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Classical mechanics of two point particles interacting at a distance is given a Lorentz-co-
variant formulation without introducing unphysical degrees of freedom such as usually ac-
company the two-time formalism. The theory is then quantized and compared with quantum
field theory to allow the determination of realistic potentials. Exact solutions are obtained
for an inverse distance potential; classical orbits as weQ as quantum energy levels are de-
termined.

I. INTRODUCTION

There exists no widely accepted formulation of
relativistic classical mechanics of two or more in-
teracting particles of finite mass. For some time
it was believed that no satisfactory theory was pos-
sible, until this was refuted' by the actual con-
struction of self-consistent models. Existence
theorems have only limited interest, however. The
nonrelativistic theory is useful only because of the
fact that the potentials happen to be known to con-
siderable accuracy, and a relativistic theory
should include a prescription for the potential in
order that it predict effects like the precession of
the perihelion of Mercury. The only sure source
of knowledge, from which accurate potentials
can -at least in principle -be derived, is relativ-

istic quantum field theory. (We do not mean to dis-
count the theory of general relativity, but to sim-
plify the perspective by treating it as a field the-
ory in flat space. ) Hence it would seem plausible
that relevant models of classical relativistic
mechanics must be obtained deductively from rel-
ativistic quantum field theory, rather than induc-
tively from nonrelativistic mechanics.

A direct deduction of a classical relativistic
mechanics from quantum field theory has been
given recently, and now, with the incomparable,
advantage of hindsight, it is possible to proceed
inductively and arrive at the same theory by naive
arguments based on nonrelativistic mechanics and
the requirement of Lorentz invariance.

The theory that had been obtained previously from
quantum field theory is recovered in Sec. VII as an
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II. NONRELATIVISTIC KINEMATICS

We study two point particles and use the follow-
ing notation:

m„m„=masses, m =—m, +m„

x„x,=position coordinates,

p„p,= momentum coordinates,

E, p =total energy and momentum.

The position and momentum coordinates are as-
sumed to be canonical variables satisfying the
Poisson relations

(j»»»y P»j} 6»j ( 2»» P2j j&

(g»», P2j}-0=(~2», P»j},

Xg]p Xj g XI )~ X2~ X2f P 2g

(P„,P„&=(u„,f.;}=(&.» P.j}=o.

(2.1a}

(2.1b}

(2.2a)

(2.2b)

Of the two familiar formulations of Hamiltonian
mechanics, we prefer the one that treats the time
t as a coordinate. ' It has vanishing Poisson
brackets with all the x's and P's, and is conjugate
to the total energy:

(E, t}=1. (2.8)

From the start we demand that p = p, +p„so that
the total momentum is carried by the particles and

example of the general framework prepared in Sec.
III (kinematics) and Sec. V (dynamics). Since the
formulation is essentially Hamiltonian, it may be
of interest to explain how it avoids contradicting
the theorem of Currie, Jordan, and Sudarshan, '
according to which such a theory can have no inter-
action. Three-vector position variables exist that
have vanishing mutual Poisson brackets, and in
terms of them the theory is Hamiltonian in the
usual sense; however, these position variables
are not the space parts of 'four-vectors and con-
sequently they do not satisfy all the equations as-
sumed i:n the theorem. ' By a simple change of
variables the theory can be formulated in terms of
four-vector position variables, but then the space
parts do not have vanishing mutual Poisson
brackets.

Quantization is carried out in Sec. IX. In Sec. X
we review some properties of the relativistic wave
equation and introduce spin. Sections XI and XII
explore the connection with quantum field theory
and the derivation of potentials. ,Finally, in Sec.
XIII we summarize the results as far as they ap-
ply to classical relativistic mechanics. An actual
practical application (to the advance of the peri-
helion of Mercury) has been carried out in col-
laboration with Huff and will be reported soon.

no momentum is assigned to the "interaction. "
This is typical of action-at-a-distance theories, in
which no separate degree of freedom is associated
with an "interaction field. " It is our intention to
attempt to retain this feature when we make the
transition to relativistic kinematics. It is prob-
ably superfluous to argue the suitability of x, - x,
as an internal position coordinate —this choice has
the effect of making the internal variables invari-
ant under translations. The definitions of the rela-
tive momentum q and the "total position" x will be
left somewhat arbitrary, subject only to the re-
quirement that the transformation from x„x„p„
p, to x, y, p, q, be linear and canonical. Thus,
we insist that

(,P~}=5; =(y;, ~~},

(~;, e,}=0=(s;,Pj},

(~„~,.}=4,, yj}=(y,, y,.}=o,

(u;, P,}=(P;,e~}=4;, e;}=0.
All these conditions are satisfied if

P =P»+P2»»I =d P» —(1 —d}P2~

x=(1 —»f)x»+dx„y=x, -x„

(2.4a)

(2.4b)

(2.5a)

(2.5b)

(2.6a)

(2.6b)

Li

rotations

accelerations.

(2.7b}

(2.7c)

In terms of the particle variables,

p =ps+12~

~»j (+P»l »j @1»P»») (+2 P2» 2jP2»)&

L, =m, x„.+m, x„.—tj„- —tP„. .

(2.8a)

(2.8b)

(2.8c)

Each of the nine generators is just the sum of the
generators for two free particles. In contrast, the
tenth generator, of time translations, is assumed
to be modified by the interaction. This does not
prevent us from writing the total energy as a sum:

E =Ei+E2r (2.9)

but we must keep in mind that the individual par-
ticle "energies" E, and E, have not been defined;
thus the interaction energy may be included in Ey
or in E2 or in both. It is natural, in view of the

where d is an arbitrary constant.
Equations (2.5) and (2.6) are covariant with re-

spect to Galilei transformations. Since it is our
purpose to replace Galilei covariance by Lorentz
covariance, we shall examine the Galilei transfor-
mations in greater detail than would otherwise be
indicated.

The generators of infinitesimal Galilei transfor-
mations are

E and p, translations in time and space (2.7a)
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closer association between energy and momentum
to be introduced with Lorentz transformations, to
complete (2.6a) and (2.9) by introducing the "rela-
tive energy"

e=dE, —(1 —d)E, . (2.10)

Since E, and E, are undefined except for (2.9), the
definition of e remains arbitrary and may be chosen
to suit our convenience. The time variable may be
handled in the same manner; thus, (2.6b} may be
completed with

(s(&& qk} = 6(k q& 5&kq &

(s&&& yk} iky& &kyl&

{S(i& Sk}'=6(ksi —6iksi&

{s,, s,}=O,

{s,, qi}™,&„, (s(, y,}=0.

(2.15b}

(2.15c)

(2.15d}

(2.15e)

(2.15f)

ables. The relevant bracket relations are
(Ext. generator or variable,

Int. generator or variable} = 0, (2.15a)

t=(1 —d)t, +dtk& V=t( —tk. (2.11) All these relations follow immediately from the
expressions for s;; and s; given by (2.14),

(r, any observable} =0. (2.12)

In addition we must avoid introducing a new degree
of freedom, and this suggests that

In this way we have introduced a new set of vari-
ables, e and 7. It is very important to avoid mis-
interpretation of this notation: The new variables
do not correspond to another degree of freedom—
they are not a canonical pair. Their definition re-
mains incomplete and it would be entirely consis-
tent to regard them as constant parameters that
have no bearing on any measurements. In particu-
lar, we expect that it must be possible to fix 7 = 0
once and for all, so that

s;& =y;q; —
y&q

s; =M„y, ,

and the bracket relations

(Ext. variable, Int. variable}=0,

Iq;, q,}= 0 =bi, yi},

(y(, qi}=fbi

(2.16a)

(2.16b)

(2.17a)

(2.1Vb}

(2.1Vc)

Our program is to guess. the Lorentz-covariant
analogs of E(ls. (2.15) and (2.16), and to determine
basic brackets similar to (2.1Vb) and (2.1Vc) con-
sistent with them.

(7; e}=0.
In terms of the variables (2.6),

(2.13) III. RELATIVISTIC KINEMATICS

The generators of Lorentz transformations are

L;, = (x, P~
—x,.p,.) + (y. q,. —y,. q, ) = L,*,+ s,, , (2.14a)—

Li = (m „x( —tP, )+Mk y(
—= I,",. + s, , (2.14b)

M, -=dm, —(l-d)m, =dm, -m, . (2.14c)

Each of the six generators of "homogeneous Galilei
transformations" is a sum of an external or "orbit-
al" part and an internal or "spin" part. The four
translations are purely external —a result of our
definitions of external and internal variables.
Every bracket (A, B}, where A is L",i, L*,, p, or .E
and B is s,.&

or s, , vanishes; hence the transforma-
tions generated by L",&, L"„p, and E form a group
of canonical transformations that will be referred
to as the external (inhomogeneous) Galilei group,
and the transformations generated by s,.z and s,-
form a group of canonical transformations that we
shall call the internal (homogeneous) Galilei group.
It is very common to take d = m, /m„so that M, =0;
then x is the coordinate of the center of mass, and
s,- vanishes. This choice is very unfortunate in the
present context, since the corresponding Lorentz
generators s p cannot vanish. Of course, it is pos-
sible to arrange that lims«=0, but the job of guess-
ing the correct relativistic generalization of Galilei-
covariant mechanics is made unnecessarily difficult.

We are mainly concerned with the internal vari-

P„=(P., p}, translations in space-time
(S.la)

(Li»» PJ" 8(& x, Pv +aux, P(& (3.2)

are expressed in words by the statement that p& is
a four-vector. Considered as a set of equations to
determine L„„, they have the solution

pv Lpv+ slav p Lpv —xpPv xvPp~ (3 3)

where s„v is an "integration constant" that has
vanishing brackets with p„, and x„ is a set of co-
ordinates conjugate to p„. The brackets between p„
and xv,

(P„, «.}=a„., (3.4a)

0„,P}=(., .}=0 (3.4b)

reduce to (2.3), (2.4a), and (2.5a), (2.5b) in the
nonrelativistic limit if x, = ct. These are invariant
under Lorentz transformations provided that x„ is
a four-vector. Assuming that this is the case, we

L„,=(L(i, L,o}, rotations and accelerations.
(S.lb)

Greek indices run from 0 to 3. The nonrelativistic
limit is recovered as L,o/c L;, (P,—cm+) c-E.
The bracket relations
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spv=ypqp y qp. (3 5)

Apart from the analogy with Eq. (3.3}, this is justi-
fied by the fact that when p, and v are different from
zero, (3.5) is the same as the nonrelativistic ex-
pression given by (2.16a). When v= 0, the most
general expression is s;, =y&qQ yoq where q, and

y, are to be determined. In the nonrelativistic
limit, s«/c must tend to s„ thus from (2.16b),

q,/c -M~, y,/c -0. (3.6)

If we remember that the internal variables e and v

were left undefined in the discussion of Sec. II, we
can enhance the analogy between internal and ex-
ternal variables by writing

(q, —cM, )c=e, y,/c=~. (3.7)

This defines e in terms of the still undefined qo and
restricts the "relative time" to vanish as c-~.
For the same reason we shall postulate that q„and

, y& transform like four-vectors,

{Sp v» q k) 8p xqv +Bio qp.».
{Spv» yZ)= »qpXyv+8'vXyp»

and that

(3.8a)

(3.8b)

{pp or x„, q„or ~}=0.

In the nonrelativistic limit Eqs. (3.8) reduce to
(2.15b) and(2. 15c) when g, ve 0 and, by virtue of
(3.6), to (2.15f}when v=0.

There remains to modify (2.17b) and (2.17c), so
as to make them consistent with (3.8) and (3.9).
Clearly,

(3.9)

notice that L„„satisfy the same bracket relations
as I&„, and that

{s„„,x,j=o={s„„,L', p).
From this we easily deduce that s&„satisfy the
same bracket relations as the i,„„.Hence we have
the same situation as in the case of the Galilei
group: The p„and the L„*„generate an external (in-
homogeneous) Lorentz group and the s„, generate
an internal (homogeneous) Lorentz group of canoni-
cal transformations.

Next, we postulate that internal variables y„, q„
exist such that the internal generators s„„take the
form

ternal) scalars. Equations (3.8) require that A'
=B'=a=0 and C'= —B, C"=-A.; thus,

{q„, q.)=As... {y„y.)=BS...
{qp» yJ =Epv Bqpqv Aypyv ~

(3.12a}

(3.12b)

{qp» yv)=ljv qpqv/q»

{q. q)=0, {y„y.)=s,./q'

(3.13a)

(3.13b)

Let us emphasize that we have just taken a crucial
step. We have made certain that no insuperable
difficulty of interpretation can arise, by fixing the
number of independent canonical variables at the
same number as in the nonrelativistic theory.

The degeneracy of (3.13a) means that the vari-
ables are subjected to one constraint. The quan-
tity q' =,g~"q„q, has vanishing brackets withy„and
with q&,

{q» qp)={q» yp)={q» spv}= 0. (3.14}

Later, dynamics will be introduced and the time
development of the system mill be represented as
the unfolding of a family of canonical transforma-
tions. The canonical invariant q' will then be a
constant. The actual value of q' is provided by
the nonrelativistic limit (3.7); namely

q -qo cM„.2 2 2 2

Thus, if q2 is fixed it must be

q =c M&.

Comparison with (3.7) shows that

(3.15)

(3.16)

The dimension of A. is I. ', and the vanishing of
{q,, q,} as c-~ gives A -0. A nonzero value of
A would require the introduction of a fundamental
length and is best avoided. There is bo such prob-
lem with B, since its dimension is (mc) . We
shall take A. =0.

Next, the magnitude of B is fixed by the require-
ment that the relativistic theory have the same
number of degrees of freedom as the nonrelativis-
tic theory. This means that the rank of the tensor
(3.12b) cannot change as c- ~. Since the rank is
three in the nonrelativistic theory, we have to
choose B so as to make det (gp, —Bq„q,) = 0 or
B=1/q', where q' gp"qpq„. Thus, our final
choice of basic bracket relations is

Apv {qp» qJ& Bpv {yp» yb}» pv {qp» yu) (3 10) e =q'/2M, . (3.17)
must be second-rank tensors constructed from the
available variables. The most general possibility
ls

A„„=As„,+A's„„, B„„=Bs„„+B'0p„, (3.11a)

Cpv=Cgpv+C qpqv+C ypyv+D(qpy +qvyp)» (3 11b}

where 0p„ is the dual of sp„and A, A', , D are (in-. ..

If d = 1, then the nonrelativistic q is p„, and e =p, /
2m, . If x is the position of the center of mass,
then M, =0, q' =0, q, = ~q~, and e remains undefined.

The redundancy introduced by the Lorentz-covar-
iant notation is thus removed by a constraint among
the four-momentum variables. A similar con-
straint among the y„ is not possible, since {q„,y')
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e0. Instead, the reduction to three variables is
brought about by the invariance of Eqs. (3.5), (3.8),
and (3.13) under the "gauge transformation"

q = (q'+M')'~'

y 'q.

(3.25a)

(3.25b)

(3.18)

where A is an invariant function of q„[and hence a
constant, in view of (3.16)]. However, there is a
preferred gauge. If Eq. (3.5) is solved for y„, the
general solution is found to be

If A and B are expressed as functions of p&, x„, q,
and y, then (3.24) takes the form

(ex Ea ea ax)

BA 8B BB BA g +~i ~j
yp

= (1/g )sp„g +0', (3.19)

yg =(1/q )sp, q" (3.20)

Because of Eq. (3.5) this is equivalent to

q "y„=0. (3.21)

From (3.21) and (3.16) it follows that y„ is space-
like.

=3'0 y ~0 (3.22)

which allows us to define the distance r between the
two particles as

(3.23)

Later, this will help us construct the interparticle
potential.

The bracket (A, B} of two arbitrary functions of
the variables p„, x„, q„, y„ is given by Eqs. (3.4)
and (3.13):

BA BB BB BA

a a ap ax

8A BB BB BA O'PVIj

where a is arbitrary. Substitution into (3.13) shows
that a must be a constant; thus the arbitrariness is
reduced to the choice of gauge. The gauge that me

prefer is the one in which a =0; in that gauge po 0
in the nonrelativistic limit and s; has a vanishing
bracket with y;, which corresponds to our choice
y =x,-x,. The nonrelativistic relative position co-
ordinates are the space components y in the gauge
in which the relative time vanishes. The covariant
definition of that gauge is

1 8A BB
+ 2 S3~ ~

Q' 8$; Bp. (3.26)

Next, one may easily verify that the Jacobi identi-
ty is satisfied:

(g, a},C}+pa, C},A}+gC,W},a}=0, (3.27)

BB BB BA

aq,. ay, aq, ay; (3.28)

Since manifest Lorentz covariance is desirable,
we shall prefer the equivalent form (3.24) and call
that form "canonical". 6 A "canonical transforma-
tion" is one that preserves (3.13); if such a trans-
formation is reexpressed in terms of the variables
Q, and F„ then it is canonical in the usual sense as
well. Our use of the term "canonical transforma-
tion" is therefore completely conventional.

Probably the simplest transformation that brings
(3.26) to the form (3.28) is

&=ay, Q=a 'q, (3.29)

with

and from this follows that there exists a set of co-
ordinates p„, x„, q;(q, y), and 1;(q, y) in terms of
which (3.26) takes the customary canonical form.
Usually, one considers functions A and B that do
not depend explicitly on the total energy po; then
one of the terms in (3.26) vanishes, and there re-
mains

( ) (M &B aB &A)

b -=q,/M, =(1+q'/M, ')'~' (3.30)

(3.24)

We may refer to the brackets (3.13) and their gen-
eralization (3.24) as canonical; this is justified as
follows.

First, let us note that the number of independent
internal variables is three coordinates and three
momenta, since the constraints may be used to
eliminate q, and y„' d4xd4Pd'y d'q (3.31)

(This tends to unity in the nonrelativistic limit. )
The Q defined by (3.29) is bounded in magnitude,
since jQ~ &M~. Notice again that the choice of cen-
ter-of-mass coordinates, 3f„=0, must be avoided.

Finally, let us note that the theory possesses the
usual integral invariants with respect to contact
transformations. In particular, the theorem of
Liouville states that the phase-space volume ele-
ment
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is invariant. (We have inserted the factor dx, dp,
in order to extend the invariance to include Lorentz
transformations and other generalized contact
transformations that transform the time xo and the
energy p, .) In terms of q„and y„ the invariant
(3.31) takes the form

d'xd4p d'qd'y6(q'-M, ') 6(qy). (3.32)

IV. NONRELATIVISTIC DYNAMICS

Equations of motion in nonrelativistic mechanics
have the form

dA BA
A —= =——P,Aj.

dt ~t
(4.1)

{E,A}=—,8A. (4.2)

in accordance with the convention (2.3). Thus we

get the preferred form

A ={E H, A). -
Let us note in passing that t= j.

For simplicity consider an isolated system. The

stationary states are parametrized by a real num-

ber assigned to E, and this number is defined by

E-H =0. (4.4)

That such a number exists follows from the fact
that

d(E H)/dt = {E-H, E H) = 0-. - (4.5)

In order to treat a specific physical system, it is
necessary to know something about H. In a typical
case one may have

H =Ho+ V (4.6)

where H, is a simple function of the momenta and

V may be a function of the coordinates. In this
case

Here A is the total time derivative of any function
A. of the canonical coordinates. The first term may
also be written

1. It is not necessary to exhibit a set of variables
that satisfy standard canonical commutation rela-
tions. We need only a general rule for evaluating
all brackets of interest. Equation (3.24) fills that
requirement.

2. The dependence of the function E-H on E may
be generalized, as will in fact be necessary in or-
der to satisfy the requirements of Lorentz covari-
ance.

3. The explicit specification of V as a function of
the coordinates and the momenta may be dispensed
with provided a sufficient number of brackets {A,V}
are known in terms of the coordinates, the mo-
menta, and V itself. This situation would arise in
our example if we were to formulate the theory in

a general gauge. By fixing the gauge, we can
avoid this particular complication.

All these generalizations have been encountered
simultaneously. ' Nevertheless there remains a
mell-defined, fairly narrow, and essentially
Hamiltonian structure. The principal points are:

(a) There is only one "time"; it is conjugate to
the total energy E, and {E,f) = 1. The equations of
motion give all observables as functions of t and
the initial conditions.

(b) A bracket {A,B) that satisfies the usual con-
ditions of a Poisson bracket is defined for any two

functions A. , B.
(c) There exists a function I.' that depends on E

and on the coordinates and the momenta and that
generates time translations by means of the
brackets, dA/dt ={I-',A). For any set of initial
conditions, a value is assigned to E such that I.'
takes the value zero.

(d) Space translations and Lorentz transforma. —

tions are also generated by brackets, and the
equations of motion take the same form in any two

reference frames that are related by a (inhomo-
geneous) Lorentz transformation.

We shall show that this framework is sufficiently
general to allow the introduction of dynamics into
the discussion of Sec. III.

{y,, v}=o, {q,, v}=F„ (4.7) V. RELATIVISTIC DYNAMICS

(4.8)

the solution of which gives the variables as func-
tions of the time and the initial conditions.

This theory retains its basic structure if we in-
troduce one or more of the following generaliza-
tions:

where the force E,- is likewise a function of the co-
ordinates. The equations of motion take the form
of a set of coupled first-order differential equa-
tions,

y; =f; (y, q), q; =a; (y, q),

The dynamical postulate will be stated-as a rule
for calculating the ordinary time derivative A=dA/
dt of an observable A. Formal Lorentz covariance
will next be restored by replacing the time t by a
linear combination AP x&. Finally a more general
time coordinate —such as is appropriate for the
case of general relativistic covariance —will be
introduced.

We postulate the existence of a function I.' such
that all the equations of motion can be written in

the form
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A =dA/dt=(L', A). (5.1) Eq. (5.4) is replaced by

It is assumed that rules are given that allow the
determination of all required brackets and that the
usual conditions for Poisson brackets are satis-
fied. The function L' depends on a set of observ-
ables and on the total energy p, . The possibility
thatA may have an explicit time dependence is
taken into account by regarding pp and t as conju-
gate variables. ' In particular,

t =(L', t)=,
0

(5.2)

L' =L/I (5.3)

and assume that L'=0 imply L=O, then t=1 for re-
alizable motions if and only if

8LI Ipp Ip: pi (5.4)

Equations (5.3) and (5.4) will be regarded as iden-
tities, though it would perhaps be sufficient that
the latter be true for realizable motions. We take
L to be the fundamental dynamical function and Ip
to be defined by (5.4). Eliminating L' we have the
following dynamical postulates:

A ={I 'L, A), (5.5a)

L =0 for realizable motions. (5.5b)

As a particular case, t =1, which interprets the
dot. We may also write

I,A =(L,A}, (5 6)

but this follows from (5.5) only for realizable mo-
tions (for which L =0). Hence (5.6) cannot be used
as a substitution rule inside a Poisson bracket. '

Invariance under Lorentz transformations places
certain demands on the function L. To discover
what they are we begin by generalizing our choice
of time parameter. Instead of interpreting A as
the derivative with respect to t, we introduce

s =A, "xp, A. =1, Ap&0, (5.7)

and interpret A as dA/ds. In this case s = 1, and

This quantity must be equal to unity. In the non-
relativistic theory L'=E H, w-ith BH/BE =0, and
t = 1 identically. In the relativistic theory we
must admit a more general p, dependence and t
can reduce to unity only as a consequence of the
equations that determine realizable motions.

Since I' is the analog of E -H we add the pos-
tulate that, for any value of t, the values of the
total energy pp and of the other variables in L' are
related so that L'=0. Naturally, this is not true
identically, but only for realizable motions. Thus
it is incorrect to substitute L'-0 inside a Poisson
bracket. If we write

I=~&I„. (5.6)

The dot operation is now formally invariant pro-
vided A.

&
transforms like a four-vector. Covariance

of (5.5) is obviously guaranteed if the function L is
invariant. Different frames are associated with

different A.„, however, and what remains is to
make sure that the direction of X„be insignificant.
This is most easily done by taking L to be indepen-
dent of A, &, for then A, „enters only through the
time parameter s.

Taking L invariant and independent of A, &, we can
fix A.„, e.g. , A. „=(1,0, 0, 0), without losing Lorentz
invariance. Qur first formulation, with s =t, is
therefore Lorentz covariant provided L is invari-
ant. However, the invariance is not "explicit". and
it may sometimes be advantageous to introduce
another definition of s.

For any allowed motion it is, in principle, pos-
sible to determine I, as a function of t. For each
allowed motion we may therefore evaluate the in-
tegral

I' dt'
s(t) =Jl ~(t, )

~ (5.9)

where the dot now stands for the derivative with re-
spect to s. This equation can be adopted as dynam-
ical postulate and is valid as a substitution rule in-
side Poigyon brackets —in contrast with (5.6). In
particular, we have

(I.,s) =1. (5.11)

The new formulation is summarized by (5.10) and
(5.5b).

As an illustration, let us consider the motion of
a single particle in an external gravitational field.
Then,

(r""P„P,-m'),1
(5.12)

i"=(L, x")=—g""P„,1
(5.13)

1
Pa Ps& g PJ ~ (5.14)

Since g"s is a given function of x„, we have

(u„g"')=a"'.„ (5.15)

and a simple calculation reduces (5.14) to the geo-

Assuming that s(t) is an increasing function of t
[which requires that I, &0 —see comment following
Eq. (9.14)], we can take s =s(t) as time parameter.
Instead of (5.6) we get

(5.10)
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desic equation

x'"+ I'„~g x~P. =0. (5.16)

For allowed motions I.= 0, and (5.13) shows that
this is the same as

g„,x6'" =1. (5.17)

Consequently, ds is just the invariant line element:

ds =gp~ dx (5.18)

1 (p' -m') —V(x).
2m

(5.19)

In this case we get, using the invariant time pa-
rameter,

1
P mph

(5.20)

1 1 ev 1"„=—(p„,V(x)] =—,„-=—r„(x). (5.21)

If we use the noninvariant time t, we get instead

P/Po~ (5.22)

(5.23)

As a second example consider a particle in an ex-
ternal scalar potential, with

VI. TWO PARTICLES WITHOUT INTERACTION

In analogy with the nonrelativistic mechanics of
two free point particles, we expect that the func-
tion L is of the form nP, '+Pp, '+y. The coefficients
o., P, and y are all determined by the requirement
that the usual form E -p, '/2m, -p, '/2m, be ob-
tained in the nonrelativistic limit, and the result is
that L is just the sum of two one-particle L func-
tions:

Pp =Pyp+P2p) qp =dP&p —(1 —d)Pgq)

x& = (1 —d)x»+dx2pp yp xlp x2p ~

(6.2a)

(6.2b)

We can solve these relations to express p», p»,
and x» in terms of p„, q&, x&, and y„, and then

use the bracket relations (3.4) and (3.13); or we can
make use of (3.24) and (6.2}. The results are, us-
ing invariant time and Eq. (5.10),

L = L =
2 (p,

' —m, ')+ (p,
' —m, '). (6.1)

1
m

7 m2

In order to relate this to the formalism of Sec. III,
we have to define p„and q& in terms of p» and p».
Adopting the same relatioiis as in the nonrelativis-
tic case —Eqs. (2.6), (2.9), (2.10}, and (2.11)-we
write

Finally, let us list the results for an external
vector potential as well. With invariant time co-
ordinate:

x,„=~'~ ~dq (q2) i P2q Piq
m m2 m]

x,„=~'~ + (1 -d)q„(q')-' ~'-P',
m m] m2

(6.3a)

(6.3b)

1
L =—[Q)-eA)' —m'],

2m
1

x =—(P-eA)
m pp

(5.24)

(5.25)

and, of course, p» =p» = 0 a,nd x,„=x,„=0. Writing
the same result in terms of ordinary time t, we

just get an extra factor

~ . 8 ~ px =—x F
m

(5.26)
Io=(1 —d) ' +d

m 1 m2
(6.4)

with E»—-A, &
-A&, . Using the time t we get in-

stead:

x = (p-eA)/Q, -eA, ), (5.2V)

(5,28)

The use of the invariant parameter seems to rec-
ommend itself.

It should be emphasized that there is nothing in-
novative in this discussion. What is new is the sub-
sequent treatment of the two-body problem. The
difficulties that have been encountered in the past,
when the dynamics outlined above was combined
with the more conventional two-body kinematics,
are well known. The main problem has always
been the superabundance of independent degrees of
freedom in the usual two-time formalism. This is
just the feature that we have taken pains to avoid.

on the left-hand side of (6.3).
The only physically relevant result here is that

x 1 x 2
——0. The motion is recti 1inear and unif orm,

the velocities being given by (6.3). The motion is
completely determined for all time by initial con-
ditions for x„x, and x„x,. The initial values of
x„x, also fix all components of p„and q„, since
we have two constraints':

q
' = M~

' = (m, d —m, )' and L = 0. (6.5)

This in turn shows that ty and t2 are determined.
By "initial values" we may understand values of
the dynamical variables at some value t. of t, or,
if we use invariant time, at some value s of s. The
initial value of t is t in one case and irrelevant in
the other case. The initial value of v=y, /c is fixed
by the gauge condition y&q„= 0. If we work in an un-
specified gauge, 7(t ) is irrelevant since the theory
is gauge invariant. (L is independent of y„.)
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VII. TWO INTERACTING PARTICLES

The most interesting interaction is a Lorentz-
covariant generalization of the 1/r potential. The
straightforward procedure is to replace the L func-
tion (6.1) for two noninteracting particles by

L = L —V(y), (7.1)

where V(y) depends only on the relative coordi-
nates y& and has the form

V(~) = v(r), (7 2)

r being the invariant defined by (3.23):

Nevertheless, the theory has one unusual feature:
The constraints (6.5) are not the same as, and not
consistent with, P,' = m, ' and P,' = m, ', ~ xcept for
a special choice of d. This is not really physical-
ly relevant since it has nothing to do with the par-
ticle motions. In the special cases d =1 and d ='0,

the expression for q„reduces to p» and P», re-
spectively. In the first case the constraint on q'
means that p,'= m, ', while Lo=O gives P,'= m, ';
in the second case the situation is reversed. Thus
it is possible to recover the familiar mass-shell
conditions at the price of giving up the symmetry
between the two particles. We emphasize that so
far no physically relevant criterion for choosing d
has been found. Later on, advantages of taking d =0
or d =1 will emerge.

pv, =-p»=-p„v'/r. (7.7c)

s, ,=O, s;;=y;q, —
y,-q;, ('l.10)

which shows that the motion is confined to a plane.
The space-time components of L&o in the frame
p=0 are x;p, +s„, and (7.9) reduces to

We shall examine these equations from several dif-
ferent points of view.

Initial - value P~oblem. If for some value s of
the invariant time parameter s, we assign arbi-
trary values to x„x„p„and p„ then the future
motion is completely determined: The initial value
of qp is given by the constraint q

' = hf„,' that of

y, by y~q„=0, while p, is determined for realizable
motions by L =0. The initial value of xp relates
the zero point of invariant time to the zero point
of xp and is irrelevant. These initial values deter-
mine, through Eqs. (V.V), the first s-derivatives
of x~ q x2p p~ p

and p2 ~

Conservation laces. Translation invariance is ex-
pressed by

p„=P,p,j=o (V.8)

and Lorentz invariance by

L„„=(L,L„,]=0. (7.9)

In the frame p =0 the space-space components of
L„„are s... and (7.9) gives

y2 ~ (V.3) Po&~ +co ~~o = Xqo yolk ~ (7.11)

[r, q„] =y„+,

and thus, with v'=ev/er,

[V, q„]:=y„v'/r,

[V, y„]=rq„v'/q'.

(7.5a)

(V.5b)

('?.6a)

(7.6b)

The equations of motion, in terms of invariant
time, are

x,„=m, 'p, „+d(q') '[p, q/m, —p, q/m, rv']q„, —

('l.7a)

x,„=m, 'p,„—(1-d)(q') '[p, q/m, -p,q/m, rv'] q„, -
(7.Vb)

Since r must be real, this makes sense only if we
impose the gauge condition (3.21), q "y& = 0. This
can be avoided if we replace (7.3) by a set of
bracket relations involving x, and this completely
gauge-invariant formulation has already been de-
veloped, ' but it is more straightforward to use
(V.3) and put

(7.4)

Equations (3.24) then give

x (s) =f2 [x,(s), x (s), x,(s), X2(s), po] . (7.12b)

For allowed motions the dependence on p, can be
eliminated by means of the further constraint L=O.
The resulting equations have a form similar to
those studied by Currie, " and by Hill, ' but the
difference in interpretation is important. Our
"time coordinate" s is invariant; we may just as
well use t =xo as time coordinate, but in any case
it is the same time coordinate that appears in both
Eqs. (7.12). Currie" and Hill" use two times;
although their values are set equal in the equations

This is the relativistic analog of the constancy of
the velocity of the center of mass. Another type of
conservation law is Liouville's theorem of the con-
stancy of the density of phase space. Since the
time development of the system is determined by
the unfolding of a family of canonical transforma-
tions, the phase-space volume element (3.32) is
constant. "

Accelerations and forces It is pos.sible, with
the help of the constraints on q' and yq, to elimi-
nate Pz, P», x„, and x„ from Eqs. (7.7), and thus
to express the equations of motion in the form

j(s) f/ [x(s)x2(s)x(s)X2(s)PO]()
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for the accelerations, they transform differently
under Lorentz transformations, t, forming a four-
vector with x, and t, forming a four-vector with x, .

According to a celebrated theorem, ' it is impos-
sible to set up a canonical theory of two interact-
ing particles in which the individual particle posi-
tions are the space parts of four-vectors. The
present theory does not contradict the theorem
since the primitive brackets between the x„x, are
not canonical in the strict sense. Of course, we

may write the equations in terms of x and Y,
whose mutual brackets are all zero, but Y is not
the space part of a four-vector. (See the end of
Sec. III.)

Solutions. In the special case when v(r) is of the
form n/r, -it is easy to solve Eqs. (V.7) exactly.
In that case the square brackets in (V.7a) and (V.Vb)

are constants by virtue of L =0. There then exists
a linear combination of z,&

and x» that is a con-
stant of the motion, and it is sufficient to solve for
y, say. In the frame p =0 we may write

L =Poqo —P4M„—v(r)& (7.13)

where P, and P, are constants. By direct calcula-
tion, one finds that Pp P4 is positive if

2mlm2
(1 -d)'m + d'm (7.14)

B( ——(Poco P~M~ y;)(Po -P4)-
. satisfy the following kinematical relation:

(7.16)

(A B}3 (AxB)2
+ ~ =A, (7.17)

where 8 = —,s,&s„ is the square of the angular mo-
mentum and (note that rL, = -a = const)

n'=(rL, )'(P,' P,') '. - (7.18)

Equations (7.17) and (7.18) show that B moves on

an ellipse when the inequalities (V.14}are satisfied
and on a hyperbola when they are not. From the
constancy of X follows that the same is true of y,
and thus also of x, and x,. It is interesting that the
escape energy is just m+ = m, + m, independently
of the value of d. To complete the determination
of the motion, we derive a law of constant areal
velocity. In fact, it follows immediately from Eqs.

and negative outside this region. It has already
been pointed out that s;& are constant, hence the
motion is confined to a plane. In the special case
considered now, the vector

A, = (P,s,, P,M, y, ) )P,-' -P,'(-'~' (7.15)

is also a constant of the motion. The vectors A

and B,

(7.7}, when v = a-/r, that the vector yxy is con-
stant, and that constant vectors c, and g, exist
such that (x,—c,) xx, and (x2-c2) xx, are constants.

In summary, it may be said that the equations of
motion describe a system that is qualitatively
nearly indistinguishable from its nonrelativistic
analog. The choice of d remains undecided, ex-
cept that the obvious and popularly preferred value
d= m, /m, is ruled out. We have noted the esthet-
ic advantage of the extreme values, d=0 or
d= 1, which lead to the normal energy-momentum
relations p, '= m, ' and p, '= m, ' for free particles,
but this is irrelevant in the present context.

VIII. RELEVANCE AND LIMITATIONS

The question of the most appropriate choice of
the parameter d is only a specific example of the
larger issue of relevance of the formalism. So
far the guidelines have been Lorentz invariance and
the correct nonrelativistic limit, which is not suf-
ficient to arrive at a definite theory with predic-
tive power. Classical mechanics makes no pre-
dictions about the motion of the planets until the
correct potential is known, nor will the present
theory account for the advance of the perihelion of
Mercury before we correctly specify the potential
v(r)

In our opinion, constructive efforts such as the
present are of little use unless they lead finally to
definite models with power to make predictions
about actual physical phenomena. Further, we

believe that the additional input that is required
must come from quantum field theory. For this
reason we shall make no attempt to make physical
applications at this stage, but proceed instead to
make the transition to quantum theory.

So far, nothing has been said about the problem
of three or more particles, and nothing has indi-
cated that this would present very great difficulties.
It might seem that one could solve the problem of
two bodies without complicating the matter by in-
troducing a third, but unfortunately this is not so.
For a complete interpretation of the theory, it is
necessary to introduce, if not a third particle, at
least an external field. If the correct potential
were known, one would expect to confirm the cal-
culated orbits by means of actual observations.
We shall assume that such observations are car-
ried out with the help of electromagnetic interac-
tions, although the following arguments could prob-
ably be adapted to other situations. An optical
measurement of a world line is made by preparing
an electromagnetic field A„(x) throughout space-
time and noting the locus of arguments (x, t) for
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which A„(x) is perturbed. It is assumed that this
curve coincides with the world line of the particle.
The importance of this assumption for us is that
it amounts to postulating a local interaction be-
tween the particle and the field: The particle at
point (x, f) senses the field at that point only.

It would be imprudent to assume that the orbits
calculated above, x»(s) and x»(s), can be observed
optically without first investigating the nature of
electromagnetic interactions. In analogy with non-
relativistic mechanics, one expects to introduce
such interactions by adding terms containing

A&(x, ) and A&(x2) to the I, function. The first dif-
ficulty that appears is that of gauge invariance;
the familiar substitutions do not give a gauge-in-
variant interaction because of the constraints and

unusu3l bracket relations of the internal variables.
An even greater objection is the fact that, when

only one particle is charged, and no interaction
between them is introduced, both particles are ac-
celerated (except in an important special ca.se, see
below). By pursuing these ideas we shall come to
a more precise delineation of the limits of our
method.

Although it is difficult to write down an interac-
tion between the field and each particle, there is
no obstacle to a gauge-invariant interaction be-
tween the field and the two-particle system. The
properties of the coordinates x„and P„are quite
the usual ones, and the substitution

Lo(pq, qq) I, =L-o[pq —eAq(x), qq] (8 1)

leads to a gauge-invariant theory. The only trouble
is that the interaction occurs at the point x = (1 -d)x,
+ dx„unless d =0 or 1, there is no charge at this
point. It is remotely possible that some physical
relevance can be achieved by choosing d such that
x is the center of charge, but we shall not place
our bets on that. Instead, it may be argued that a
definite indication of the most advantageous choice
of d has finally appeared, namely, d=0 or 1. With
d= 1 (say) the substitution (8.1) achieves a local
and gauge-invariant interaction of the field with
particle 2, since x=x, in this case. One of the par-
ticles, at least, becomes visible. (In this special
case, if there is no interaction between the parti-
cles, x, turns out to vanish. ) The other particle
may be "seen" by switching to d =0, or its orbit
may be determined by symmetry arguments, but
we cannot couple both to A„simultaneously.

Thus it is seen that the theory may give a good
account of two particles with interaction between
them and between one of them and an external
field {or between one of them and one or more ad-
ditional particles).

When d is set equal to 1, and the limit m, /m2- ~
is taken, one obtains a theory of planetary orbits

due to Thirring. For a discussion of this limit, and

other theories closely resembling ours, see sev-
eral papers by Anderson and von Baeyer. "

IX. QUANTIZATION

We seek a Hilbert space of functions g(P, q) on
which the kinematical variables act as self-adjoint
operators satisfying the bracket relations of Sec.
III, Poisson brackets being replaced by commuta-
tor brackets'.

IA, B)I- (ih) ' [A,B]. (9.1)

The P&, x& brackets are just the familiar ones and
it is clear that the operator x„ is

8
x —-N

BP
(9.2)

The s&, is the generator of Lorentz transforma-
tions of q„. In the absence of additional spin de-
grees of freedom,

(9.3)

Comparison of this with the classical expression
(3.5) suggests, of course, that y„be identified with

i@a/Sq"; but t-his is inconsistent with the bracket
relations (3.13). One might attempt to define y„by
Eq. (3.19), choosing the parameter a such that the
operator is Hermitian. If s» and q& are Hermiti3n,
then so is

y~= (1/2q')(s„, q" + q"s„„)

=(1/q')(s„„q" —aih' q). (9.4)

Hence a tends to zero with h. This allows us to
define x' as -y&', but the important operators z
and r ' remain ambiguous. For this reason we

prefer to begin by introducing an operator form of
r ' and define y„by analogy with ( t.5a):

y„= (I/2N)(r[r, q„]+[r,q„]r). (9.5)

Both (9.4) and (9.5) have the correct limits as ei-
ther h- 0 or c-~; in fact, both definitions agree
if we take the following definition of the operator
r:

r 'y(P, q) = -(M-,/2), , y(t, q')
(dq')

(9.6)

with

(9.7)

The proof of this statement, and some other re-
sults concerning these operators, are in the Ap-
pendix.

The integral operator (9.6) is almost a straight-
forward generalization of the conventional express-
ion for x ' in momentum space, to which it reduces
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when c- ~ (effectively, because q,'= cM, tends to
infinity). The 5 function in (9.7) enables us to re-
tain the constraint on q'. The factor e(q, ) could,
without violating Lorentz invariance, be replaced
by 1+ag(-qo) with arbitrary real a. The special
choice a = -2 has been made. for convenience. "
The correspondence between operators and clas-
sical observables is many-to-one; therefore, we
do not expect that the operator r should be uniquely
determined by the correspondence principle. What
freedom there is may be used to our best advan-
tage. The principal reason for the choice made in
(9.7) is that the case of the r ' potential remains
soluble in the quantum theory.

The inner product will be defined as

(9.8)

L$=0, (9 9)

where the operator L is to be obtained from the
classical L function by substitutions based on (9.2)
and (9.6). The corresponding Lagrangian is

J}'(if (~i)i Qi)(&i)((', i,) (9.10)

and this is real if L is Hermitian in the metric
(9.8). If it seems that the transition from the clas-
sical to the quantum theory contains ad hoc ele-
ments, it should be emphasized that no ambigui-
ties are involved in making the passage in the op-
posite direction. This is as it should be, since the
classical theory needs quantum theory (in fa.ct,
quantum field theory) to select the relevant poten-
tial, while the opposite is not true. We require an
unambiguous prescription to descend from quan-
tum theory to classical mechanics. It will now be
shown that the wa. ve equation (9.9) lea.ds to the
equation of motion (5.6) as h tends to zero. ' The
procedure is a generalization of the proof of
Ehrenfest's theorem.

We shall suppose that L is a polynomial L~ in P„,
with operator coefficients. Let

with the same volume element (9.7) as used in (9.6).
In this metric r is a positive definite self-ad-
joint operator. (See Appendix. )

In the classical theory dynamics was introduced
in terms of a function L that corresponds to the
nonrelativistic function E—H. For allowed motions
L =0. In nonrelativistic quantum mechanics, the
function E-H is the Lagrange operator, and the
vanishing of E-H is expressed as the wave equa-
tion. We shall therefore postulate the wave equa-
tion

and define I&(p, p') symmetrically in p and p' such
that 1&(p,p) = I~(p) and such that

(p- p')'1„(p, p') = Lp L-~'

Then the conserved canonical current is

)=f (&i)i'(p)(i o' i'Nip')

(9.12)

(9.13)

(The q arguments are suppressed. ) The normali-
zation condition for bound states is simply
J,(p, p)=1, or"

dq *ID = 1. (9.14)

Notice that the positivity of I, required here was
relevant in the classical theory as well, in connec-
tion with Eq. (5.9). The purpose of all this is to
arrive at an expression for the expectation value

(A) of the operator A; according to (9.14),

(9.15)

For the most part we shall use the same symbol
to denote either the operator A or the correspond-
ing classical observable, but for the present it is
convenient to distinguish between them and we
shall write A for the classical quantity.

Define

A = lim(A),
5~0

(A, B I=lim((ih) '[A, B]),
and consider two states of definite total momenta
p„and p&, so that L~+&) =L~ig(p') =0. Then

(9.16)

(9.17)

0 (((() 'f (dql$ (p)i(L=, y(p')

(4") 'f(&el('(i)(]&, &=. ]'(&' )»4(i(")-
(9.18)

0= —I, '(L,Ajt+dA/dt, (9.20)

.which agrees with the classical dynamical postu--
late of Eq. (5.6). The classical dynamics is thus
recovered.

X. WAVE EQUATIONS

We have been led to wave equations of the form"

Now let p' = p and let p,'- p„' then,

0 = (i 'f(()(rtq)i" ((')(-[i,» ~ (i', -(',)i X}i((') .
(9.19)

As h- 0 this tends to

BL
1„(P)= (9.11) [(P, —m, ')/2m, +(P,' —m, )/2m, —V]g= Lg =0,

(10.1)
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p, = (1-d)p + q, p, = dp- q, q' = M, '. (10.2)

x I()'(p', q)(dq). (10.5)

The two-particle system may be coupled to an ex-
ternal electromagnetic field via this current by
making the substitution p„-p„-ieA&(x), q„ fixed,
in (10.3). However, the physical meaning of such
a coupling is clear only if d=0 or 1, in which case
the field is coupled to only one of the two particles.
In this respect quantization does nothing to change
the conclusion reached in Sec. VHI.

As far as the choice of V is concerned, we know
that V= c(/r give-s a good account of the Coulomb
problem, with the correct nonrelativistic limit.
Fine structure, to the extent that it is a nonrelativ-
istic phenomenon, may also be accounted for. But
other modifications of the potential, such as would
be needed to calculate the Lamb shift or the ad-
vance of the perihelion of Mercury, remain un-
known until contact is made with quantum field
theory.

Eermions. The form of (10.1) suggests that anal-
ogous equations for spin-& particles be obtained
by replacing one or both Klein-Gordon operators
by Dirac operators. Thus, if only particle 2 is a
Dirac particle:

[(p,'- m, ')/2m, +(p,r- m, )- V]y=0.

If both have spin 2'.

[(p,y&'&- m, )+(p,y"& -m, )- V]q =0.

(10.6)

Like (10.1), Eqs. (10.6) and (10.7) have the correct
nonrelativistic limits.

APProximgtjogg, In the static limit, e.g. , m, —0,

The potential V wH. l be taken to represent the mu-
tual interaction between the particles, and to be an
operator in q space. There is no reason why V
cannot depend on p„, but for the present we con-
sider only the simplest case when it does not. In
terms of p, q,

-2',m, I.= 2M„P"q„-c,P'- c,+ 2m, m, V,
(10.3)

where e, and c2 are constants:

c,=(l-d)'m, +d'm„c, = m+(M, '-m, m, ).
(10.4)

The matrix elements of the conserved canonical
current, between states of definite total four-mo-
menta, are thus

&,((( ) f(, ('(-e)~, ('('(, )( ((", ~')(d's)

= (-&m, m, ) 'f ('(j, q)[R Mq„- c(+() )„,j'

m -m, -2m, m, /c, . (10.13)

To solve (10.12}we introduce Fock variables

u=q(P, '-P, ')'i'(P, q, -P~M~) ', (10.14a)

u, =(1+P)'~'=(P,M, -P,q,)(P,q,-P,M, ) ',
(10.14b)

y(~) (P.q.-P.M.)'4(q). (10.14c)

Then (10.12) takes the four-dimensional form that
reveals the O(4) symmetry:

with d arbitrary but fixed and nonzero, Eq. (10.1)
turns into the Klein-Gordon equation for a single
particle in an external potential. Similarly, Eq.
(10.6) turns into the Dirac equation with a fixed
external potential, and (10.V) allows inclusion of
the effect of the spin of the source. Another inter-
esting approximation consists of ignoring the cou-
pling between the qo~Mu and qo» -Mu parts of the
wave function. In this approximation we may put

q, =+(q'+M„'). lf d=1,

p, )l = [(m,' + p, ')'i'+ (m, '+ p, ')'i'+ 2m, V']y.

(10.8)

Taking the upper of the two signs we obtain the
Breit equation for two scalar particles. (The Breit
potential V' differs from V by some terms arising
from the fact that V does not commute with p, '.)
The same result is obtained if d =0, but not for any
other value of d. Ig. the same approximation, if
d= 1, Eq. (10.6) reduces to

p, (1) = [(p,'+ m, ')'~'+p, Z —m, p —PV](l), (10.9)

which is the Breit equation for this case. Equation
(10.7), on the other hand, does not reduce to the
corresponding Breit equation -at any rate not so
simply.

Exact solutions. Equation (10.1), with the "Cou-
lomb" potential V= -n/r, can be solved exactly. "
Using the form (10.3) for I, and setting p=0, we
get

-2m, m, L )I) = (P,q, P~M~ + @/r-)g = 0,

with

Po= 2PoMa P4= I cxPo'+ m+(Mg' mmmm. )-]Ma '

(10.11)

and y = -2m, m, +. More explicitly,

(P,q, P,M, )(((q-) =rM, v',-, y(q ).
(dq')

(q- q')'
(10.12)

Let the total energy Po be such that Po'-P, &0;
this is the condition for closed orbits and hence
bound states. The condition on po is m & po & yg+,
with ng+ = ng, +m, and
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() n d'v5(v'-1) ()x
( )a x"

with

n= — (P 2 P-2)-al2

(10.15)
Here y, = m, m, /m+. For hydrogen, c,/M~ should
not exceed 1 by an order of magnitude; if d = 0 or
d = 1, the value is 1.

Unfortunately, it has not yet been possible to ob-
tain exact solutions of Eq. (10.6).

This is precisely the equation obtained by Pock for
the nonrelativistic Coulomb problem. The eigen-
values are n =1,2, 3, .... Solving (10.16) for P(), we
get the spectrum

m, '+m ' m, '-m ' 4m~m,

(10.'17)

Consistency requires that all these energies lie in
the interval m '& p0'& m, ', and this is seen to be
true so long as the radical is positive; whence the
condition

(10.18)

Once again, center-of-ma. ss coordinates (i.e. ,
M~ = 0) a.re ruled out, and so are very large values
of d(M /c, —0).

To obtain more stringent conditions on d, we ex-
pand (10.17) in powers of a and discover the very
significant fact that the binding energy is indepen-
dent of d to lowest order in o.:

(P,'- m+')/2m, = —,(1—( /c2M, )'(n/n)'+ ~ }.
(10.19)

XI. LIPPMANN-SCHWINGER EQUATION

(P,'- m, ')+ (P,'- m, '}-V y=o
2m J 2m2

(11.2)
be chosen in order that the solution have some-
thing to do with quantum field theory?" The
Green's function of (11.2) is the operator i/L, and
the scattering matrix is given by

T= -L0 —V= - V —Lo.
I I

OL L 0' (11.3)

The equation for T is

T=- —V+ V —T.
Lo

(11.4)

In terms of the matrix elements T(p, p„p', p,') this
means

In what sense can the. wave equation

Lg= [L,——Vjg =0

be considered an approximation to quantum field
theory? More pertinently: How must the potential
operator in the wave equation

1
T(f,p. ,p,'p,') v(p, p„p', p) f= (dp —)v(lplp")„, „,', „",,py;p;, p;p;)

Lo lpp2g
(11.5)

where p, + p, = p', + p2 =p f+ p2' and q" = dp", —(1-d)p,", or

"p p(p() p', p". , pip) =(fp-'pip'pl'p, (p 'p-* pl' p) pv' p. .p'pl')G-U""p-:) p'l'pl' p'p) (11.6)

This resembles the Bethe -Salpe ter equation, ex-
cept that

ic(q, )5(q'- M, ')
(I/2m, )(P, -m, ')+(1/2m2)(P2 -m, ') '

[= sv, p.)l. (11.7)

Although all our functions have so far been restrict-
ed to q' = M„', we shall now suppose that V is ex-
tended to arbitrary values of its arguments I',except
that p, + p, = p,'+ p,'). Equation (11.6) then defines

T(p, p„p', p,') for arbitrary p„p„and the analog of
(11.6), obtained from the second form of (11.3),
completes the definition oY T for general values of
all four momenta, subject only to P, + P, = P', + P,'.

l

To avoid ambiguities let the extended functions be
denoted by ~ and ~'; then Eq. (11.6), with V-u
and T - ~ can be abbreviated as follows:

(11.8)

Note the difference in meaning between the operator
products in (11.3}and (11.8). In (11.3) an integra. —

tion f(dq) is implied while in (11.8) we have sup-
pressed fd'p, d'p, 5( ~ ~ ). We shall adopt the con-
vention of using block letters in one case and

script letters in the other.
Our question can now be formulated more suc-

cinctly: Given the expression (11.7) for g, how

must we choose '0 if 1' is to agree with the off-
shell scattering matrix of some field theory~ The
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answer is, of course, to insert into Eq. (11.8) the
I matrix that we wish to reproduce, and solve the
equation for Q.

Normally, V is known in perturbation theory as
a series in powers of the coupling constant:

a+ ~2+' ' '
~ (11.9)

Expanding 'U similarly, inserting both expansions
into (11.8) and equating terms of the same order,
one obtains

'U~= -V~, '02=-T2-s'U g'0, . . . (11.10)

g,y+(x)tt, (x)A(x)+ g, g(x)tj, (x)A(x) (11.11)

to a third scalar field A(x) with mass m. The scat-
tering of a particle of the field g, by a particle of
the field P, is given in lowest order by"

gggQ[(q- q')'- m'+ is] '(M~/16m ~m2w ).

(11.12)

Substitution into (11.5) gives, in the c.m. frame,

This allows one to evaluate 'U up to any desired
order of perturbation theory.

If 'U is evaluated up to the nth order in the cou-
pling constant, and the higher orders are neglected,
then (11.8) will give a w',

& „„that, if expandable in
powers of the coupling constant, is correct up to
and including the nth order. However, this is not
the reason one studies this type of equation.
Rather, the hope is that V',

pp x will turn out to be a
good approximation beyond the limits of applicabil-
ity of perturbation theory.

The general procedure is then as follows: (1)
Replace 'U by '0 + ~ ~ +'U„(usually- just a single
term) in Eq. (11.8). (2) Restrict the momentum
variables to q' = q" = M„' to obtain Eq. (11.5) with
V replaced by the restriction V, + ~ ~ ~ + V„of
'U, + ~ ~ ~ +&„. (3) Solve (11.5) by such standard
methods as are available for ordinary Lippmann-
Schwinger equations. (4) Substitute the solution
into (11.8) to obtain the unrestricted w. Some fea-
tures of V' can be obtained more simply; for ex-
ample, the bound-state poles may be found by re-
placing V by V, + ~ ~ ~ + V„ in (11.2) and solving the
eigenvalue problem. Sometimes a complete set of
solutions of (11.2) can be used to construct the so-
lution of (11.5).~8

A very substantial simplification occurs if d =0
or d=1. If d=1, say, then the restriction q'=Md'
is just the restriction to the mass shell Py
Thus, to find the on-shell scattering matrix, it is
not necessary to carry out the fourth stop; instead,
it suffices to pass to the limit p, ' = ~2 .

I.oseest o~der. To illustrate, consider the case
of two scalar fields interacting through the cou-
pling

T(q, p, q') = -gg, [(q- q')'- m'] ' (M„/16m, m, w')

(&q")
(2w)' (q- q")'- m'

Oq0 4 d

(11.13)

Here the ie has been dropped since the constraint
q' = q" = q"' = Md' makes it redundant. Equation
(11.13) is essentially an ordinary Lippmann-
Schwinger equation. " In the case m=0 the exact
sot.ution can be obtained" in the form of a hyper-
geometric function of a complicated argument. To
extend this function so as to relax the restriction
to q' = q" =M„' with the help of (11.8) would appear
to be difficult. It can probably be done though, and
it might be of interest to carry out the rest of the
program in order to determine how V' depends on
d. However, it is much simpler to put d=1. The
final on-shell T matrix (P,

' = m, ', P,' = m, ') is
then easily obtained by restriction, the result beingy, r[1-v(s)] t "

2m, t r[1+v(s)] m
(11.14)

Here v(s) is the function obtained by expressing
the right-hand side of (10.16) in terms of s=p, ',
y= -g, g2/8w, and m is an arbitrary parameter
that reflects the indeterminacy of the phase of
Coulomb scattering [v(s) is positive imaginary].
When m =0 the potential (11.12) is

-(g, g, /16m, m, w)r '. (11.15)

The wave equation corresponding to (11.13) is
therefore the same (when m, =0) as (10.10), with

y = -2m, m, n =-g, g,/8w. (11.16)

This result means that, in one case at least, the
/matrix obtained with the approximation'U -'U,

has sensible physical properties outside the domain
in which the first Born approximation dominates-
in fact, outside the limits of applicability of per-
turbation theory. The question as to whether or not
the approximation gives a faithful account of quan-
tum field theory is taken up in Sec. XG.

XII. QUANTUM FIELD THEORY

=inally, we must inquire whether the E matrix
found by the methods of Sec. XI is a good approx-
imation to the scattering matrix of the quantum
field theory from which the potential is taken. It
would be impossible to answer this question but
for the success of quantum electrodynamics. The
experimental verification of the relativistic per-
turbation theory on one hand, and of the Schrodin-
ger theory of hydrogen on the other, gives us con-
fidence in a reduction of a quantum field theory
to its static limit. The first step in that reduction



C HRISTIAN FRQNSDAL

is to neglect, in the first approximation, all Feyn-
man diagrams except generalized ladder graphs.

The next step is to approximate all the general-
ized ladder graphs of a given order by taking the
static limit; i.e. , by keeping the leading term in
an expansion in inverse powers of the larger of
the two particle masses. This leads to the Klein-
Gordon or the Dirac theory of the lighter particle
in a static field, for a certain class of field theo-
ries. (The scalar theory considered in Sec. XI has
a static limit if g,/m, is held fixed as m, - ~. The
case of vector-meson exchange between scalar or
spinor particles works well, as does a theory of
spin-2 exchange. Nothing can be proved if the ex-
changed particle carries isotopic spin or other
non-Abelian internal symmetries. ) We return now

to the question of how good is the V' matrix of Sec.
XI. It has been shown that the approximati. on
'U='U„ in the limit mi- ~, agrees with that ob-
tained from the generalized ladder graphs. ""
(Of course, this applies only to those cases when

the limit of the generalized ladder graphs is
known. ) If quantum field theory is regarded a.s the
ultimate source of knowledge, then our conclusion
is that, under conditions approximating the static
limit, the main part of the potential to use in the
wave equations or in the Lippmann-Schwinger equa-
tions is just the Born term of the field theory.
Corrections to this potential may be calculated in
a straightforward manner, as indicated by Eq.
(11.10), and these may be treated as small pertur-
bations. In this manner the Lamb shift of (spin-
less) hydrogen has been recalculated. This leaves
unsettled the precise limits of the domain in which

the Born term provides the most essential part of
the potential. It may easily be shown, for example,
that a reasonable high-energy limit (eikonal for-
mula) is obtained if the exchanged particle is a neu-

tral vector meson.

XIII. CONCLUSIONS

It was our hope to formulate a classical relativ-
istic mechanics with realistic physical applications.
The first input into this attempt was our insistence
that the relativistic theory have no more indepen-
dent degrees of freedom than its nonrelativistic
limit. This led to a set of basic Poisson relations
for the relative coordinates that are a bit unusual,
but yield an immediate and unexpected benefit: a
natural relativistic definition of the x ' potential.
With this potential we could give a covariant ac-
count of Kepler motion. The second input was the
idea that the correct relativistic potential should
be obtainable from quantum field theory. We there-
fore quantized the theory, derived a covariant form
of the Lippmann-Schwinger equation, and showed

how the potential could be found. The main part of
the potential-the x ' part in the case of forces of
infinite range- turned out to be simply related to
the Born term of the relativistic-field-theoretic
scattering amplitude. Corrections are associated
with the higher terms and have been shown to be
small. What remains is to calculate the most im-
portant correction to the potential and to use this
to refine the covariant calculation of the classical
orbits. The most obvious application, to the ad-
vance of the perihelion of Mercury, has already
been done in collaboration with Huff and will be
reported soon.

We should like to comment once more on some
aspects of the proposed two-particle relativistic
dynamics. (i) In spite of a well-known "no-go"
theorem (but not in contradiction with it) the the-
ory is in all essential respects Hamiltonian. (ii)
We have stressed, in See. VIII, our opinion with

regard to the measurability of the coordinates as
particle positions. (iii) As a result of this dis-
cussion we arrived at strong arguments in favor
of taking one of the extreme values 0 or 1 for the
parameter d. Additional but basically equivalent
reasons for preferring one of these values came

up in Sec. XI. The choice of d that makes x„ the
center-of-mass coordinate reduces the theory to
nonsense on all levels. The loss of symmetry be-
tween the two particles, that results from taking
either of the two preferred values, is perhaps un-
aesthetic but of no practical importance.
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APPENDIX

In this paper we have attempted to eliminate all
references to group-theoretical methods. After
all, group theory can only help solve soluble prob-
lems and alternate methods can always be con-
structed. Nevertheless, we have not found another
derivation, besides the following group-theoretical
one, of some results needed in Sec. IX."

Consider the space H of functions f(z„z„z„z„z,)
on the half-cone 8 =80 —zi —82 -83 -84
z, &0, satisfying the normalization condition

(A1)
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Let z-Az be a (1+4)-dimensional Lorentz trans-
formation; then the operators TA: f(z)- f(zA)
form a unitary representation of SO(4, 1). This
representation may easily be reduced by fixing the
degree of homogeneity of f(z). We let

f(z) =z4 k(qo~ q'x~ qar qs)~ (A2)

(AS)

[note in particular that 2zz' = -(z,'/M, ')(q- q')']
and find a unitary irreducible representation in-
duced in the space of functions P(q), defined on the
double cone q'= M&' and satisfying the normaliza-
tion condition

(00 ) f0'(,e)'g (-e)'' (A5)

The action of the operators TA on P(q) can readily
be deduced from (A2); the infinitesimal generators
are s&, and s&, =—M~ '(q's&„+2iq„). The maps
I"„:f,(z) =z„f,(z) between functions of degree -2
and functions of degree -1 define a set of operators
from H, to H, that transform like the components
of a five-vector under SO(4, 1). Since the represen-
tations induced in H, and H, are equivalent, these
operators can be made to act in H, :

f, ( ), 'f f.(*')(**') '(d '). (A6)

li((q) l'(dq) &, (dq) = 5(q'- M-&')~(q. )d'q.
(A4)

The degree of homogeneity N must have real part
equal to ——,'. Next we continue these representa-
tions analytically in-N to the points -2 and -1, and
find two equivalent unitary representations in
spaces H, and H„say, with inner product

The integral does not converge; nevertheless (A6)
suggests that the operators defined by

z, , (dq')
1'~ 'P(q) ~,—' 0(q')

(
(A7)

where r is the operator defined by Eq. (9.6). Be-
sides satisfying the commutation relations of
SO(4, 2)-which enables us to prove that (9.4) agrees
with (9.5)-these operators satisfy the following
identities (o., P, ... take values 0, 1, ..., 5):

8&~""s s =0ne y$ (A9)

[say 1 s 85 I+ 2@ gys ' (A10)

In the limit h- 0 the commutation relations lead to
the Poisson brackets of Sec. III and the identities
give known formulas, including, for example,
y„'= -x'. The positivity of the operator r ' in the
metric (9.8) is the same as the positivity of the
norm (A5).

obtained from (A6) by dropping a divergent inte-
gral over z4, transform like the components of a
five-vector under SO(4, 1), and this is easily ver-
ified by direct test. Other correct results are
also obtained by formal manipulation of (A6), and

rigor can be supplied without too much trouble.
The final result may be summarized as follows.

The operators s„„s„„ands» =—1"~, A = 0, 1,2, 3,
4, are the generators of a unitary irreducible rep-
resentation of SO(4, 2) in the space of functions

P(q) with the positive norm (A5). The precise form
of the operators I'~ are

(A8)
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