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The Regge spectrum generated by a four-dimensional 6-shell interaction V(r) =AS(r -a),
where r is the four-dimensional radius, is investigated by means of exact solutions of the
Wick-rotated Bethe-Salpeter equation. In this model only the leading trajectory can generate
resonances. It is infinitely rising with Imo. /Reo. &1. Odd daughter trajectories either develop
negative imaginary parts or do not rise. Even daughter trajectories turn over above the elas-
tic threshold. This spectrum is contrasted with that obtained from a 5-shell interaction in
potential theory. The potential-theory model is characterized by an infinite set of parallel,
infinitely rising trajectories. The equivalence between the partial-wave Bethe-Salpeter equa-
tion and the continuous-dimensional formalism used here is explicitly developed. Suggestions
are made for extending the method to Bethe-Salpeter equations involving spin or multichannel
effects.

I. INTRODUCTION

The dynamical origin of Regge trajectories which

generate infinite sequences of narrow resonances
has become a subject of great interest with the
mounting experimental evidence' that such trajec-
tories occur in nature. Moreover, the concept of
infinitely rising trajectories is central to the re-
cent theoretical work on dual-resonance models'
as well as some of the older work on bootstrap
models of sequences of resonances. ' There are
many approaches to this problem. Here, as in an
earlier investigation of the same question, 4 we

adopt the viewpoint that Regge trajectories result
from the binding of two particles by some force.
We look for the forces that yield trajectories that
are infinitely rising. Although this viewpoint may
ultimately prove to be irrelevant for the real
world, it merits investigation, since it is the most
direct extrapolation of ordinary potential theory,
where Regge trajectories are clearly understood.
The connection between potential-theory trajec-
tories and other approaches to defining Regge tra-
jectories in relativisitic theories is obscure, ex-
cept for the fact that they both deal with singulari-
ties in the complex angular momentum plane.

Tiktopoulos' and Trivedi have investigated ris-
ing trajectories in a potential-theory framework
with energy-dependent potentials. They were able
to obtain rising trajectories. Unfortunately, the
techniques used in their investigations are not
readily extended to relativistic theories. In I we
investigated a variety of relativistic models. It
proved difficult to generate models with rising tra-
jectories, defined by Re+-+~, and even more dif-
ficult to generate models which lead to narrow res-
onances, although a suitably energy-dependent cou-
pling constant appeared to work.

In this paper we develop another model for ris-
ing trajectories -a model based upon an energy-
independent singular two -particle interaction.
This work is based upon the observation that there
is a class of potentials, the square well and the 5

shell, which generate rising trajectories at the ex-
pense of introducing a sharp and unphysical discon-
tinuity into the potential. Although the angular mo-
mentum barrier becomes strongly repulsive for
large Rem, the effective square-well potential

V,&&(r) = o,(o. + 1)/r'+ V(r)

always has a local minimum which generates res-
onances. The argument for the 6-shell potential
is similar. Potentials which are constant in a re-
gion about the origin are known to have

~ a~ -~ as
the magnitude of the energy, ~F. ~, becomes infi-
nite. ' However, the behavior of V(r) at the origin
is not sufficient to determine the direction in
which n-~. The square-well potential has been
analyzed in detail, ' but explici. t Regge trajectories
for the 5-shell potential have not, to our knowledge,
appeared before. In Sec. II we present a brief de-
scription of the Regge trajectories for the 5-shell
potential. The pattern of trajectories that emerges
constitutes the motivation for a search for the rel-
ativistic analog of the 5 shell.

As before, we use the partial-wave Bethe-Sal-
peter equation, or an equivalent reformulation of
it, to unitarize a basic interaction which we choose
to be a four-dimensional 6 shell upon rotation to a
Euclidean four-space. At the end of the paper we
discuss a possible physical interpretation of this
interaction. The problem of solving the Bethe-
Salpeter equation with a 6-shell interaction proves
to be nontrivial and quite interesting in its own
right. The three-shell is trivially soluble because
the partial-wave expansion of the kernel leads to a
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separable equation. An O(4) expansion of the
Bethe-Salpeter kernel leads to an infinite sum of
separable terms. If it were not for the center-of-
mass energy 2E, which destroys the O(4) invari-
ance of the equation, the Bethe-Salpeter equation
would be exactly separable. At E = 0 it is separ-
able and we have exact algebraic solutions with
which to compare our numerical solutions. For
E 10 we must solve an infinite set of coupled alge-
braic equations by numerical methods. We are
able to obtain the exact leading and secondary tra-
jectories for energies above as well as below
threshold. The method of solution along with a de-
tailed discussion of the results is given in Sec. IV
and Appendix B.

Section III of this paper deals with the extension
of the continuous-dimensional approach to solving
the Bethe-Salpeter equation. " The three- and
four-dimensional 6-shell interactions are used as
examples of the formalism. This section may be
skipped by any reader interested only in the tra-
jectories generated by these models.

A few results of the four-shell calculations are
worth mentioning here. The leading trajectory
rises with a small imaginary part. However, it is
not narrow-width in the sense of producing narrow-
width resonances. The odd daughter trajectories
are decoupled from the parent and even daughters
in the equal-mass limit we consider. More inter-
esting is the fact that rising odd daughters develop
negative imaginary parts above threshold. This is
the first nonperturbative dynamical calculation of
these daughters above threshold and suggests that
even if the odd daughters have rising real parts,
they will not manifest themselves as resonances.
Secondary trajectories; which in the three-shell
are parallel to the leading trajectory for positive
E', are no longer parallel. They undergo colli-
sions for negative E' and do not rise indefinitely
as E' is increased above threshold. In fact, for
the choice of parameters we investigate in detail,
only the leading trajectory reaches the resonance
region with a positive imaginary part. Thus, al-
though an interpretation of the basic dynamics rep-
resented by a four -dimensional 6-shell potential
is difficult, we find the results suggestive of the
interesting possibility that an infinitely rising par-
ent trajectory with resonances on it need not be ac-
companied by rising secondary trajectories which
also generate resonances. In such a world, the
secondary resonances near the p, fo, etc. , reso-
nances would not exist.

II. NONRELATIVISTIC 5-SHELL POTENTIAL

Qne of the simplest nonrelativistic potentials is
surely the three-dimensional ()-shell potential V(r)
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FIG. 1. Re n is plotted as a function of s for the leading
and first three secondary trajectories generated by a
three-dimensional 5-shell interaction. Both the coupling
constant g and the radius of interaction a are set equal to
unity. With this choice of parameters, e (0) = 0 for the
leading trajectory.

= -g&(r —a). Indeed it appears in at least one quan-
tum mechanics text as a pedagogical exercise in
scattering theory. ' Physically it approximates a
strong surface interaction between two particles.
In any case, it is interesting to investigate the
Regge spectrum produced by such a simple poten-
tial.

An elementary quantum-mechanics calculation
shows that poles of the partial-wave scattering
amplitude are given by"

1 = —,'isa Jz(ka)H'z (ka),

where X = n+ —'„n is the complex angular momentum,
and Jz (H'z) is a Bessel (Hankel) function. We
work in units where H = s, the nonrelativistic cen-
ter of mass-energy. To analytically continue (1)
below threshold, we set 0 equal to iz. In the limit
s=0, it is possible to solve (1) exactly for the
leading trajectory and obtain n(0) =-—,'+ —,'ga. If
n(0) & ——'„ the solutions at s = 0 depend on the order
of taking certain limits, and we find that n(0) + —,

'

must be a negative integer for secondary trajec-
tories. In Fig. 1 we display Be a as a function of
s for the leading trajectory and three secondary
trajectories. Figure 2 shows the same trajectories
in the complex e plane. Several properties of
these trajectories are reminiscent of the proper-
ties often assumed for relativistic trajectories.
All the trajectories are infinitely rising as s-+~.
In other words, Reo. -+~ as z-+~. The trajec-
tories are nearly narrow-width in the sense that-
Imn/Ren&1 (see Fig. 2). Actually, the trajector-
ies do not generate an infinite set of narrow-width
resonances due to the smallness of d Ren(s)/ds.
If a resonance of spin J has a narrow width, then
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the ratio of its width to its mass, I'/E„ is given
in potential theory by"

r 2Imu(s, ) Reu'(s, )
E, s,([Reu'(s, )]'+ [Imu'(s, )]'j'

where Reu(s, ) =J, u' = du/ds, and s, =E~ Fo. r the
trajectories shown in Figs. 1 and 2, this dimension-
less number is typically 1.5 compared to 0.2 for
the p resonance. For s& 0 the trajectories collide
and recede to infinity in complex-conjugate pairs
parallel to the imaginary e axis as s- -~.

A careful consideration of the asymptotic behav-
ior of the Bessel functions in (1) shows that the 5-
shell trajectories have the asymptotic form u(s)
=+as' ', where a is the radius of interaction. In
other words, the trajectories are independent of
the coupling constant for large s. The imaginary
part of u need not tend to zero or a constant, but
the ratio Imu/Reu vanishes for large positive s.
This asymptotic form is also valid for negative s,
where Reu/Imu vanishes. The values of s and u
in Figs. I and 2 are not truly asymptotic.

Not only are we able to obtain the trajectories
in Figs. 1 and 2 which have nice properties, but
we are also able to calculate the trajectories asso-,
ciated with the Gribov-Pomeranchuk condensation
at threshold. ' They are shown in Fig. 3 in the
complex e plane. These trajectories approach
Bee= --,' in complex-conjugate pairs as s- 0 from
below. Above threshold we see one manifestation
of the singular nature of the 5-shell poten'tial.
Bather than moving away from Ben= --', into the
lef t half of the u plane, one set of the Gribov-
Pomeranchuk trajectories approaches Rem =+~."
Inasmuch as the imaginary parts of these singular
trajectories are large, they do not manifest them-
selves as resonances. It is worth noting that a fur-

ther manifestation of the singular nature of this
potential is that the asymptotic behavior of the scat-
tering amplitude as the cosine of the scattering an-
gle tends to infinity is not determined by the right-
most pole in the angular momentum plane. '

In an effort to obtain trajectories which generate
narrow resonances, wehave solved(1) above thresh-
old with an energy-dependent coupling strength of
the form g=g, (1+s)8. If 0.0& P&0.5, both Reu and
Ima increase indefinitely with s, but for large s
the ratio Imu/Reu is decreased relative to its val-
ue with P=0. If P=0.5, Rem is a monotonically in-
creasing function of s, while Imn is asymptotically
a constant. When P & 0.5, Imu- 0 as s becomes
large, and we have a truly narrow-width trajectory.
This energy-dependent coupling could be viewed as
a result of exchanging spin. On the other hand, if
absorptive effects are included by letting g develop
a positive imaginary part, Imn is increased.
These two modifications of the simple three-di-
mensional 5-shell interaction could be used to
make a simple dynamical model of a Regge tra-
jectory and all its secondaries. Such a model
would be useful as input for calculations involv-
ing Regge cuts.

For a final amusing exercise we have calcu-
lated sin'5„ the partial-wave phase shift, as a
function of energy for physical l. Asymptotically
sin'5, is an oscillating function with essentially
constant amplitude. Each peak represents a sec-
ondary trajectory crossing that value of l, showing
again that the trajectories occur in infinitely rising
parallel families. The poles in the s plane are far
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FIG. 2. The trajectories of Fig. 1 are shown in the
complex o, plane. The arrows indicate the direction of
increasing s.

0
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FIG. 3. The Gribov-Pomeranchuk trajectories for the
nonrelativistic 6-shell interaction are shown in the com-
plex n plane. Both g and a have the same values as in
Figs. 1 and 2. For s & 0, these trajectories approach
Re e = -2 in complex-conjugate pairs. Their imaginary
parts appear not to vanish at threshold. %hen s & 0, the
trajectories recede from Rem = —

~ in the first and third
quadrants.
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from the physical region, so that the phase shift
never goes through II/2, except perhaps for the
very first resonance if there is a bound state with
that angular momentum.

Motivated by the discovery of a potential which
generates a set of infinitely rising parallel trajec-
tories with Impel/Real less than unity, we seek a rel-
ativistic generalization of the three-dimensional
5-shell potential. In See. III we extend the formal-
ism developed previously for the investigation of
relativistic trajectories and then apply it to the
four -dimensional g-shell interaction.

where

fI»po E}
1

PI( cos8) (t)( psin8, 0, p cos8, p„'E)dcos8'

K,(P, k, (P.—k.))

dcP) z K 0
—ko +p +0 -2ppg

III. CONTINUOUS - MMENSIONAL TECHNIQUES

AND THE FOUR-MMENSIONAL 5 SHELL

(5)
Rodrigues's formula for a Legendre polynomial,

The Wick-rotated" Bethe-Salpeter equation for
a four-dimensional 6-shell interaction ean be writ-
ten down and solved without recourse to the contin-
uous-dimensional formalism we developed in pre-
vious papers on relativistic Regge trajectories.
However, the four-shell interaction offers us an

opportunity to demonstrate explicitly the equiva-
lence between working in a space of 2o. +4 dimen-
sions, where o. is to be identified with the trajec-
tory function, and using the conventional partial-
wave Bethe-Salpeter equation. One result of this
digression into formalism will be an indication
that our technique can be used to obtain trajecto-
ries from any system of Bethe-Salpeter equations,
inel. uding those involving particles with spin.

The starting point in our development is the ho-
mogeneous Wick-rotated Bethe-Salpeter equation
in momentum space. This equation describes two
spinless particles with momenta P, and P interact-
ing to form a bound state with momentum P = (0, iE).
Thus we have

can be used to obtain the continuation of (5} into
the complex I plane. Using (6) in (5) and integrat-
ing by parts E times, we obtain

K, =,
I

ds(1-z')' —,K((P-k)') .

KI(7) =(-I)'d I K(&) (9)

KI(T) is R fullc'tloll of the 111VR1'lRIIt 7=(p-k) Rlld ls
to be identified with the L -dependent kernel in I
which was defined by

In terms of an element of surface on a (21+3)-di-
mensional sphere, Eq. (7) can be written in the

form

p'0'
K, = „, K, ((p —k)')dQoI „,

Yt Q

y(p, E)=—,d'kK((p-k)')1

x G,((k iE)')G,((k+iE)')(())(k E)

oo

( )
O' K(/+ o)dy.

From (10) we have K,(7) =K(o.) and

(10)

where p = -', (p, -p,). In Eq. (3) the interaction ker-
nel K(q ) is iterated with two-particle intermediate
states, and GI(q'} is the propagator for the ith par-
ticle, Tile generallzatlon of (3) to problems lllvolv-

ing either coupled two-body channels or spinning
particles is both standard and straightforward.
The three-dimensional partial-wave equation corre-
sponding to (3) is

f,(9u. &) f d).J (
('1,) )o, (y=a—, o ):,)),.

Setting o( =0 in (ll) completes the identification of

(10) and (9). Returning to the partial-wave Bethe-
Saipeter equation, we substitute (8) into (4) to ob-
tain

; ,)oz()=, ,f ) '"d)fso„„ic((p-))')

x G,((k-iE)')G,((k+ iE)')EI(k, k„E),

x G,((k-iE)')G, ((k+ iE)')f, (k, k, E),
p'&I(p, po, E)=f((p, po, E)

Now, by regarding the physical four-space of vec-
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2( }I2( a2)l l+ (a )g 2 2 (aq) l+ l/2 (15)

The corresponding integral equation is

1 d'"'kK, ((p-k)')F,(p, x) = „, „,' F,(k, 8). (16)

tore (p, p,}as a subspace of an r-dimensional aux-
iliary space into which the physical vectors can
rotate, we obtain the continuous-dimensional equa-
tion previously derived by more devious means'.

«(p, «) „,=f«'"')«, ((p -a)')

x G,((k —iE)') G,((k+ iE)')F,(k, E) .
(13}

If we perform a partial-wave expansion in 2l+3 di-
mensions, the generalized 8-wave equation is just
the partial-wave Bethe-Salpeter equation. Once
again we emphasize that the advantage of using (13)
over (4) is that the kernel of the integral equation
is a function of invariants. The invariant kernel
can be accurately approximated by a set of finite-
rank kernels in a way that leads to a straightfor-
ward calculation of Hegge trajectories above as
well as below the elastic threshold.

To extend the formalism to problems involving
spinning particles, it is only necessary to note
that the partial-wave decomposition of any Bethe-
Salpeter equation leads to a set of coupled equa-
tions. The kernels in such a set of equations
can always be written in a form analogous to (5).
Then the appropriate separable approximation to

Kq((P —k)') under the integral in (8} should generate
a good separable approximation to the partial-
wave kernels. All that is necessary is to carry
out the trivial angular integration in (8).

We show in Appendix A that K,(7), defined either
by (9) or by (10), is also proportional to the (2l+4)-
dimensional Fourier transform of the configuration-
space potential corresponding to K(q').

As an example of this alternate approach to the
partial-wave analysis of the Bethe-Salpeter equa-
tion we consider the simplest possible problem
-the three-dimensional 0-shell potential in the
Lippmann-Schwinger i'ntegral equation. The inter-
action kernel is given by the Fourier transform of
the potential

K(q') = —e' '"6(r-a)d'x = ga'(-')l)'" (aq)
42/ ' (aq}'"

(14)

where J, (z) is a Bessel function. The transformed
kernel K,(q') obtained by means of (9) is

If we make the separable approximation

„),) K,(P')K, (k')
E/(0)

E(l. (16) becomes

F,(P, s) =ga'v m (a')'1"(1+-,') ('")",„„
d2 i+ 3k ~(+ 2/2(ak) Fl(k) S)

i+2 (ak) l+ 2/2 k2 s

=ga I„,/, (av —s}K„»2(a~s, (19)

where K, (2) and I, (2) are modified Bessel func-
tions. Equation (19) is the continuation of (1) to
negative energies. Indeed, in this case, the sep-
arable approximation works well. The reason, of
course, is that the partial-wave equation for the
scattering amplitude is exactly separable when
solved by conventional means. In other words, the
corrections to the approximation in (17) do not con-
tribute to (16) in the generalized S wave.

Encouraged by the three-shell potential, we turn
to the four-dimensional 6 shell, V(2) =g26(r —a),
where r is the four-dimensional radius. Taking
the four-dimensional Fourier transform of this
potential, we find

K(q ) = 4l/ a g aq
(20)

We are working with the Wick-rotated Bethe-Sal-
peter equation so that the potential V(2') and the
kernel K(q') are defined in an Euclidean space.
Since K(q') is needed only for spacelike values of
q', we do not make any statement about its behav-
ior for timelike q' in a Lorentz metric. The sim-
plest, but by no means unique or analytic, choice
would be to define K(q') =0 for q2(0. Since we
solve the integral equation in a region free from
singularities and then analytically continue the
solutions, we are confident that the Wick rotation
of contour i.s legitimate. '

The transformed kernel corresponding to (20} is

K (q2) -422 3 2(l 2)l — &+((
l

= ag 2a
( )3~)

Inasmuch as we are interested in exact solutions
for the trajectory functions, and the Bethe-Salpeter
equation is not exactly separable except at E =0,
we expand K, (q') in partial waves in a (21+4)-di-
mensional space, not a (2l+3)-dimensional one.

The eigenvalues of (18), or the Regge trajectories,
are determined by

gaW&t (1+-',) 2&"3/2 "kdk[Z„„,(ka)]2
r(f+-,') 2 k' s-
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This expansion is useful for this particular kernel
since it leads to an infinite sum of separable
terms, "
K(((p —k) }=4va'g (—,'a )'2" 'I'(1+ 1)

(„I I)~ ( k)&, ( p)
(ak)'" (ap)'"

&&C„'"(cos8»), (22)

where p. k=pkcos8», and p and k are (2l+4)-di-
mensional vectors. Equation (22) is to be used in

(13). The Gegenbauer function satisfies an addi-
tion theore~ of the form

C„'"(cos8»)=N„Q Y„.. (Q. 2)Y„* ... (Q2)

C„"'(cos 82}C„"'(cos 8,) + ~ ~ ~ .n! F(21+2)
I' 2t+2+g

(23}

Y„ is a generalized spherical harmonic inl 2r+2=2l+4 dimensions. In the second line of (23)
the terms represented by the dots vanish in the
generalized S-wave limit. Using (22) and (23) in
(13) and keeping just the S-wave term, we obtain
the following form of the Bethe-Salpeter equation
for the four-dimensional 6-shell potential:

, I'(!+I)~ (l+ I+n)n! I'(2l+2) J„„„(aP)

d))(s)s)))""):„"'(sss))) J„,.„(sS)P l+3

(k +!) -E ) +4E k cos2P k)+& & s PF (k cosP

The denominator factor in the integral comes from
the product of the propagators for two equal-mass
particles. Since the term in curly brackets is a
constant independent of P and cosa, the eigenvalue
condition is reduced to the problem of finding the
zeros of the infinite determinant

det[I -Q(l)S(l, E)j =0, (25)

5 „= Qdk dz i &

0 -1

J„„(ak)J(+„„(ak) Ci„(z)C "'(z)
(k2 2 E2)2 + 4E2k2z2

(26)
Moreover,

462m! I'(I+ 1) I"(2l+ 2)
Q2)2 = ~g '(I + I +m} (I,) is(2I 2 )

. (27)

We have introduced a dimensionless coupling con-
stant G' = 2v'a2g'.

In Sec. IV we solve (25) by approximating S(l, E)
by a finite matrix and then expanding the order of
the matrix until the solutions are stationary. Her'e

we make several general comments about the infi-
nite system of coupled algebraic equations. As a
consequence of using equal masses in the problem,
the integrand in (26) has a definite parity under z- —z. This means that 8 „ is zero unless I +g is
even. Hence, we have two uncoupled infinite deter-
minants to solve. One determinant contains the
leading trajectory and all even daughters, while

the other contains the odd daughter trajectories

where S(l, E) is an infinite symmetric matrix whose
elements are given by

which are decoupled from the even trajectories
and the mass-shell elastic scattering amplitude in
the equal-mass limit. Next, we note that when E
=0, S vanishes (unless m =n) due to the orthogo-
nality of the Gegenbauer functions. At E =0, we

find that Q„„S„„(l,0) =Q2, S»(l+n, 0}, indicating that
the trajectories occur in Toiler families" as is to
be'expected. Moreover, at E =0, and presumably
near E=O, the leading trajectory is given by S„;
the leading trajectory and first even daughter are
contained in the 2x 2 approximation to the full mat-
rix, and so forth. This progression forms the ba-
sis for our approach to solving (25) for all ener-
gies. In Sec. IV we use the E =0 equation as a
check on our results for E40.

Finally, we note that the approximation used in
solving (25) appears to be very similar to the finite-
rank method recently developed by Kershaw, Snod-

grass, and Zemach" for solving the Bethe-Salpeter
equation. There is a very important difference,
however. They work with the configuration-space
Bethe -Salpeter equation. Their amplitude has the
direct particle propagators removed from it, so
that its 0(4) expansion is different from that for
our amplitude. Their approach fails at the elastic
threshold, while ours converges extremely rapidly
above threshold. In fact, we initially attempted to
apply their formalism to this problem and found
numerical results for the Regge trajectories which
were unsatisfactory even near E=0.

IV. RESULTS AND CONCLUSIONS

As mentioned in Sec, III, the eigenvalue condi-
tion (25) simplifies considerably at E = 0. Not only
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does S(/, E) become a diagonal matrix, but also
the double integral in (26) can be carried out ana-
lytically to give'

vl"(2/y2+n) a'
n! (n+ /+ 1)[I'(I + /)]' 2""(/+ I +n)

x [I„„(aP)K,+„(aP) —I,+„+,(ap)K~,„~(ap, )] .
(28)

Upon multiplication by 0„„, (28) leads to the follow-
ing expression for the E =0 intercepts of the trajec-
tories:

Q2

1[I, „(ap, )Z„„(ap) f„„„(a—u)Z++ (ap)] ~

(29)
Each trajectory determined by (29) with n =0 is
accompanied by an infinite set of integrally space
secondary trajectories. There may exist addition-
al trajectories at the negative integers whose E=O
intercepts are not given by (29) just as there are
such trajectories for the three-dimensional 6

shell.
In Appendix B we show that the k integral in (26)

can be performed for EWO and the z integral fold-
ed onto the interval 0 to 1. Hence, for Ew0 we

need to calculate a one-dimensional integral over
a finite range and we do not have to resort to the
Blankenbecler-Sugar" approximation. In Appen-
dix B we also discuss the analytic continuation of
the integral representation of 8 „above the elastic
threshold at E = p, and below Rel = -&, where the

I

2-

integral diverges because of the factor (I -z')'"&.
In both cases the continuations are straightforward
though in practice the algebra becomes complicat-
ed.

In Figs. 4 and 5 we display the Regge trajectories
calculated with this four-dimensional 5-shell in-
teraction. In Fig. 4 we plot Re~ as a function of
s =4E' while in Fig. 5 the trajectories are drawn
in the complex / plane. We have calculated those
trajectories which have Rem & -3 in the region -40
& s&+40 in units where the direct particle has
mass p;= 1.0 and threshold is at s =4.0. We nor-
malize the leading trajectory to a(0) =0.5. The
leading trajectory calculated from Spp alone is in-
distinguishable from the leading trajectory calcu-
lated either from the 2 X2 or the 3 x3 approxima-
tions to S(/, E) over the range -20& s&+40. In the
range -40& s& -20, the 2&2 and 3X3 approxima-
tions are indistinguishable. This rapid conver-
gence carries over to the secondary trajectories
and suggests that all trajectories could be calculat-
ed with reasonable accuracy from the diagonal ele-
ments of S(/, E) alone.

One of the most striking features of the trajector-
ies in this model is that the leading trajectory ap-
pears to be infinitely rising. Just as in the three-
shell, this trajectory has Imo/Re@& 1 so that it is
narrow compared to the relativistic trajectories in-
vestigated in detail in I. For. relativistic trajecto-
ries the ratio of width to energy is given by (2) di-
vided by 2 with s the square of the center-of-mass
energy. This ratio varies from 0.54 at s=21 to
0.63 at s =37 compared to 0.2 for the p resonance.
The second important fact about these trajectories
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FIG. 4. Rea. is plotted as a function of s for the leading
and seven secondary trajectories generated by the rela-
tivistic 6-she11 interaction with G = 6.0, a = 1.0, and p,

= 1.0, where p, is the direct mass. The coupling constant
is fixed by the requirement that 0', (0) = 0.5 for the leading
trajectory. In these units threshold occurs at s = 4.0.
The solid trajectories are those coupled to the leading
trajectory in the equal-mass limit; the dashed trajector-
ies are decoupled and include the odd daughters. At
s =0, the leading trajectory and the kinematicalIy con-
strained daughters are integer-spaced.
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FIG. 5. The trajectories of Fig. 4 are shown in the com-
plex l p1ane. The even trajectories are in (a) while the
odd ones are in (b). Again the arrows indicate the direc-
tion of increasing s. The imaginary part of the third
daughter t. identified by 0. (0) = -2.5] above threshold is too
sma11 to be shown. For cIarity the leading trajectory is
not shown for s & -13; it is real in this region.
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is that the odd rising daughters develop negative
imaginary parts above threshold. This is the first
dynamical calculation of daughter trajectories
above threshold, and it suggests that the odd daugh-
ter trajectories do not manifest themselves B.s res-
onances even if their real parts reach the physical
region of Rel» 0. The third interesting feature of
these solutions is that all trajectories, except the
leading one and the first daughter, undergo colli-
sions and move off into the complex E plane as s
is decreased from s = 0. The trajectories which

collide with the kinematically constrained daugh-

terss

pass through negative integers at s = 0 and

drop very rapidly as s increases above s=0. The
leading trajectory, which appears to fall indefinite-
ly, and the first daughter cross for negative s. In
an unequal-mass calculation, where the even and

odd trajectories are coupled, the crossing point
becomes a collision, and the trajectories will make
an excursion into the complex l plane.

The even daughter pole which has n(0) = -1.5
does not rise above Be/= —1.0. This behavior puz-
zles us. The trajectory starting at o(0)= -2.5 does
not cross Rem=-2. 0. In both cases there are tra-
jectories lying above these daughter trajectories
which are not kinematically constrained at s = 0.
Apparently, either negative integer values of Rel
or these extra secondary trajectories act as bar-
riers in the l plane. This effect is stable under in-
creasing the dimensionality of S(I, E). We are un-
able to track these extra trajectories below the
elastic threshold. The fact that their imaginary
parts do not vanish at threshold suggests that these
trajectories may be associated with a relativistic
version of the Gribov-Pomeranchuk threshold con-
densation. " There probably exist numerous other
trajectories of this type, but we have not made an
exhaustive search for them. One complication in
understanding this barrier phenomenon and the
associated trajectories is the exceeding sensitivity
of the eigenvalue equation (25) to small changes in
either Rel or Iml when s is large.

In summary, the important feature of this sim-
ple dynamical model is that it generates an in-
finitely rising leading trajectory. With the pos-
sible exception of the first daughter trajectory,
none of the secondary trajectories approach the
region Rel &0. The odd rising daughter trajec-
tories develop negative imaginary parts above
threshold. A complicated pattern of colliding tra-
jectories exists for s &0. These results suggest
the possibility' that even if there exist infinitely
rising trajectories in nature, the existence of
daughter poles near s = 0 does not imply that there
should exist a set of parallel secondary trajec-
tories also generating resonances. Such a pos-
sibility would contradict the world picture emerg-

ing from dual-resonance models. '
We end this paper by briefly discussing the ques-

tion of just what sort of an interaction is represent-
ed by a four -dimensional 6 shell in the Euclidean
continuation of the Bethe-Salpeter equation. The
straightforward analytic continuation of the Bessel
function in (20) to timelike values of q leads to
serious divergence difficulties in the generalized
ladder -diagram series represented by the Bethe-
Salpeter equation in the Lorentz metric. Qne pos-
sible answer to this question is given by asking for
the nonrelativistic potential which yields the Born
approximation (20). Such an approach is one way of
relating the Yukawa potential to single-particle ex-
change. We do this and find the nonrelativistic po-
tential corresponding to (20) is

Swag
V(r) = -(a, r, ),i, , r (a

(80)

This attractive potential is finite at the origin, in-
finite at r = a, and zero for r & a —not an unreason-
able potential to describe a strong surface inter-
action between two particles. It is certainly less
singular than the three-dimensional 6-shell poten-
tial.
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APPENDIX A

oo

K(q') =, V(r)e "'*d'x
(2w)'

V(r)'("';dr
0

(A1)

If (AI) is inserted into (10), we obtain another rep-
re sentation for K ~(q ):

(A2)

We show that the Euclidean Fourier transform in
2n+ 4 dimensions of an invariant (o.-independent)
configuration-space potential V(r) is proportional to
the transformed kernel K (q') defined by Eq. (10).
The four-dimensional kernel K(q') can be used to
define a configuration space potential V(r) by the
relation
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On the other hand, if we regard r as the (2n+4)-di-
mensional invariant length in that space, we can
calculate the Fourier transform

2- 1

away from the cuts of the Bessel functions by means
of the relations

I„(as,) =e ""I„(-az,),
K„(az,) =i2/I„(-az2)+ e'""K„(-az,) .

Hence, we have the result

This ensures that as P varies from 0 to m the roots
z, and z, are positive and, therefore, in a singular-
ity-free domain.

The final result for the matrix element -in terms
of z= cosje is

APPENDIX 8
( 1)(.— )/2. i (1-z') ""dz

0 2Ez(E'z' —q ')'/'

In this appendix we perform the k integration in-
volved in the definition of S „, Eq. (26), and then
analytically continue the result above the elastic
threshold at E = p.. We define

J„,„(ak)J„, (ak)
&dI2 (~2, „"2'"E2)2,"4E2~2..2p (Bl)

xC" (s)C„" (z)L „(g,c.),

where q'=E2 —p,
' and, for E& p, ,

L „(z,o.) = I„„„(az, ) K„„„(az)
Since I „ is symmetric, we choose m~n and uti-
lize the relation"

I„, (z)=(1/iv)[e '"&"' )K„, (z) -K„, (-z)],
while for E& p, ,

3+ R+ 2 ( 2) 1+ IX+ Ill( 2)1 (B8)

so that with the change of variable k=iz, we
obtain for n -m even

L „(z,c/) =I„„„„(az,)K„„,„(az,)

—I~+.„+„(—az2)K, (-ag2)

The integrand has poles at

, z2yEc spo+( , t/2 Esin'p)'/' ——ie,
z, ,=+Ecosp —(t/2 E'sin2p)'/'+ie-,

(B8)

(B4)

and a cut along the negative z axis. With n ~m
there is no singularity at z =0. Closing the contour
on the right we obtain the result

( 1)(2-m)/2
I „= 4E cosP (p' E' sin'P)'/'—

x[I„,„(az,)K„, (az, ) —I„„„(az,)K„, (az, )] .

Men E'z'& q', (E'z' —q')'/' is to be replaced by
i(q2 E2g2)l/2

The z integral in (B7) diverges for Ren ~- —,'. The
integral is analytically continued by writing

" '~C" z C„'+ zG z, edz,

and expanding G(z, n) about: z =1. If we define

In order to analytically continue this expression
above threshold, we rotate the roots z, and z,

Gg(z, n) =P, „G(z, o.)
(z —1)" d"

x=0 C=l

Then (B10)becomes

(B11)

1

S.„= ) (1 z')""/'C':"(z)C„" (z)[G(s, ~) -G„(z, o)]ds
0

1 d"
+ —, d „Gz,n

4=1 0
(1 —z2)""~C""(z)C""(z)(z —1)"dz.
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The first integral noir converges if Rem ~ —2 —R —1, and the counter terms can be explicitly evaluated and
then analytically continued to all values of u.
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