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By use of light-cone commutators, corrected versions of six infinite-momentum sum rules
are derived. The light-cone commutators are given by bilocal operators whose matrix ele-
ments are shown to be Fourier transforms of deep-inelastic-scattering structure functions.
A modification of the Beg sum rule is found, and a sum rule for the axial-vector coupling
constant in terms of a nucleon (spin-flip) structure function is presented. The latter is
related to an old result of Bjorken. We deal with the full spin-dependent forward Compton
amplitude and discuss in detail the form-factor decomposition of the bilocal operators which
give the fermion-quark-model light-cone commutators. The model dependence of the pres-
ent results is discussed, and boson-model commutators are given for comparison,

I. INTRODUCTION

It has now become possible to give a plausible
,model for the commutator of currents restricted
to a lightlike surface. "This model is obtained by
quantizing a quantum theory on such a surface, ' in
complete analogy with the conventional derivation
of equal-time commutators. This scheme provides
an elegant formulation of Bjorken scaling in deep-
inelastic electron scattering, ' and summarizes in
a compact fashion the various deep-inelastic sum
rules. '

In order to provide alternate tests of the hypoth-
esis, we examine in this paper the consequences
that the present ideas have for the fixed-mass
sum rules of conventional current algebra —the
most famous of these being due to Dashen, Fubini,
and Gell-Mann. ' The usual derivation of such sum
rules makes use of the P- ~ technique, which in-
volves an interchange of limit with integral. ' This
operation is not in general justified, and results
have been obtained which are not verified in free-
field theory. A viewpoint which is frequently pro-
posed is that according to Regge lore the integrals
which occur in the bad relations diverge, and
therefore, one should not be surprised that non-
sense emerges from manipulations of infinities.

We feel however that this is not an adequate res-
olution of the problem. Three reasons may be
advanced. (l) A divergent sum rule should not
be inconsistent. It should be a statement of the
fact that the matrix element of some commutator
diverges, as a consequence of a physically sen-
sible growth of cross sections. The vacuum
Schwinger-term sum rule, which involves an inte-
gral over the total lepton annihilation cross sec-
tion, is an example of a sensible, divergent sum
rule. ' (2) The Regge model, which indicates di-

vergences, is not the only model, while the sum
rules should be largely model-independent. In
particular the free-field model has convergent
integrals, yet the sum rules fail. (3) . Even if one
accepts the Begge ~odel, there exists a sum rule
due to Bdg' which should converge; yet it fails in
free-field theory. Moreover, numerical evaluation
of that relation indicates that it is not satisfied in
nature ~

Consequently we feel that the proper criticism
of the bad sum rules is not that they diverge, but
that they are imProPerly derived. On the other
hand, it has been known for some time that the
light cone is relevant to the fixed-mass sum rules. "
Since we now have a model for light-cone behavior
of commutators, we are in a position to derive the
relevant sum rules without invoking the p- ~ tech-
nique. To the extent that the present results differ
from the p-~ results, we see that the light-cone
methods axe not equivalent to p- ~ methods.

This paper is organized as follows. In Sec. II,
we set up our conventions and define the kinematics.
Section III is devoted to a summary of the P- ~
sum rules; while in Sec. IV we rederive the re-
sults with our light-cone commutators. Correc-
tions are found to many relations. The corrections
involve matrix elements of bilocal operators, and
can be expressed in terms of deep-inelastic scal-
ing functions, which in principle are measurable.
Specifically, we present a modified version of the
Bdg sum rule, 'with contributions from deep-in-
elastic cross sections. In Sec. V we discuss how
all the bilocal operators occurring in light-cone
commutators can be measured. We show that a
certain bilocal operator has matrix elements
which coincide, in the local limit with the matrix
elements of the vector current. We also derive a
sum rule for g~ in terms of the deep-inelastic
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cross sections. Concluding remarks, which stress
the relevance of our results to the question of sub-
tractions in dispersion relations, comprise Sec.
VI. Also, we discuss the model dependence of our
light-cone eommutators and of our results.

In Appendix A we investigate the constraints that
conventional Regge ideas impose on the high-ener-

gy behavior of the various functions which we dis-
cuss. In Appendix B we demonstrate explicitly,
with several examples, how the infinite-momen-
tum frame fails to provide the proper formula for
the light-cone commutator. In Appendix C, we

present an alternative scheme of light-cone cur-
rent commutators, based on a boson theory, rather
than on the fermion theory which is used in the
text. Finally, in Appendix D (added in proof) we

discuss the reliability of our final results. We find
that the present techniques improve upon the p- ~
methods in that fixed poles with polynomial resi-
dues are now properly handled. However, if there
are poles with nonpolynomial residues, then the
light-cone method seems to fail; as of course, so
does the p-~ technique.

II. PRELIMINARIES

The object with which we shall concern ourselves is the diagonal matrix element of the commutator of
two vector currents between fermion states with momentum p:

C,",'(P, q)
-=d'xe""(P~[V,"(x), V,"(0)j(P). (2.1)

The vector current V, is conserved, since we shall restrict our considerations to electromagnetic and

isospin currents. The state is characterized by a spin vector s =u(P)iy" y'u(P). This vector is orthogonal
to P and transforms as an axial vector. Its form is s"=(s', s):

s'=p n,
A

ps =mn+ p.E+m
(2.2)

Here n is an arbitrary unit vector specifying the rest-frame spin direction n= (o'), P'= -s'=m .
With the three available vectors p, q, and s, the following seven parity-conserving tensor amplitudes,

transverse to q, can be constructed (v=P q):

A~~' = -g"'+ q" q'/q',

A, '= pvp" (v/q')(p q'+ p" q")+g"'v'/q',

At,"'=e"' es qe,

A,"'= q ~ se"' p q8,

A"' = q'E"' s p8 + q & q~s pg —q ~ qqs&8

A", '=(p" q' —vq') ""e'q, ps&
—(p"q'- vq')e"' q,s ps

A"'= (p" q' - vq") e"'" q,s.p8+ (p'q' vq') e" q,s~p-s.

Time-inversion invariance eliminates A,"', while A,""through A," are not independent:

—vA"'+A4'+A,"'= 0,

(v'-m'q )A~a vAu +Au 0

For our purposes it is convenient to eliminate A,""and A,"'. Therefore, we are left with

C"„"(p,q) =A~I,"W'I, +A,"'W; +iA,"'W; +iA""W'

(2.3a)

', 2.3b)

(2.3c)

(2.3d)

(2.3e)

(2.3f)

(2.3g)

(2.4a)

(2.4b)

(2.5)

The invariants are functions of q' and v. We shall decompose them into parts symmetric in ab, denoted

by (ab), and parts antisymmetric in ab, denoted by [abj:

grid )—grIit~~ + jgrtit~~ j—g 2 3 4

Crossing now implies that

(2.6)

W (q', v) =-W;" (q', —v), i=L, 2, 3

w,'"'(q', )=+w&"&( ', — ),

(2.7a)

(2.7b)
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and the opposite symmetry obtains for the invariants which are antisymmetric in a and b. It can be veri-
fied that the invariants occurring on the right-hand side of (2.6) are real.

Since the current has dimension three, and our states are covariantly normalized, the following func-
tions are dimensionless: 8"~', vR"', vS",', and v'8" . Hence, these objects approach a limit, as v- ~
with fixed -q'/2v=((). In the present context this is not a hypothesis, but a conse(luence of our use of the
light-cone commutators. In the pre-asymptotic region, we shall frequently consider the above functions
to depend on (u and q'. In that case W~' will be denoted by -(I/2(u)P~ ((u, q'}, and the others by F;"(ar, q').
In the scaling limit, the E;(e, q') become E(((()), i = I., 2, 3, 4. It is easy to see that the F; vanish for

In a Regge model one expects the following leading large- v behavior at fixed q':
~(.b)

]

m"'"- v"~-' Wt"~- P '
2 0 2

~(ab) 5y -1 ~ t'ab] 5p-1 (2.8

g (ab) v&y-2 g t:~bl
7

(2.8a)

(2.8b)

(2.8d)

where e~ and n~ are the Pomeranchon and p-meson trajectories and o~ and o.z are, respectively, the
leading odd- and even-signature trajectories of proper 6 parity. The absence of candidates for a~ and az
will indicate convergence of three of the sum rules investigated below. The absence of a leading p con-
tribution to W,

' + vW'~' is the familiar reason for the convergence of the Beg sum rule. "The Regge con-
tent of C„' and its relation to the s- and t-channel helieity amplitudes is discussed in Appendix A.

The Compton amplitude, whose imaginary part is proportional to (2.1}, is the following:

T'.","(), i)) = ifd'x e"*((I)* (('." (x))",(O)) lp)

Au'T"'+Au To&+&Au T +fAu T~ +&f (uI/q )I' (gu v Pu(f P qu)i (2.9a)

(2.9b)

(2.10)

(2.11a)

The invariant functions T;" may be represented by a dispersion relation of the form
ab( 2 gE

Tau( u
) t d, i(q)v) u(0

$ v —v

where there may, of course, be subtractions.
The one-nucleon (Born) contribution to W' is the foQowing:

WI &vq d b.& [2FuFu+Fu'(I + q't'4~')K~(q'+ 2v} —&(q' —2v)l

4ivq f („X,[2-FEF„+E„'(I+q'/4m')][5(q'+2v)+8(q' —2v)],

W =vd. )„z,[Es' —( q' /4m) F„'][5( q' +2v) —5(q' —2v)]+iaaf„,X,[Fs' —( q' /4 m) E„'][5( q' +2v)+5(q' —2v)],

W = ,'xd. („X,[Fu'+E—uF„(I+q'/4m') + E'( q/4 m)][5(q'+2v) —5(q' —2v)]

+ ,'ivf ~X,[Es'+Es—E„(I+q'/4rrP)+ E'( /q4m)][5( 'q2+v)+ 5(q' —2v)], (2.1lc)
W4' = ,'vd. („A,(I/m'-)(EsE„+E„')[5(q'+ 2 v) + 5(q' —2 v)]+ ~i vf.(„X,(1/m')(FsF„+ F„')[5(q'+2 v) —t)(q' —2v)].

(2.11d)

~uFs(q') + (f/2m)ou "q.Fu(q')
The free-field values for 8",' are obtained from the above by setting Il ~ = 1 and Il „=0.

%e conclude this section by recording various cross sections. The cross sections for inelastic lepton-
nueleon scattering are given in terms of the invariant functions 8'; by

d o() n E' 1—,[-2q'W~(q', v) + (2E'+ 2E"+ q')m'W, (q', v)]dgdE' 4g mE q'
a'E' 1+
2 E ,[(E+E'cos8)W, (q'—,v)+m(E+E')(E — 'Ecos) 8W( 'q, v)].

(2.12)

(2.13)

Here Es and E„are the electric and magnetic form factors and are functions of q' such that Es(0) = 1 and
E„(0)= anomalous magnetic moment; i.e., the photon-fermion vertex is
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E and E' are, respectively, the initial and final lepton, energies, as viewed in the laboratory frame, and 0
is the lepton scattering angle. do ' is the cross section when the spins of the lepton and nucleon are par-
allel (+) or antiparallel (-) and along the direction of the incident lepton. The lepton mass is neglected.

III. INFINITE-MOMENTUM DERIVATION OF SUM RULES

We summarize the P- ~ sum rules which emerge from the Og components of (2.1). Some of these results
are mell-known; others presumably have been recorded in the literature. We collect them here for easy
refere )ce. Equation (2.1) and the usual current algebra imply

dq'C, ", P, q =i &,P I', . (3.1a)

We have assumed that the Schwinger term is a c number. Throughout this section we set p q=0. A
change of variable q' = v/P' is now performed:

dp pic ~

j)
—OC00(P) q) =if,00P I', .

In (3.1b) we first set n=0, and obtain from (2.3) and (2.5)

(3.1b)

f oo ~2dp»$'~" q', v + 1 —,, 8,' q, v =,b,I'„q = ——q ~ (3.2a)

Because of (2.7), only the antisymmetric part in ab contributes in (3.2a). Letting P- ~, we are left with
the Dashen- Fubini-Gell-Mann result'

tO OO

dv Wqi"~(q', v) =f„,I'„q' ~0.
77~0

Differentiating with respect to q' and setting q'=0 reduces this to the Cabibbo-Radicati sum rule. "
Next we take n=i in (3.1b):

1 4V 0~—,C,",(P, q) =if, P'I;
7T o' ~ oo P

The 'integrand is given by

I

C,",(p, q) = q'q'W~'+ P'P' ——,(P'q' q'+P') W +ie"'s;q)W +ie' P;q, q sW', .

(3.2b)

(3.3)

(3.4)

Evidently the terms involving s must integrate to zero. Moreover, since e' s, q& and e""P,q, are indepen-
dent, we have

2

dv W;"(q, v) =0, q'= —,—q'
0

vq OO 0

dv v —,—0 q)W )0', )=0,
~ oo p'

2

0

(3 5)

(3.6)

Letting P- ~ in (3.5), we obtain from (2.7) the nontrivial result

dvWiq' i(q', v)=0, q ~0.
0

Now we extract information from (3.6). According to (2.2),

(3.7)

)qq OO

0
)

—mq q)W (0', )=0,

In the Pp- ~ limit, we are left with"
oo

dv vWi"~(q', v) = 0, q' & 0
o) 0

2

Pp
(3.8)

(3.9}

OO

dvW "(q', v)=0,
p

q' &0. (3.10)
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Finally we return to (3.3) and (3.4) and discuss the s-independent terms. Equating coefficients of q' and
P' yields

oo 2

% oo 2 3» W:(q, v)=~X.~I' q = —.-q.
2g 4v

Because of the symmetry properties in v, (3.11) is equivalent, in the P-~ limit, to.

dvvW, "(q', v)=0, q'«~0. (3.13)

To extract the consequences of (3.12), we substitute that relation for the right-hand side of (3.2a). Since
only W21"1 is present in (3.12), this operation yields, after some rearrangement,

OQ

dv —,W~I"~(q', v) =0, q'= —,—q'.

As P~ o ~e find

p OO

dvWI' 1(q2 v}=0 q «0.
Jo L

In Table I the sum rules are summarized. In the second column, they are rewritten in terms of the func-
tions P;(~, q') which possess a finite limit as -q'- ~. In the third column, we comment on the convergence
of these results in the Hegge model. Finally, in the last column, their validity in free-field theory is in-
dicated. The entry 0=0 indicates that in free-field theory, the invariant function vanishes.

Numerical evaluation is consistent for sum rule I, i.e., the Cabihbo-Radicati" relation appears to be
valid. '0 The Beg sum rule, 9 ryhich is the sum of II and III at q3 =0, is not verified. " We may also see that
V cannot be valid, since the scaling version of it, in the limit -q - ~, impbes

—Ei'"((o)= 0ding

0

This is in contradiction with the observed MIT-SLAC experiments. " {In a Regge model the left-hand side
diverges. )

IV. LIGHT-CONE DERIVATION OF SUM RULES

To give the light-cone analysis of the fixed-mass sum rules, ere first introduce the following notation
for coordinates (and all other tensor quantities): x'=(2)' '(x +x ), x =(-,')' '(x —x'). The "perpendicular"
direction x& vUll sometimes be denoted by x, S= I, 2. The Inetrlc tensor is g =g =1, g =g =0.
antisymmetric tensor is ~' "= ~", c"=I. To obtain a fixed-mass sum rule, we set q' to zero in the p, =+
component of (2.1}, and integrate over q:

—Jf dq C,;"(P,q) = t d'xie '~'"i P dx V', (x), Vf(0) p
~gQ q+ O

(4.1)

The subscript LC indicates the light-cone commutator, i.e., x'= 0 in the right-hand side of (4.1}.
We now assume that the light-cone commutator of f dx V,'(x) with V,"(0) can be computed from that of V', (x)
with Vg (0). This po111t will be further discussed ln Appendix D. Consequently (4.1) becomes

dq-c. ,"(p, q) = d'x, d -.-* '" &&IIV;(x), V."(0)]Ip),.2w ~l ~~ q+ o

Choosing n=+, the left-hand side of (4.1) becomes
oo r' oo

dq CV(P, q), = 2„' dq O'O'W2'(-qi', P'q -Pi q. )

Woo + eo

dvW (-q ', v)= dvWI' I(-q ', v). (4.3)

Therefore, without ever using the p ~ frame, me have arrived aE Ne integral xelevgnt to the Dashen-
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TABLE I. Fixed-mass sum rules as derived by the p ~ method.

Sum rule Scaling version
Regge-model
convergence

Free-field
validity

0

dv vW~'~~(q2, v) = 0

IV dv W(4'~~(q2 v) =0

dv vW&"&(q2 v) =0
4

p

I t d WI+~(q2 )=mfa I;
0

OO

duWP ~(q2 v) =0
4

p

i —F (co, q )
0

d—F '"
(cu, q )

(d
0

i
GEO p g

4

0

=7Tf~~c

0

0

0

0

—F~' j(cu)
dc'

Q) 2
0

„i
F(b~(cu)

dc'

0

„i
FI aha (~ )

M
0

d~F &4ffb~ (~)
0

(SM—2F('~& (&)

Yes

Yes

Yes

Yes

No

Yes

No

Yes (0=0)

Yes (0=0)

No

VI
re 00

dvW' {q v) =0
4

p

"idco-—F~~~~(co q2) = 0
~l

0

~F t:"~(~)d(d

0

No Yes (0=0)

Fubini-Gell-Mann' sum rule. However, this object is not equal to an equal-time commutator, but rather
to a light-cone commutator. " The P-infinity technique can now be understood as the attempt to convert
the light-cone commutator, occurring on the right-hand side of (4.1), to an equal-time commutator. This
point will be elaborated in Appendix B. Here we need not engage in this dubious procedure, if we have
a model for the light-cone commutator.

Before presenting the model, we take n= —in (4.1). The left-hand side becomes

+is"s;q, W (-q~', v)+i e"P;q~(q s' —q~ ~ s~-) W (-q~', v)

) oo t oo

dv[-W~z,")(-q~', v)+p'p W2i")(-q~', v)]+, , dv uW~3")(-q~', v)
'7T o 7Tqg & 0

gj~oo +w
I b)( )

P~'" I )(
4 p I

+ OO

ze P&q, s I (aS) ~ 2+, p~ q~ —,-q~ s~ t dvW, (-q~, v).
7TP P

(4 4)

We have used the symmetry properties of the W to decompose the final expression in (4.4). It is seen
that all the integrals occurring in Table I have reoccurred in (4.3) and (4.4).

To complete the derivation of the sum rules, we need to specify the light-cone commutator [V,', V",].
What can we say about it in a model-independent way? First, it is easy to show that for conse7 ved cur7 ents
the charge Q„conventionally given by an integral on a timelike surface Q, = fd x V,'(x), is identically equal

to an integral over a lightlike surface: Q, = fd' dxxV,'(x). From the assumed transformation properties
of V„we therefore deduce that

[V,'(x), V( )]yq cif„, V(x)5(x- —y )5'(x -y )+ a*S,",(xfy)+ 3",S,*', (xfy). (4.5)

The additional terms, which vanish upon integration over x and x~, are rather like the Schwinger terms
encountered in conventional equal-time calculations. Indeed, by taking vacuum expectation values, one

can prove that they must be present. ' They differ, however, in one important fashion from the structures
encountered previously: They need not be local in x- —y-, though of course they are local in x~ -yj. The
reason for this is that (x —y)'= 2(x- y)'(x —y) —(x —y)~' does not depend on x —y when x'=y', and

causality is insured merely by locality in the transverse components, with no restriction on the "minus"
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component. These objects are called bilocal operators.
Let us remark here that for the Dashen-Fubini-Gell-Mann' sum rule to be valid, there must be no trans-

verse gradients in [V,'(x), V,'(y)]~c." Such gradients would, according to (4.1) and (4.3), produce q~-depen-
dent corrections. Similarly it has been shown that EI,(v), as measured in the MIT-SLAC electroproduc-
tion experiments, "vanishes if and only if there are no "minus" gradients in this commutator. Of course
in question here is only the q-number portion of such objects. Also, since we are dealing with a diagonal
matrix element, no information about off-diagonal terms is present.

To specify the bilocal operators, we turn to a model field theory. By quantizing it on a null surface, 'we
can deduce light-cone commutators canonically. ' Two alternative theories may be considered: a fermion
theory or a boson theory In. both, the Dashen-Fubini-Gell-Mann' sum rule is valid, but in the latter F~(ur)
& 0. Hence we accept the former. In the Conclusion, Sec. VI, we discuss some questions concerning the
model dependence of these commutators. In Appendix C we present the boson theory.

The current commutators which emerge in the fermion (= quark) theory are the following':

[V,'(x), V,'(y)] „c= if„,V,'(x) 5(x —y-) 5'(x, —y, ) ——,'i a* 8' [S,;(x l y) ~(x —y-) 6'(x, —y, )], (4.6a)

[V,'(x), V, (y)]„ = if„,V, (x)5(x- —y ) 5'(x —y ) .

—2if„,{a"[e(x-—y-)6'(x, —y, )~, (xly)1

+ -', a",[e(x- —y-)6'(x, —y, )u'. (xly)] —-', a*,.e"[~(x- —y-) 6'(x, —y, )n, ,(xly)])

——,'id, ~(a* [e(x- —y-) 6'(x —yi)U, (x ly)l

+ -,'8;[e(x- —y-) 6'(x, -y, )i,'(x ly)] + -,'8",e"[e(x- —y-) 6'(x, -y, )ct,,(x ly)]]

~is(x- —y-)5'(x —y~)M„(xly) —Sis„(xly)e(x —y--)a, a'6'(x, —y, ). (4.6b)

These results were obtained in a quark model with a vector-gluon interaction and a symmetry-breaking
mass term. ' It is not hard to verify that they are also true when the gluons are spinless. In (4.6) all terms
except S„(xly) emerge with canonical manipulations; however, S„(xly) can be shown to have nonzero vac-
uum expectation value. The inability to compute it canonically is a reflection of the fact that the ordinary
Schwinger term is not evaluated canonically, and is related to the nonoccurrence of dimension-two fermion
operators in the theory We s.hall assume that S„is a c number; S„(xly) = 5,„S. This assumption, which
'is equivalent to setting Ez, (&u) = 0, is not true in perturbation theory. "

The term involving M„(xly) is present in (4.6b) only when the currents are not conserved, and need not
concern us any further. ' The remaining bilocal operators are defined as follows:

V."(x ly) = -'0(x) r "&.g(y),

Au (xly) = —,'ig(x)yuy'g tj(y)

(4.7a)

(4.7b)

These are bilocal non-Hermitian generalizations of the vector and axial-vector currents. We now extract
the Hermitian and anti-Hermitian parts, as these are the objects which occur in (4.6b):

~u(xly) =,Vu(xly)+ —,'V,'(ylx),
'Uu (x ly) =- (1/2i) V,"(x ly) —(1/2i) V,"(y lx),

~1u(xly) = l&.u(xly)+-'&.u(ylx),

a.,u (x ly) -=(I/2i)&u (x ly) —(I/»)&u (y lx)

(4.8a)

(4.8b)

(4.8c)

(4.8d)

It is clear that these enter (4.6b) with x'=y', x~=y~, x &y ~

The occurrence of the bilocal generalizations of the vector and axial-vector currents in the right-hand
side of (4.6b) may also be understood as follows. As x-- y-, the tip of the light cone is attained, and the
light-cone commutators approach equal-time commutators. " It is not hard to see that the requirement that
(4.6b) reproduce, in that limit, the appropriate equal-time commutator, requires that'U, (xlx)= V, (x). The
relevant equal-time commutator involves the space components, hence the bilocal operators of (4.6b) are
of the given form only in the quark model. Different model realizations of SU(3)&&SU(3) would lead to dif-
ferent bilocal operators. Furthermore, since the space-component equal-time algebra is not maintained
in perturbation theory, "we must expect that the light-cone commutators will have different bilocal struc-
tures, when perturbative calculations are performed. [Similar considerations about the light-cone com-
mutator of vector and axial-vector currents, show that 8.,(xlx) is the local axial-vector current. ]
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The sum rules may now be derived. From (4.1), (4.3), and (4.6a), we readily get

4p
dv Wf,"i(-q,', v) = vf.„r.. (4 9)

Thus the Dashen-Fubini-Gell-Mann' result has no corrections.
Similarly from (4.1), (4.4), and (4.6b), two relations are derived, by equating terms symmetric or anti-

symmetric in ab:.
p oo ij + 00

pJ qJ. g (ab) 2 i~ pig j S (ab) ~ 2, + dvvW, (-qi, v)+ + p2 qi —,—q2 si dvW, (-qi, v)
7Tqg p 4p 7TP P QQ

= ——,'d, «, q; dx e(x-)&pig,'(xylo) Q& —«d, 2,q; e'~ dx e(x )&pied, (xylo) [p&
OO x+=0: xi=0 z+ =Q; Pg =p-

OO 2

+ dv -Wi|' i(-qi', v)+ P'P + 2 Wf«' ~(-qi', v)
0 qj

(4.10a}
ij goo

7TP 4 p

= ff.,r.P 'f...q; - -dx e(x-)&P I &!(xlo) IP&
oo z+ =o' x =o

+-«'f.„q,e'& t . dx-e(x-)&pi a,,(xiO) y&
00 z+=p; x =0

(4.1Ob)

dx & p i 6,'(x io) Q & (4.11)
s=p; z+=0; x~=0

The expressions (4.10a) and (4.10b) simplify. We note that &pi'U,"(xylo) Q& and &pea,"(Xio) Q& are even in x,
while the same matrix elements of 'U',

"(xylo)

and a,

"(xylo)

are odd. This is seen by translation invariance and

the definitions (4.8). Also, (4.9) may be used in (4.10b). Therefore, instead of (4.10a) and (4.10b), we

have upon equating spin-dependent and spin-independent terms the following equalities:

pJ. 'qJ. (-qi, v) = zd, n,q-(ab) 2

7'~ p

~ p oo

+ dv Wf1"~(—qi', v) = ,f,~q;e"--
7FP 4 p 0

dx-&pia„(xiO) ip&
s=p; z+ =p ~ x

(4.12)

+ IO OO

LE Pigj ~ ~ S (ah) ~ 2
+ pi qi —,—qi si dv W«(-qi, v) = 2d, 2,q;

7rP P 40 4 Q

d.-&P i~i(xlO) IP&
s&0; z+ =0; xi=0

(4.13)

+
7TP 4 p

dv s;W,'"(-q, ', v) — ', vW«'"(-qi', v) 2f.«.q&e" dx (pl&;.(xlo) Ip&
0 s&0; z+ =0; +y =0

(4.14)

Here the subscripts s = 0 or s~0 denote, respectively, the spin-independent or the spin-dependent parts.
Finally we define the following real form factors:

& p iu,"

(xylo)

g &
= p" V,'(x', x p) + x2 V,'(x', x p), (4.15K)

&pie.,"(xylo) Q&=s'A,'(x2, x p)+p"x F2(x', x p)+x"x sÃ.'(x', x p). (4.15b)

T inversion eliminates a possible structure of the form e""82x„p2s2 in (4.15a). The sum rules now become

(for q' (0)

dv, Wi«' ~(q', v) = 2od, «, du V,'(0, n),
4 Q

0«OO

dv Wi' (q, v) =0,
4 p

(4.16)

(4.17)

4 Q

dv Wf2,"i(q', v) =0, (4.18)

4 p

dv vW«i" ~(q', v) = 2vf,«, du uk,'(0, u),
40

(4.19)

00 0

dv W«f' i(q, v) = 2mf, «,
i

dn7k,'(0, n)
"0 Q

(4.20)
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It is seen that three sum rules possess corrections. The corrections are expressible in terms of inte-
grals over matrix elements of the bilocal operators. In the next section we shall show that these matrix
elements are measurable, even when an integration is not performed. Here we merely demonstrate how
(4.16), (4.19), and (4.20) may be exploited.

Observe that the right-hand sides of (4.16), (4.19), and (4.20) are independent of q'. Let us rewrite the
left-hand sides in terms of the scaling functions (for q' «0) (see Table I):

t+ oo dv, W,""(q', v)=,E,'"'((o, q'),2 0 2 3 2

eo "'d(g)-
v Wean](qa~ v) = El[as](~~ q2)~

"p 0

~ Oo oo

dv vW "(q' v) = —E "(v q')
up

(4.21)

(4.22)

(4.23)

According to the sum rules, these integrals are q'-independent and may be evaluated by letting -q'- ~.
Hence we conclude (for q' «0)

Oo ' d
(4.24)

p

CO
dv W~f")(q', v) = —E ~f")(co),

0

QP
dv vW4(")(q', v) = —E4(' )(ur).

a Q

(4.25)

(4.26)

These then are the corrected versions of the previously improperly derived relations. We summarize them
in Table II.

The sum rule (4.24) has already been derived by an entirely different method, involving dispersion re-
lations, by Cornwall, Corrigan, and Norton. " The sum of (4.25) and (4.26) represents our modification
of the Bdg sum rule. ' The modifications (4.24), (4.25), and (4.26) ensure that all the sum rules are now
valid in the free-field model.

V. MEASURING BILOCAL OPERATORS

We demonstrate that the bilocal operators encountered in light-cone commutators are measured by the
deep-inelastic limits of the 8'&'. The present results are an obvious generalization of the investigation by
Cornwall and one of us (R. J.), ' where it was shown that the deep-inelastic structure functions measured in
the electroproduction experiments similarly determine the relevant bilocal operators. Two methods are
available. One may write a representation of fd'qe "*C,","(p, q) in position space, parametrized by the

TABLE II. Fixed-mass sum rules as derived from light-cone commutators.

pao

dv Wp"j(q2 v) =mf h. f'
"0

(co q)
4p

40
dv W)~~j(q2, v) =-,'~f,„Jt dnX,'(o, n) =

0

dvvW('~)(q2, v) =2nf, & t dnnA, (0, n)=
0

"'dcu-—PP~~(&u, q2)
CO

(i—&t"'(~,q')
ld

0

VI ]t dv W~f"~(q', v)
0

—0

ZV ,

'~ dv m&4~~~(q2, v)
"0

Woo 00

dv —2W(p )(q, v) = 27ld, h, dn V~(o, n)
a p 0

hi
dkuI '

(cu, q )
p

(ab)(„2M~@
4

0

dGO

J
E~'"j(u q 2)

0

4
p

des P' (co)

dN E(gy)( )
0

J
—EF (~)

f de
(d

0
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E (&u), and then pass to x'-0. Alternatively, the light-cone version of the BJL limit, which was dis-
cussed in Ref. 1, may be used. Since the former method was previously employed in Ref. I, we now, for
variety, use the latter. The technique is more tedious than the position-space approach, though it is in-
structive.

Consider the Compton amplitude (2.9a). It has been shown that"

rz',"(p, q) - polynomials ——dx d'x-, e'" e '~~ "z&'p~[V,"(x), &",(0)]~p&„
q ~00

From (2.3) and (2.9) we have

(5.1)

T. (P, q) = —" ' + T'z,"+O(1/q )T", , (5.2a)

2 +
~ ~

&., (p, q) = ——+ — q r~'+ p'p —,p, q, r +e"s;q, T;'+e'"p, qq s'T —z/, ~r, p', q'.
2 4 2g 2g

(5.2b)

The large-q behavior of the Tz' is deduced from the dispersive representation (2.10), which may be
written in terms of the scaling variables:

(u
I

' d(u' P'z,'(&u', q')
4m

(5.3a)

(5.3b)

(o ', E",'((o', q')
CaP

GO —(d
(5.3c)

Taz + ~"
d a IE4 (~

gg g 1 CO —QP
(5.3d)

Here we have continued to use an unsubtracted form, which, in general, is incorrect. However, for pres-
ent purposes the question of subtractions is irrelevant. The reason for this is that the large-q limit of
the T; is unaffected by subtractions, since in that limit &u is fixed, &0= -q'/P'. Specifically, for (5.3a) we
have

(d "
Eked Ez, ((d )

q-~~ 47T„~ 4g (d —(d

If a subtracted in + dispersion relation i.s used, then

1 "'d &u' E ~'((u')

2Fy
&

M 4) —co

At the end of the calculation, we shall take the discontinuity in &zz [see (5.5) and (5.8) below], and therefore
the final result is the same, independent of subtractions. Consequently we remain with (5.3) and find

-zzz
I

dzzz E~(M ) zzz ( dzzz Gi(Qp ) (5.4a)

2nq q „
(5.4b)

27z(q q ) q z (d —(d
(5.4d)

Here &u = -q'/P' and the E;(&u) are the scaling limits of the E,. In (5.4a) we have taken

E &'(~, q') — E i'(~)+ (1/q') &&'(~)
qa~ zzo

because the next-to-leading terms contribute to (5.2b).
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Substituting (5.4) into (5.2a) gives with the help of (4.6a) and (5.1)

'd»0' E'I,'((d) ')

-1
L p (5.5a)

since we take the light-cone Schwinger term to be a c number. Vfe find, therefore, the result previously
encountered in the Abelian case:

E'i(()0=0.

Next we insert (5.4) into (5.2b) and use (5.5b). After some rearrangement, we find

(5.5b)

161»q d» (d) (d) —(d) 2q+ 2»»» (d) —(d) 2»»q» (d) —(d) 2»f

—i«'»p, .q. ..— d(d)'(0', = dx d xie" " e '~d-'"d(pl[V;(x), V~(0)]lp) ~

-1
(5.6a)

The commutator is evaluated from (4.6b). Therefore, the right-hand side of (5.6a) becomes
00

'f.».p I" -kf.y q'J dx e»' " «(x )(pl .(xlo}lp&

+ —,'q,. dx-e'"" e x- P 'U,'x 0 p -2@&&' dx e"'" e x P 8&, x 0 P

tOOO

dx-e*'"* «(x }(pl&.(xlo) Ip&

+ '. q, dx--e'"" «(x-)&p I &.'(xl0)
I p&+ l q»«" dx e"'* «(x-)&pl»t;. (xlO) Ip& .

~ oo ~ OO

(5.6b)

Finally, we introduce the tensor decomposition for matrix elements of U," and»t )", analogous to (4.14},
and equate appropriate terms in the two formulas (5.6a) and (5.6b). We find

OO

2f„,I,+ — d(0' ', = -(0 due ' "«(o»)[d„,V',(0, 0()+f„,V,'(0, o')],
7l j CO —(d

(5.'la)

1 "',F (»0')
d(d)' ', = —', i d(re ' "

(««)([d„, A'( On) f„,A,'(O, a)],-
CO —40

(5.7b)

F ((d) }». " ' »(da-da e ' «((x) o»[d„,A,'(0, 0») f„,A,'(0, »r)] )-
40 -(d (5.7c)

1 r ' d»0' Gx (»0')—Ji, x, =8»0 de(e ' "«(e»)»)»[d„,V',(0, 0()+f,„V(0,»r)].
7r -1 (le (d Cu

All the terms on the right-hand side of (5.7) are of the form

(5.7d)

By the convolution theorem this is equivalent to

d&e Q

(5.8a)

[If there are subtractions in the integrals occurring on the left-hand side of (5.7), the convolution integral
must be similarly subtracted. ] Consequently, we conclude that

d (a)=(ar daa ' '[d„,V'(O, a) f„,V,'(0, )],
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This also follows from sum rule VI, upon multiplication by q', and passage to -q'=~.
The other relations in (5.9) do not seem to give anything new. Thus the integral with respect to n from

0 to ~ of the symmetric part in ab of (5.9a), of the antisymmetric part of (5.9b), and of the antisymmetric
part of (5.4c) yields, respectively, (4.21), (4.22), and (4.23). Setting o. to zero in (5.9c) reproduces sum
rule IV. Finally we see that sum rule VI in Table II is satisfied since E~(&o) =0.

Note that the Regge region, in terms of the scaling variables, corresponds to &-0. Consequently, the
large-n limit of the left-hand side of (5.9) is relevant in this context. In other words, the bilocal opera-
tors, in the limit of large separation, probe Regge behavior.

VI. CONCLUSION

%'ith this investigation we have answered an old
question which plagued applications of current al-
gebra: how to include the contribution of "Z
graphs" to the fixed-mass sum rules. Our an-
swer, contained'in Table II, expresses them as
integrals over deep-inelastic scaling functions.
Of course there is no guarantee that exPerimental-
ly these objects are nonzero; however, in prin-
ciple they can be measured. In the free-field mod-
el, the scaling contributions to sum rules II and V
are nonvanishing.

Some of the fixed-mass sum rules are equiva-
lent to low-energy theorems and unsubtracted dis-
persion relations. Consequently when we find a
modification, we are asserting that the dispersion
relation needs a subtraction. In the case that the
Regge model indicates that the absorptive part
decreases sufficiently rapidly for the dispersive
integral to converge in an unsubtracted form, as
in sum rules II and III (the Beg result'}, the sub-
traction evidently is necessitated by growth of the
real part. This has bearing on, the question of
fixed poles.

A question which naturally arises is the model
dependence of our results. We may inquire what
the possible generalization might be beyond the
quark model which we have employed. We re-
quire, however, that the commutators of currents
possess a structure so that three conditions are
satisfied.

(i) E((u) v 0,
(ii) E~b((u) 0

i.e. , no q-number bilocal Schwinger terms in the
++ commutator;

(Dl) dv W2 (g, v) =
&fggq F~ ~

0

i.e. , validity of the Dashen-Fubini-Qell-Mann'
sum rule. It seems to us that these constraints
force the use of a fermion model, though not nec-
essarily with the triplet-quark realization of SU(3).
[The o model violates (i).] Consequently we sus-
pect that the space-time tensor structure of the
light-cone commutators —it is this which is re-

sponsible for (i), (ii), and (iii) - must be of the
form given in (4.6), though the SU(3) content of the
bilocal operators might be different in nature. The
specific SU(3) form of (4.6b) follows from the fol-
lowing property of the quark model:

If we imagine that the fermions transform accord-
ing to other representations of SU(3), we would
replace this relation by

X, Xq =if,q, X, + d,q,

where d„ is an unknown, symmetric SU(3) matrix
containing the (1}, (8), (10), and (27) representa-
tions. Therefore, the commutator (4.6b) more
generally should be of the given form, except that
the bilocal operators d,„u,"(xl y}, etc. , are to be
replaced by e& (xly), etc. A further generaliza-
tion would be to replace the antisymmetric bilo-
cal currents f„,'u(xl y) by 'u~&, ~~(xl y).

With such generalizations, our results would be
affected as follows. The relations of Sec. V de-
scribing measurement of bilocal operators, Eqs.
(5.9), will be modified in that the form factors on
the left-hand side of (5.9) may possess an SU(3)
structure which is more complicated. Thus the
left-hand side of (5.9a) would read

V&.,~(0, n}+ Vf'. »(0, o.),
with similar changes in the remaining equations.
Consequently the measurement of the SU(3) con-
tent of the E;'(e), a task more possible in princi-
ple than in practice, provides information about
the SU(3) content of the bilocal operators, and will
test the validity of the quark model. In spite of this
generalization, and the concomitant loss of infor-
mation, the requirement that the Dashen-Fubini-
Gell-Mann' sum rule be valid imposes a condition
on Vt', »(xl y). According to (5.10)-(5.12), it must
be true that

v(.g(xlx) =f.„v,"(x) .
We expect that an investigation of the vector-
axial-vector commutator leads to a similar re-
sult:

A (,g(x I x) =f, ,A,"(x) ~

On the other hand, the. sum rule for the axial-
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vector current (5.18) can no longer be established.
All we can say is that

r 1

&P I&(»(o I o) 1P) = -, s" d».'"(~),

but there is no way to establish that

Thus (5.13) is a crucial test of the quark model.
The fixed-mass sum rules in Table II are much

less model dependent, since they are determined
only by the space-time tensor structure of the
light-cone commutators. It should be realized that
results II, III, and V, as well as those parts of I,
IV, and VI, which equate an appropriate integral
over v of a W' to the relevant moment of I'", , fol-
low merely from scaling. The point is the follow-
ing. According to (4.2), which to be sure involves
the assumptions to be discussed in Appendix D, a
fixed-mass sum rule is given by an integral over
x and a Fourier transform with respect to q~ of a
light-cone commutator. This commutator is local
in x, ; i.e., it is composed of a 6 function and de-
rivatives thereof. Consequently, in momentum
space, the integral over v of an invariant function
W (-q, ', v) must be a. polynomial in q, '. However,
the degree of the polynomial is fixed by scaling.
Specifically, for example, for the sum rule II we

may conclude that

Scaling requires that the limit as q~'-~ of (6.1)
exists. Hence we learn that

~1

dvWts"l(-q ', v) =Cia"l = —F~ ~(&u) .
~Q

(6.2)

In this connection see also the work of Georgelin,
Stern, and Jersak. "

Further investigations along the lines of this
paper, which can be pursued, are the following.
One may evaluate canonically other light-cone
commutators, including the ones involving scalar
and tensor densities, and deduce additional sum
rules. Also the effect of the additional terms in
the commutators of nonconsexved currents may
be studied. Evidently appropriate sum rules will
be sensitive to symmetry-breaking effects, and it
will be most interesting to expose these. (Prelim-
inary results indicate that nothing -new emerges
from the [U;, U', ] commutator. Also,

Qco ~tgg

when symmetry-breaking effects are included. )
Another important problem is to consider non-

diagonal matrix elements, in which case many
form factors of bilocal operators, that vanished
in the present investigation, contribute.

n=O

q
2 n( I ab]

dv W,'"'(-q, ', v) =
l~

—I"';"(~,-q, ')
Q ~ Q

(6.1)
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APPENDIX A

We first compute the t =0 s- and t-channel helicity amplitudes. Using u,u, , = 2mb„and y'=y'y'y'y', we
have the following formula from (2.9a), where terms which vanish when contracted with conserved polari-
zation vectors have been omitted.

2mT'" = -g'" T, +p"p" T, -me'" y~y'q&T, -me"" p~q~q~y y'T, . (Al)

The s-channel center-of-mass amplitudes are given by

Tx, . ~, ; q, ~, = 4'(q)M, (p) T""~,(p) ~t (q),

with

P = (&, o, o, I p I), e = (e', o, o, -
I p I)

~'=(1/&e')(I pl, o, o, -q'), ~"=(|)"(o,+1, f, o).
There are four independent nonvanishing amplitudes. They may be taken to be

(A2)

T: &. +,, , = T,+[(&q'+
I pl')T, +

I
pl'(&+q')'T4]

T~ + v(Ts+ vT4),
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I
pl'(E+ q')'

TTl p, l p
—Tj+ 2 2

V- T+ —T1 2 2t
Ij ~oo

(ASb)

Tl', . l 0= -mv'2q' T,.
The t-channel center-of-mass amplitudes are given by

T' ., g., ~, , = e'.(-q), (p) T'" (-p) „'(q},

with

p = i(0, 0, 0, m), q = i~q'(0, sin8, 0, cos 8),

e', '=(-,')'"(0, ~ cos 8, i, +sin8}, e,', =(i, 0, 0, 0),

e,' ' = (-,') "'(0, + cos 8, i, + sin 8), cos 8 = —u/mfa'' .
The four independent amplitudes are

T/, . » = t (T, —-', m' sin'8 T, -mvq
' T,)

= t[T, —(v'/2q') T, -mvqmT, ]

(A3c)

(A4)

(A5a)

T' I I y y p™sin'0 T2

i(v /-2q') T„
II~ oo

Tl l, o p
—ZTyy

t

Ti &, , = (im/v 2 }[~q'T,(l+ cos8) + q' sin'8 T ]

= ( iv/~l 2 }(-T,+ llT ).

(A5b)

(A5c)

(A5d)

Regge contributions to the t-channel helicity amplitudes are even, or odd, in v according to the (even or
odd) signature of the trajectory. The s-channel discontinuities of the t-channel helicity amplitudes have
the opposite symmetry. Because of the symmetry of the T& and W; in v, they receive contributions from a
trajectory n of the form

v" +(-v)" + v '+(-v) '+ ~ ~ ~ .
%e can then see the absence of a p contribution to 8'3~' ~ and S'4~"~ as follows: S',' ~+ vR'4~' ~ must be even

in v, but, since it has odd signature, a leading p contribution to Tl $ p y would have to be odd in v.
T, + vT, then would be even from (A5d) and W~f"~+ vW4t"~ odd, contradicting (2.V). Wsi"~ alone, from (A5a),
could receive a v ~if Tg g y y Ty or v T, could have a v ~ '. T$ $ y y cannot have such a term because
Eqs. (2.9) and (All} of Gell-Mann, Goldberger, I ow, Marx, and Zachariasen" show it is directly propor-
tional to P„(z) —P (-z); T, and v'T, cannot have such a term by their symmetry.

P'

The case of q'= 0, where there are only two independent amplitudes, has been discussed by Adler and
Dashen' in terms of the v t derivative of the amplitude Ti I, , which vanishes at t=O. For q'oO the
two discussions are related by a derivative conspiracy condition. " The exclusion of the Pomeranchon
from 8'," and 8'4" follows similarly.

Finally we note for completeness that the optical theorem for helicity amplitudes is

ImT= o =~ —,—q o .p&s r v R T
(A5)=

m =im'

APPENDIX B

It has been known for some time that the p- ~ technique is formally equivalent to evaluating commutators
on the light cone. Since our light-cone results differ from the p- ones, we demonstrate here that the
equivalence is in fact false. Consider, for example, the Dashen-Fubini-Gell-Mann sum rule,

7T + 0
dv W,"(q', v) =lim —,

~

d'xe 'q '"
(p~[V, (x), V', (0)][p)zTc .
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By inserting a Lorentz boost in the direction of p (say the 3 direction), the state lp) may be brought to rest:

d'xe '" '"
(pl [V,'(x), V'n(0}]lp&«c--—'lid x& '& '"

(p l [V.'(x ), V',(0)] lp ), (B2)

where

lp )=U(~)lp), U(~)=e'

and I"is the Lorentz generator. The vector current transforms as

V,'(x') = U(X}V,'(x) U '(X}= (-',)"'V,'(x') e"+ (-,')'"V, (x') e

and the transformed coordinate x' has the components

(x')'=x'e "=(-,')'"x'e

(x') = x e = (-')'"x'e,

(x )g =xj .
(B4)

We have used the fact that x' =0 in (B2). If the following change of variables is performed, z = -(-,')"'x'e,
(B2) becomes

-X
—,'Id'xe-"'"(pl[V.'(x), V',(0)]lp)«,=, dzd'x„e'"' " e-'" '"

(p l[V.'(x'), V', (o)) lp ), (B5a)

(x')'=-e ' z, (x') =z, (x')~=x~. (B5b)

It is not hard to verify that as p-~, if e =2lpl/m, the state [p ) is at rest. Hence we have, with this
choice,

lim —, d'xe '"'"(pl[V,(x), V', (0)]lp)E~c = ~dzd'x, e '~~'"'lime ' (p'l[V,'(x'), V', (0)]lp'}

dx d'x & '" "'(p'l[V. (x) V~(0)]lp').c (BS)

(B3}was used, as well as the fact that, according to (B5b), (x')'-0 as p-~. Finally we may set (p'}'
=m/v 2, and we get from (B1)

~ +00

dv WI2"~(q', v) =—,l dx d'x, e "~'"~(Pl[V.'(x), V,'(0)]lP)pc,
7l +p

(B7)

lim e ' U(X)[Vg'(x), V', (0)]ETcU '(X) =-,'[V.'(x), V,'(0)]„c.
On the left-hand side x' is changed to -&2e z, and on the right-hand side x =z, with z fixed in the
limiting process. It is this X-dependent change of x' which invalidates conclusions drawn from (BS}; the
equation is correct as written. Similar formal statements must be true for the validity of this technique
for + —components. We demonstrate that (BS}is never valid, though a fortuitous turn of events assures
the correctness of the Dashen-Fubini-Gell-Mann sum rule.

By direct evaluation of the left-hand side, we find

(BS)

lim e ' U(X)[V,'(x), V', (0)]E&cU '(X) =if &, lim e ' U(X)V,'(0)U '(X)5'(x, )6(-42e "z)

where we have dropped the primes on p. Equation (B7) is the same expression as (4.1) and (4.3).
We now see that the validity of the p- ~ technique for 0, 0 components is equivalent to the validity of the

formal statement, which seems to follow from (B3) and (B4):

=if,~lim e '"[(z)'"V,'(0)e +(-,')' 'V, (0)e ](e /&2)6'(x, )6(z)

= if„,—,
'

V,'(0) 6'(x~) 6(z). (Boa)

The right-hand side of (BS) is given by (4.6a):
I.

z[V,'(x), V,'(0)]zc= —,'if, ~V,'(0) 6'(x~) 6(z) —Bia" 6'[S.,(xly) z(x —y )6'(x~ -y, )]„=,.„-,- . (Beb)

Thus the P- ~ technique misses the bilocal Schwinger term. This, of course, is not serious when that



TE STS OF LIGHT- CONE C OMMU TATORS. . . 1749

lim U(X)[V,'(x), Vz(0) —V', (0)],Tc U '(X) =[V,'(x), Vz(0)]Lc.

The validity of this relation appears to follow from (82), (84), and from the analogous transformation law
for V',

U(X) V ',(0)U '(A.) = (-,')"'V,'(0)e —(-',)'i' V, (0)e ".

(810)

(811)

However, direct evaluation of the left-hand side gives

lim U(A)][V, (x), V (0)] —[V,(x), V (0)] JU '(A)

object is a c number. Moreover, the Dashen —Fubini-Gell-Mann' sum rule involves an integration over x-,
hence, even a q-number Schwinger term of the form (89b) does not contribute. However, in the general
case, one may not rely on the validity of the formal manipulation.

Recently, Segre" has given a P ~ sum rule based on the 0, 0 commutator, which, however, does not
involve simply an integral over x, but rather a Fourier transform. Thus his result is not true if there is
a q-number bilocal Schwinger term, i.e., if Ez, (a&) &0."

For the sum rules from other components, the P- ~ technique requires

= lim U(A)(zf„, V,'(0) 6'(xi) 5(-&2e z) —if z, V ~(0) 5'(xz) 5(-v 2 e "z)] U '(X)

=lim if„,&2V, (0)e (e /W2)5'(x )5(z)

= zf, V, (0)6'(x )5(z). (812)

Comparing this with the correct formula for the right-hand side of (Bll), Ezl. (4.6b), we see that all the
bilocal operators have been missed. Since some of these survive even upon integration over x, the P- ~
method fails completely.

It is not hard to see what the problem is. Consider for simplicity a boson field, with the equal-time
commutator s

i[/*(x), y(0)] E c -—0

and the bilocal light-cone commutator (see Appendix C)

z[ y*(x), y(0)] = —,'e(x-) 6'(x,).
The P- technique would assert that

lim U(X)[$*(x), P(0)] U '(A) =[/*(x), $(0)]„.

(812)

(814)

(815)

However there is simply no way to transform the zero of the left-hand side, into a nonvanishing quantity.
The point is that on the light cone there are operators which are not limits of expressions that exist outside
the light cone. These are the bilocal operators which are lost by the P- technique.

The ideas in this Appendix were developed through conversations with Professor G. Segrh. These are
gratefully acknowledged.

APPENDIX C

(Cl)

%e present here the light-cone commutators associated with a boson theory. These commutators lead to
a nonvanishing I i, and hence they appear to be physically unacceptable; nevertheless their structure is
sufficiently interesting to warrant exposure. The Lagrangian is

s = a„pa~ y+ m'yy++ s,-(y, 4 +),

where 2, is a Hermitian function. The current is given by (we suppress internal symmetry)

J"=i+*6"P —i+6"P*

and the canonical light-cone commutator of the fields is

z[A*(x), Ab)]. =le(x -y )&'(x. -y.).
It is now straightforward to compute the light-cone commutator [O', J"], zz =+, i. We find

[J'(x), J'(y)]zc = --,'i6* 6'[e(x- —y )5'(x, -y, )S(x iy)],

(C2)

(C2)

(C4a)
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[J (x) J (y)]Lc iB"[&(-x —y )B'5'(xi -yi)S(xly)]

,'i-B-" [e(x —y-)5'(x, —y, )B',S(x)y)]+iS(y[y)5(x —- y )B'5'(x -y ),

S(xly) = y*(x}y(y)+ y*(y) y(x).

(C4b)

(G5)

It is seen that everything is expressible in terms of S(x~y), the bilocal generalization of the Schwinger term.
The [J',J ] commutator cannot be so simply expressed. The reason is that J involves B,&f&, and the

equations of motion must be used to express B,P in terms of P. Unlike in the fermion case, the dependence
on Zl does not seem to be removable.

It is instructive to rederive these commutators by Schwinger's method. " We consider the Lagrangian
(Cl) to be minimally coupled to an external vector field A"

2= (B„+ieA„)y(B"—ieA~)y+ -myy++Z, (y, y+).

The current is now

= i@*B&y iyB" —y* —3yy*A&
5S

5eA~

The commutator is given by

[Z'(x), J"(y)] = -iB„ 5J (x)
"5eA„y '

(C6)

(c&)

(C8)

(C9)

Eq. (C9) becomes

where the functional variation is performed with fixed canonical variables: fields and conjugate momenta.
One may rewrite (C8) in the following fashion. By the reciprocity relation, "

5J"(x) aP (y)
5eA~ (y) 5eA„(x) '

[J'(x), P (y)] = iB-5J"(y)
5eA„x ' (Clo)

Since the variation is arbitrary, we may choose to perform it by setting eA„(x) = B„A(x) and varying A. It
is not hard to see that under these circumstances (C10) becomes

[J'(x), J"(y)] = i. 5J~(y)
(C11)

(C12)

Hence all we need is to compute the dependence of J"(x) on A, when eA„= B A.
A peculiar feature of the boson theory is that one cannot consider ft} to be independent of A. The reason

for this is that the canonical momentum depends on P and A; i.e.,

11=,=B y+iB Ay.
58~

The canonical commutator now is

[B y( ) xiB+A(x)y(x), y(y)]„c=--,'i5(x- —y-)5'(x, -y, ).

Differentiating this with respect to A and setting A=0, we findB,y*(y) + B y(x), =-iB 5(x- —z-)5'(x, -y, )[y(x), y*(y)]„,5y(x), 5&*(y)
LC Z LC

= 4B 5(x- —z-)5'(x, —z, )&(x- —y )5'(xi-yi),

(C13)

(C14)

where we have used (C3}, since A=0. It is seen that the left-hand side cannot vanish. The correct for-
mula for 5p(x)/5A(y) may be inferred from (C14):

=-,'iB'[e(x -y-)P(y)5'(xi-yi)].5y(x)
6Ay

To compute the commutators, we now have from (CV) and (C11), in the limit eA~ =B~A-0

[J+(x) J+(y)]= — B y(y) —y~(y)B +iy(y)y'(y)B 5( xy-)5'( xy, ) —H c.,

(C15}

(C16a)
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[J'( ) J'b)l = — a'4b) —4*(X)a' +~'p(X) p*(X) 5(x —y )a'5'(x, -y, ) —H.c.
5A(x) 5A(x)

(CI8b)

Substituting (C15) into (C16) reproduces (C4). Again it is seen that in order to determine [J (x), J (y)], one
needs the equations of motion to compute the dependence of B,P on A.

We summarize the important differences between the boson and fermion models for the light-cone com-
mutators. (1} In the boson theory there exists a dimension-two operator, hence the Schwinger term
emerges canonically. Indeed everything is expressible in terms of the bilocal Schwinger term. In the
fermion theory the basic bilocal operator is a generalization of the current, and no Schwinger terms are
present. (2) The [J'(x),J (y}] commutator can be expressed in the fermion model in terms of bilocal op-
erators without any reference to the interaction, provided there is no derivative coupling. In the boson
theory this does not appear to be possible.

In conclusion, we deduce the implications that the present model has for electroproduction. In the usual
fashion, we write"

+ ]
g(p([J" (x), J'(0)] ~p& =[g"' —a"a"]~(x p) 5(x'), ' dQ), F ((at)+ 8(x')f (x', x p)

+[p&p'Ij-p a(p&a'+p'a&)+g&"(p a)']~(x p)e(x') 8 . d~ F,(~)+f,(x', x p),
1 *' since(x p)

x'f (x', x p) — 0, f,(x', x.p) = 0. (C17)
x~0 x~O

It now follows that

(p([J'(x), J'(0)](p& «=Ia a ~(x )5'(x ) de, E (~),
W w (d

(C18a)

1 +

(p[[J'(x), J'(0)](p&«=ia a' e(x-)5'(-,), d ",' p E,( )F CO J
*g +

i+(P' ' O—P'B ) e(x )5'(x )— d(u E,((g)

SENT

On the other hand, from (C17) we have

(p([J'(x), J'(0)](p& = 'za B [-e(x )5 (x }h(x p')],

(C18b)

(C19a)

(p~[J'(x), J''(0)]]p& =i5'(x, )[5(x )p'h'(0)+-,'c(x )p'p'h "(x 'p)] i+'a5(x, )[-,' (5x)h(0) ——,'e(x-)p'h'(x p')],

(C19b)
where

h(x p)=&piS(x(0)(p&i„. ,
Comparing (C18a) with (C19a) gives

h(x p) =— d(o, Fi,((u),
1 "' cos~(x p)

4m. 4P

while (C18b) and (C19b) imply

h'(0) =0,

1
h(0) =—

i —,Fi((u),
-1

(C20a)

(C20b)

(C20c)

h'(x p) =— d~ [F&((o)—2F,(a))],
1 ' sin&a(x p)

-1
(C2Od)

1 "1
h "(x p) =-— dr@cosa(x p)F2(&u) .

4m
(C20e)

All these relations may be summarized by
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F,((u) =Fi(u)), (C21a)

&plS(xlo) lp&.2=. =— d~"' ". F,(~)45'
~ (d

(C21b)

Thus the transverse deep-inelastic cross section, I'2-EI, , vanishes in this model.
The discussion in this Appendix of Schwinger's method for calculating commutators was developed with

help from Professor K. Johnson. We wish to thank him for his assistance.

APPENDIX D (added in proof):
VALIDITY OF LIGHT-CONE

FIXED-MASS SUM RULES

Though the p-~ technique, which is known to fail
in general, was not employed by us, we did per-
form various formal operations which can be un-
sound. We now examine the validity of these re-
sults more carefully. Our conclusion is that
whereas the "Z graphs" seem to be properly in-
cluded by the present methods, the graphs which
have fixed-mass singularities in the external cur-
rent cannot be handled by light-cone techniques un-
less certain superconvergence relations, discussed
below, are true. (These are the "Class-2" graphs
in the terminology of Adler and Dashen. ') Our
statement that the Z graphs are correctly included
is based merely on the observation that in the free-
field quark theory the modified sum rules are val-
id. However, the free-field model does not have
fixed-mass singularities, and further analysis is
required.

Let us return to the defining equation (2.1). Sup-
pressing all indices, this is of the following form:

W(q', v) = d'xe""& pl[V, (x), V,(0)]l p& . (Dl)

To obtain a fixed-mass sum rule, one must first
set q'=0, then integrate over q . The rigorously
true result is the analog of (4.1):

1, dv—W(-q '
v)~+ i. y

tO

=
~

d'x, e '«'"'
p ' dx V,(x), V, (0) p

LC

(D2)

However, our model for light-cone commutators
provides us with the commutators [V,(x), V,(0)]„c
and therefore J dx [V,(x), V,(0)]„c, rather than the
formula required in (D2). The two are identical
only when the x integral is sufficiently well be-
haved so that the interchange with the limit x'-0
is allowed. When the interchange is performed we

arrive at the analog of (4.2},

1 dv—
~ —,W(-q, ', v)2' - p'

= ' d'x, dx e "'"(pl[V,(x), V2(0}ll p)~c.

I

To see what is involved, it is useful to consider
the T product,

T(q', v) = i d'x e" "& p l

T*V,(x)V2(0) I p& . (D4)

According to the light-cone BJL theorem, ' the
quantity of interest in (D2) is (apart from seagulls,
which we ignore)

lim [q-r]...—-lim vA(v) „
1

q P p~~ ' P+ q
2 + p

2 (D6)

Thus for the interchange to be valid, it must be
true that

lim vA(v) =0.

The same result may be obtained by considering
the dispersive derivation of the sum rules. Let us
assume that the fixed-mass sum rule under consid-
eration converges. The light-cone technique gives

dv W(-q, ', v) =P(-q, '), (DS)

where P( q~') is -a polynomial in q~2. The T prod-
uct is given by a dispersive formula, which by hy-
pothesis is convergent:

1 ""d, W(-q~', v')
277 v —v

lim [q T]...-

On the other hand, the interchanged order relevant
to (DS) is

limq T
q -+Oo q+=p '

Since q'=2q'q —q~', this interchange clearly may
be dangerous.

Suppose riow that T has a contribution from a pole.
in the external current,

T(q', v)-, , A(v) .1

We have as the contribution to (DS)

1
lim q T -,A(~) =0. (D5)

+-p

(It has been assumed that lA(~) l
&~, i.e., that the

commutator exists. ) The reason that I/q' vanishes
at q' = 0 is that the principal-value definition is ap-
propriate here; i.e., in position space f dx e(x )
=0. The noninterchanged order, relevant to (D2},
gives
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The bar on the T indicates that polynomials in v

have been dropped. From (D8) it follows that

lim vT(-q, ', v) = P-( q-, ') . (D10)

If T(-qj ', v) has a contribution of the form
(q, '+ g') 'A(v), the only way that lim„„vT(-q, ', v)
can equal a polynomial in q~' is if (D7) is true.

The condition (D7), which assures the validity of
the present results, is of course the same condi-
tion which was previously found to be necessary
for the Class-2 graphs not to spoil the p —~ tech-
nique. However, the present techniques are more
general, since they can accommodate a polynomial
in q' in (D10), while the p- ~ method requires the
right-hand side of (D10) to be constant in the
Dashen-Fubini-Gell-Mann' case, and zero other-
wise. Phrased in another way, this means that the
light-cone sum rules can accommodate fixed poles,
provided the residues are polynomials in q'. Pre-
sumably these fixed poles arise from the Z graphs,
which were previously missed.

When the sum rule converges, there is hope that
(D7) is true, since convergence implies
lim, „discvA(v) =0. For the divergent sum rules,
like V in Table II due to Cornwall, Corrigan, and
Norton, "a truncation procedure has been devel-
oped by these authors, which possibly may make
such relations well defined. The present consid-
erations indicate that this truncation must remove
all the fixed-mass singularities. It is doubtful that
this is practicable procedure.

Note that if (D7) is not true, then f dx V, (x) is
not a local operator in x~. We mean that the com-
mutator of this quantity with another local operator
does not vanish for x' = 0, x~c 0. This is seen from
(D6), where the commutator exhibits a nonpolyno-
mial q, ' dependence. The possible troubles with
which we are here concerned arise from the lack
of sufficiently uniform convergence of the integral

f dx V,(x); or more exactly, of the integral

f dx V,'(x). It may be that physical considerations
should be brought forward here. After all, we

know that the charge f d'x, dx V,'(x) is a, well-
behaved, physically interesting operator, indepen-
dent of x'. Perhaps it is possible to use this fact
to establish regularity for the partially integrated
charge f dx V', (x).

It is not difficult to exhibit models which possess
some of the pathological features under discussion
here, For example, in the vector-meson theory
which gives rise to the algebra of fields, "the
Dashen-Fubini-Gell-Mann' sum rule is violated in
Born approximation, "if the field-current identity
is made. This failure is traceable to the existence
of fixed-mass singularities in the current, which
arise from an "elementary" vector particle. " The
integral f dvWi2"i(q', v) comes out nonpolynomial
in q', indicating that the light-cone technique fails.
It appears that this model has several peculiarities
on the light cone, which are under further study. '

One may avoid the entire problem of interchanges
by not setting q' to zero. Then the interchange is
legitimate, since one is dealing with Fourier inte-
grals. Unfortunately the mass is no longer fixed in
the sum rules, but rather q'=nv+P. Such sum
rules have been considered by the p-~ method, "
and in general the results are false in free-field
theory. ~ The light-cone versions of these sum
rules have been studied, "and they provide the nec-
essary corrections to the p-~ results; see also
Appendix B.

It should be emphasized that the purely deep-
inelastic results of Sec. V are not affected by any
of the problems discussed here. However, it must
be remembered that the operation of dividing by co

in the scaling region may lead to additional 5 func-
tions of +, as explained by Jackiw, Van Royen, and
West. It has been shown by Zee" that in pertur-
bation theory for a quark-gluon model such func-
tions are indeed present. Also it appears that in
the algebra of fields these 5 functions occur canon-
ically. "

The considerations in this Appendix were devel-
oped in collaboration with Professor D. J. Gross.
We are grateful for his comments.
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