what follows we will not use the formalism in
terms of an infinite number of harmonic oscillators
since it is not necessary. We will only need Egs.
2)=(7.

To obtain a dual model we construct a vertex in
the standard way. We do not have a particular
reason for choosing this vertex except for the fact
that it is similar to the one that has “worked” in

the literature. Our vertex will have an important
additional property, namely, the momentum will
transform simultaneously with the Koba-Nielsen
variable under an SL(2,C) transformation. We
define the vertex as

Ve(k,z)=exp[iVTk- ¢l (z.)] expli Vak- ¢ (z_)]e**/2¢

(20a)
=:exp[ivT Q. (2)- k] ceh/2¢ , (20b)
—exp[iV7 Q. (2) %], (20c)

where z,=z+ € and @!(z) has been defined in Eq.
(8). The reason for the point splitting (z,) is to
have well-defined unambiguous limits as we let

€~ 0. Notice that as €~ 0, z2,~2z_-z simultaneous-
ly with the representation approaching the integer
point. The factor e*?/2¢ also is necessary to obtain
a well -defined amplitude. By using Eq. (5) and

e?e® =eBe#e#2) when [A,B] is a ¢ number, we can
verify that when z,=2_=2 (or as €~ 0),

[I/E(k19zl)"/é(k2)zz)]=0: (21)

unlike the vertices used so far in the literature.
This commutation property is also obvious from
Egs. (8) and (20c). Due to this property the dual
model we construct will be completely symmetric
rather than just cyclically symmetric. [We re-
mark that even in the SU(1,1) case of Ref. 3, if
one starts with the principal series rather than
the analytic representations of SU(1,1), then Eq.
(21) will be true also in that case.]

Under a Lorentz transformation the vertex trans-
forms as follows:

UMV (k,2)UT(A)=exp[iVTk! - ¢ (2) | cz, +d 2] expl iV k- ¢ (2.) | cz_ +d |2€] e**/2¢ (22)

where
_az+b

Ru=Ay b, 2 =d

(23)

We see that the vertex does not transform like a representation unless € =0. To take the limit ¢ - 0 we

rewrite the right-hand side of Eq. (22) as

expliVk' - ¢l (2, )| cz, +d|?€ = 1) expli VR - Pl(z4)]

xexpiVak' - ¢ (2. )| cz_+d|?¢ —1)] expliVTk’ - ¢>€(z’_)]e"2/2€

and then commute the second and third terms to obtain

expliVak’ - ¢l (z4)(| ez, +d|*€ =1)] exp[iVak’ « ¢, (22)(| cz_+d|? —1)]

xexp(nk’G, (24,2 )| cz_+d |? = 1)V, (k,2").

Now taking the limit € — 0 and remembering that ¢, diverges like €~'/2 and G, like (-me)™ [Eq. (7)], we

obtain

lim UV, (k,2)UN(A) = | cz +d| 2 Lim V, (&', 2").

€0 €-0

(24)

Thus as €~ 0 the vertex transforms like a field in the representation 2j, =2j, = =K?. Notice that as prom-
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ised the momentum and the z variable change simultaneously under a Lorentz transformation.
~ The amplitude will be constructed in the standard way by calculating the vacuum expectation value of a
string of these vertices. Defining the vacuum as ¢,(z) |0) =0, it is a trivial exercise to evaluate

n
(0| Ve(ky,2,)Ve(ky,25) Ve by ,2,)10) =TT expl =nk; « &, Ge (2, 2,)] ¥/ %€ . (25)

i<j

In the limit of e~ 0, we use momentum conservation i k; =0, then the right-hand side of Eq. (25)

becomes

n
IT |z, — 2, [k,
i<j

(26)

To form an invariant we must multiply by a kernel and integrate over an invariant volume element. Equa-

tion (24) tells us what the kernel should be, namely,

2
R(AJ)I‘I |Z¢ =%+ Ik s

where R(x;) is an invariant function of the z; and therefore depends only on the cross ratios of quadruples

of z;; that is, if I=(¢,j,m,n), then

N _Ry =2, zl'—zll
1= .
Zl—Zm Z,‘ "zn

In this paper R will be taken equal to 1, but special forms of R may lead to different dual models.

The invariant volume element is

2 2 ceo 2
d®z,d%z, ¢+ d%z,

av(z)= dw)™
|21_22|z|22_23|z,“ Z,.-21|2( )7,
where

dw= d’z,d%z, d*z,

IZa_‘zblzlZl;_zclzl‘g(:_‘zal2 ’

Z4, 2,, and z, are any three of the » variables z,+++z,.

volume element.
Thus the amplitude becomes

We need to divide by dw to avoid an infinite

Aky, ... k) =£i_{x(1)<0 f(dw)"I‘Idzzi] z; - ziﬂl"z'2 Vel(ky, 25) (0 > (27
n

=f(dw)'1 (Hdzzi |z; —z,ﬂl”z'z)r[ |z, =z, %k, (28)
i i<j

It is interesting to notice the symmetry and in-
variance properties of this model when k%= q,=2.
Under any permutation of the momenta not labeled
by a, b, and c the amplitude is invariant, because
we can freely change and rename the z variables
and commute vertices [Eq. (21)]. If the permuta-
tion involves any or all the indices a, b, and c,
then we can always apply an SL(2, C) transformation
to remap the variables so that z,, z, and z, will
be associated with 2,, %,, and k., respectively,
and we can rename the other variables and commute
vertices freely. However, in this case when we
apply the SL(2, C) transformation we have to
transform the momenta also. Therefore, supposing
we had made some permutation (p), we have

A(kply kpz: kps, MR kpn)=A(ki; ké: ceey krll) ’ (29)

I

where k} are the transformed momenta. However,
because of the commutation relation of Eq. (5) all
momenta occur in the final form of the amplitude
as Lorentz scalars. Hence, we can write

A(kﬁlakPZ’ e :kﬁn)=A(kiyk£,' .- ’k:n)
=A(ky, by, ..., k). (30)

Thus the invariance of the amplitude under any
permutation is equivalent to its invariance under
any Lorentz transformation. The factorization of
this model has been studied by Yoshimura® and
Del Giudice and DiVecchia.”

III. CONCLUSION

We have constructed a model in which duality is
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closely connected to the Lorentz group of space-
time transformations. In fact, in this model the
internal invariance group associated with duality
appears to be nothing but the homogeneous Lorentz
group [Eq. (30)]. Although this does not explain
duality ‘it may give us a clue as to its meaning.

The methods used in this paper may be useful
for the construction of new dual models. The
interpretation of the SL(2, C) group of duality
transformations as the Lorentz group of space-
time transformations will hopefully lead to re-
strictions in the construction of models with spin
and be useful for the analysis of the spectrum of
dual models.
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APPENDIX: UNITARY REPRESENTATIONS OF
THE LORENTZ GROUP

We present a short summary of the so-called
z basis,® in a new formalism which simplifies and
clarifies the treatment of the unitary representa-
tions of the Lorentz group. The details of this
formalism are given elsewhere?

We label the states in the z basis by the two
Casimir operators of the Lorentz group which
have eigenvalues j,(j,+1) and j,(j, +1) and the Z
and Z operators which have complex eigenvalues
z and z*. We denote these states by ljlj2 z), such
that

{CI! Cz,Z,Z},jlj22>
={1(j1+1), 4o(Gn+1), 2,2*}H 3,5, 2) .
(A1)

The Z and Z operators are given in terms of the
generators of the Lorentz group as follows. Let
J*8 be the generators of Lorentz transformations;
then the rotation generators J; and boost genera-
tors K; are given as

(Jl’J2>J3)= (JZS)J:u)le) ’

(A2)
(KI’KZ, Ka) = (Jlo; Jzo, JSO) .
For a unitary representation, J; and K; are
Hermitian. From these we define the non-
Hermitian operators
X=4J+ikK), X'=4JF-iR), (A3)

which satisfy

[x,,x]]=0,
[Xi ’Xj]=i€iJka ’ (A4)
[XI,X,T]=2'€,”X,I )

and the Casimir operators are given as

-

§°X=j1(j!+1)’ (A5a)
X" =jy(jy +1),

JFGE+1) =554, +1). (A5b)
In Eq. (A5b) if j§¥ = —j, ~1 we are in the principal
series; if j, =jf =j, we are in the supplementary
series or integer points. Then Z and Z are given
within a representation (j,,j,) as
Z=(j;+1+X,)(X, +iX,)™,

(A6)
Z=(—jp = 1+XHx] -ix])™.

They satisfy
[Z;Z]=07 [Z’X1+iX2]=1, [Z,XI—iX;]=—1,

(AT)
so that on functions of Z and Z, f(Z,Z), the oper-
ators X, +iX, and Xf - zXzT act as differentials
-8/8Z and 9/9Z, respectively.

Under an SL(2, C) transformation defined by the
2X2 complex matrix

_-i&-s/a_(ab > _
A=e (c d) (ad-bc=1), (A8)
Z and Z transform as

aZ +b
cZ+d’
a*Z +b*
c*Z + d*’

vtz =
(A9)

vT(AZun) =

where U(A)=exp[-ia-X -ia*-X'].
We also find that Z is related to the Hermitian
conjugate of Z as follows:

zt=6"zc, Z'=G¢"zG, (A10)
where
G=G"=(x,+iX,)* (x] -ix])*, (A11)

with p=j4,+j¥ +1=j%+j,+1. The Hermitian and
positive -definite operator G will be interpreted
as a metric operator in Hilbert space.

We define covariant and contravarviant states as
follows:

Covariant ket state,

UA)|7,7,2) =(cz+d)?1(c*z* +d*)?2

. .az+b
e rq)

(A12)
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Contravariant bra state,

(Grd2 2| UT(A)

.. az+b
=(cz +d)™17%(c*z* +d*) ™2 <]1]2 cz+d |”
(A13)
They form a complete, orthogonal set,
(G1da% ld1dn2') =6 (2 =2"),
(A14)

fdzz |j1sz> (j1ja? [=1.

We remark that the ket and bra states transform
differently, and because of the labeling of the
states by non-Hermitian operators the bra state
is nof related to the ket state by Hermitian con-
jugation. This is an unfamiliar situation in physics.
The extension of the Dirac bra and ket formalism
through the distinction of covariant and contra-
variant states related by a metric operator will be
found in Ref. 2. We find that the contravariant
bra states are related to the covariant ket states
through Hermitian conjugation plus the metric
operator G introduced in Eqgs. (A10)—(A11),
Grdez| =153, 201672, (A152)
while the contravariant kets (covariant bras) are
obtained from covariant kets (contravariant bras)
through the application of G™ (G):

G 41d22) =(ydaz)', Girdazl 6= (513N
' (A15b)

Here ((j,j, 2| )T is defined as a contravariant ket
state and ([j,j,2))" is defined as a covariant bra
state. They transform according to (—j¥ —1, —j¥
-1) and (j§,j¥), respectively, as obtained from
Eqs. (A12) and (A13) by Hermitian conjugation®
(The notation for these states is somewhat different
in Ref. 2, and the reader who tries to compare
them should not be confused at this point.) It can
be shown that the application of G to the states is
equivalent to the application of the integral opera-
tor

(j1jazl=(lj1g22N) G
=fd2uG",,,2(z,u)(lj1]'z )’
(315220 =(G1dn 2] G (A16)
=fd2uG,1,2(z,u)(j,j2u|,
where the integration is over all the complex

plane, i.e., if u=x+iy, d2u=dxdy, or d®u=4idu du*.
Then

BARS AND
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G5, (&, 0)=(4,7, 2| Gljydp )
Gy 1@ u)=Cirga 2167y ) (A17)
=:—&—ig lz —u |22,

52(3 -z') =f d’u Gfllz (2 ’u)G_lfliz(u’Z') .

For p=integer, these have well -defined limits in
the sense of distributions as discussed in Ref. 2.
Thus the metric G turns out to be the same as the
intertwining operator introduced by Gelfand et al’
except for the slightly different coefficients of
T functions. Using these, we can rewrite the
completeness relation (A14) in the following new
forms:

1 =fd231d222 lj1j2 31>G-!/112(21: Zz)(lj1j2 ZQ)T

=fd2z3dzzq (<j1jzzsl )T G.llfz (24,24)(d1Jr 24| «
(A18)

Now consider a bra vector {f| with contravariant-
basis bra vectors and covariant “components”
f(z), and similarly a ket vector |g) with contra-
variant-basis ket vectors and covariant “com-
ponents” g*(z).

(fl= f GrjpzlF(2)d%

(A19a)
l8) = [ Cirinz)) (@)%
These are in analogy to f'=3}, e™f, and §
=), me"gk in the discrete case. The “components”
are given by

f(z)=<f|j1jzz> ’
g4(2)=j17. 2N &) =Cglj,jn 2)*,

and they transform according to (j,,j,) and (j¥,j¥),
respectively. A Hilbert space can be constructed
in the space of these functions, with the following
scalar product obtained from (A18):

(A19b)

(f,g)=<f'g> =fdzzldzzzf(z1)G—ljljz(znzz)g*(zz)
(A20)
in analogy with
'f'T '§=EeT" .er" gfn=zfncnmg;
in the discrete case.

Since G™! is positive-definite [Eq. (A11)], this
is a unified positive-definite scalar product for all
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the unitary representations of the Lorentz group,
namely, the principal series, the supplementary
series, and the integer-points cases. As discussed
in Ref. 2 it reduces in each case to the special
forms given by Gelfand et al®

(1) Principal series (p=0):
(f,8)= [ d*2f@)g*(@).
(2) Supplementary series (0< |p|< 1):
(1,)= S8 [ d2,8%2,1() |2~ 2] #2r(2a).
(3) Integer points (p=n=1,2,3,...):
(7,8)= (17 [ a2z 7™ (@)g* (o).

(4) Integer points (p=n=-1,-2,...):

21-(-( 1,2) _[dzz d’z,f(z,)

X lzl ‘zzl an-2 lnlzx ‘zzlg*(zz) ’

(f,8)=

where
£ (@)= o)
9z" 9z*" )

For the integer cases 3 and 4 we must restrict
ourselves to subspaces of functions which come
out naturally in our formalism and which are iden-
tical to the ones found by Gelfand et al’

In case 4 we must restrict ourselves to the sub-
set of functions which satisfy

(A21)

fz”z*’ f(z)d%z=0,

for k,1 <-p-1, when p=-1, -2,.

In this paper we are mainly concerned with case
3. Similarly to case 4, in order to avoid a degen-
erate scalar product we must restrict ourselves to
a subspace of functions such that for p=# the nth
derivatives of the functions do not vanish, f™"(z)
#0. Then all polynomials of the form

n-1

P@)= T a2 2*! (A22)
R 1=0
should be excluded. Note that for p=#x the set of
such polynomials (E,) forms an invariant subset
under Lorentz transformations, thus forming a
nonunitary finite-dimensional representation. The
subspace of functions which form an infinite -di-
mensional unitary representation for p=n=1,2,...
is the set of functions obtained from homogeneous
functions and defined up to a polynomial in E,
(see Gelfand, Graev, and Vilenkin®). We denote
this set by F,. Thus, if f(z)EF, and p(z)€ E,,
then [f(z) +p(z)]€F,. Let us denote the part of

f(2) which c~ontributes to the scalar product in
case 3 as f(z). Then we can write

f(z)= f} y, 2 2% (A23)
and
f@2)=F(z)+p(2), (A24)

where p(z) is any polynomial in E,. From the way
it is defined, the only part which is “important”
in f(2) is obviously f(z). Under a Lorentz trans-
formation for which a function g(z) transforms
like

Tr-18(z)=(glU)|2) = | cz +d|2”'2g(‘c%%>

(A25)

p(2) goes into another polynomial, but f(z) does not
transform into a function of the form (A23). There-
fore, to extract the “important” part of T -1 Vi ()
we must subtract a polynomial. In other words,
the set of functions of the form f(z) as in (A23) is
not an invariant set, and an additional “gauge”
transformation (subtracting a polynomial) is need-
ed to make it invariant. This is in analogy lto the
case of the transverse electromagnetic potential
A:' which is covariant only with an additional gauge
transformation. Thus, in the case of the integer-
point representations, it is possible to choose a
gauge, just as we do in electrodynamics. If we
choose the “gauge” such that we extract only f(z)
out of f(2z), then, as described above, we will

need an additional gauge transformation to obtain

a covariant f(z). Instead, we could choose the
“gauge” as follows.

Each term in Eq. (A22) is a linearly independent
polynomial which is annihilated by the metric G™
at integer points p=1,2,...

fp(z’)b["'"](z’ —2)d% =pmM(z)=0.  (A26)
Thus for 2j,+1=2j,+1=p=n, there are n*=(2j,+1)
X(2j,+1) linearly independent polynomials which
satisfy Eq. (A26). Using these polynomials we
can choose the gauge so that we can write f(z)€ F,
as

n=1

f(2)=k21302k *,(Pkt(z)

where each ¢,; can be written in the form

(A27)

Gu= 2o (0%, 2 "2 %",
m,n=0
Under a Lorentz transformation the form of f(z)
in (A27) will remain invariant, if the functions
¢r; transform into each other and acquire no extra
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factors of (cz +d) and (c*z* +d*). In particular let
us consider the case of the (j, =3%,7,=3) or the
p=2 representation. This is the vector represen-
tation and plays an important role in this paper.
We can write

(flp=2; z) =f(2)
=22%¢11(2) +2% P 14(2) + 291 (2) + Po(2)
(A28)

s () o) (1)

Applying a Lorentz transformation we get
Tp-1f(2)=(f|UA)|2)
=(cz +d)(c*z* +d*) f(z"), (A30)

or

where

az +b

-
cz+d’

Using Eq. (A29) we can rewrite Eq. (A30) as

st ! (G S 6 ()

(A31)

This is because

() e

Therefore, to describe the (3, 3) representation we
could just as well use the functions ¢,,(z) by speci-
fying their Lorentz transformation as

(Ta-1¢4;)2) = (A, ¢ps (YA, . (A32)

Notice that we can write

@38 i::EZD:%(Z)l +5+9(2), (A33)

where ¢; are the usual 2X2 Pauli matrices. Then
from Eq. (A32) we obtain the transformation prop-
erties of ¢,(2)=(¢o(2), ¢(2)), namely,

Ta-s 6,(2)= (o, ( E25), (A34)
where A, is the 4 X4 representation of the Lorentz
transformation. Thus, the functions ¢,(z) describe
the unitary integer-point representation (3, 3) and
transform like the direct product of two represen-
tations, namely, the finite-dimensional (%, 5) rep-
resentation and the infinite-dimensional unitary
representation j,=5,=0, or p=1.

We can consider the functions ¢,(z) as limiting
functions of the supplementary series as p—1,
and then can write

¢, (2)=lim{p,lp,2) . (A35)
p-1

These are the functions which will be considered
as operators in the text to construct a dual model.
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