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2OS. Hori, Progr. Theoret. Phys. (Kyoto) 7, 578 (1952).
2~The procedure we follow here is a variation on the

one carried out for the function known as Lerch s trans-
cendent tof which our G&(z) is a special easel in the
Bateman Manuscript Project, Higher TranscendentaL

I'Nnctions, edited by A. Erdelyi (McGraw-Hill, New

York, 1953), Vol. I, p. 27.
A little thought shows that the inequality (4.2) may be

generalized to Nth order so that the Wick-Hori series
converges (at least) for Z'1 f,cg~glf'&&pl&&
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The matrix elements of commutators of local operators are expressed in terms of the
corresponding time-ordered products to all orders of perturbation theory. An ambiguity in
the definition of retarded commutator is resolved by demanding that two versions of the
Lehmann-Symanzik-Zimmermann reduction formula agree. It is shown that when the equal-
time commutator is sequence-independent, it agrees with the appropriately defined equal-
time limit of the retarded commutator. The method enables one to rigorously obtain non-
e-number Schwinger terms directly from Feynman diagrams, and to determine their sig-
nificance in sum rules. A generalized convolution is introduced and a convolution theorem
is proved which makes rigorous the correspondence between equal-time commutators and
sum rules.

INTRODUCTION

A number of authors' have studied "Schwinger
terms, "both abstractly and in perturbation theory.
Among recent results is the fact that every causal
distribution has an equal-time (ET) limit defined
on a nontrivial subspace of the space s(R'}. The
nature of "Schwinger terms" is now quite well
understood; the role they play in the study of
scattering amplitudes has been less clear. In the
present work is an attempt to clarify the relation-
ship among various ET terms in perturbation
theory. The first problem is to develop a method
for calculating non-c-number Schwinger terms
from Feynman diagrams.

In their basic paper on equal-time commutators
(ETC's), Johnson and Low' gave a method for de-
termining ETC's and non-c-number Schwinger
terms directly from Feynman diagrams. Schroer
and Stichel' have criticized this method on the
grounds that T products are generally ill-defined,
and have developed a new method. They use the
Yang-Feldman equations to express the commuta-
tor in Jost-Lehmann-Dyson (JLD) representation,
from which the relevent ET behavior is obtained.
This method has the practical disadvantage of
being difficult to apply in higher orders. The pre-
sent approach is a synthesis of these methods.

The organization is as follows. In Sec. I, cur-
rents which are sources of fields are studied in
perturbation theory. The matrix elements of cur-
rent commutators are defined, and the ET terms

which occur in the Lehmann-Symanzik-Zimmer-
mann (LSZ} reduction formulas are specified. It
is shown that to all orders of perturbation theory,
the matrix elements of commutators may be ex-
pressed in spectral form using Feynman diagrams.
Once this JLD representation is obtained, methods
simi. lar to those of Schroer and Stichel may be
used to determine ET behavior. The procedure is
simplified by the use of tables given by Bogoliubov
and Parasiuk, and Bogoliubov and Shirkov. '

Section IIA begins with a natural generalization
of the Schwartz convolution' of tempered distribu-
tions. A corresponding generalization of pointwise
multiplication of continuous functions is introduced
and a convolution theorem is proved. Cases of
particular interest in current algebra (products of
distributions with 8 and S functions) are examined
in some detail.

Section II B contains illustrative applications of
the techniques of Sec. IIA to procedures used in
current algebra. It is shown that with one defini-
tion of the ET limit, an ambiguity discussed in
Sec. I disappears.

Section III contains a brief summary and conclud-
ing remarks.

The following conventions are adopted. In Sec. I,
the notation is that of, e.g., Bjorken and Drell. '
A~ denotes the Hermitian adjoint of an operator A,
and c* denotes the complex conjugate of the com-
plex number c.

In Sec. II, S(Rs) denotes the Schwartz space of
smooth, rapidly decreasing functions on d-dimen-
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sional Euclidean space. The dual of I(R") is de-
noted 8'(R~}. The. "action" of a distribution
T E 8'(R~) on a test function u C S(R~) is indicated.
by placing T in square brackets and u in paren-
thesis; e.g.,

ff(*I"(*))=ffu )-f f*( ) (*).

The Fourier transform u of a testing function
ups(R') is defined by

(s)=(2w) '~'f dxe' (*),

and the Fourier transform T of R distribution
TE8'(R'-) is defined by [T](u)= [T](u).

The symbol (0, ~) denotes the open interval of
real numbers x: 0 & x; [0, ~}denotes the closed
interval x: 0&x.

I, ET TERMS IN PERTURBATION THEORY

T denotes time-ordered products; A(x) and' B(y)
are Wick-ordered products of (derivatives of)
fields. Accepting these quantities as defined, a
reasonable formal definition of the commutator
[A(x), B(y)]. is given by

Definition Dl:

(a. I[A(x), B(y)]lb,„)
= Z&o..~lA(x)ln;. &&~...ln;.&*&m...lB(y)lb;.&

n, m

-[A(x) —B(y)] .

Definition D1 appears rather cumbersome. A less
cumbersoxne d'efinition is reasonable in some
cases: We begin with the formal identity

[A(x), B(y)]= e (xo —yo)[TA(x)B(y). —TA(x)B(y)],

The course of the present investigation is in-
dicated in Fig. I. The Mea is that the ambiguities
one encounters following the vertical line should
be resolved so that the diagram becomes com-
mutative; the properties of scattering amplitudes
calculated using the techniques of current algebra
»outed agree with the properties calculated using
the Feynman rules directly. In Sec. I A the various
singular terms to be encountered along the vertical
line are formally defi.ned. Section IB contains
more-precise definitions and techniques for cal-
culating these objects in perturbation theory. Am-
biguities are resolved by the means j.ust described.

A. Formal Definitions of Objects to be Studied'

Current Commutatoxs and ET- Commutatoxs

In perturbation theory, inner products (S-matrix
elements) of the form (a,«lb„.„& and matrix elements
of the form (a,„,l TA(x)B(y) Ib;„& are defined by the
Gell-Mann-Low expansion and the Lehmann-
Symanzik-Zimmermann reduction formula. Here

where T denotes the anti-time-ordered product.
Next, using the relation

(a.,J TA(x)B(y) I b,„)= (b,„lTB~(y)At(x) Iu,„,&* (8)

we obtain

(a,„,l[A(x), B(y)]lb;„)

=e(xo- y.}[(oo.~l»(x)B(y)lb &

-(b,„l 7B'(y)At(x) la.„,&"J.

(4)

Finally, noting that when (a I
and Ib& are stable

single-particle states the distinction between in
and out may be dropped, one obtains the following
definition, valid for single-particle matrix ele-
ments.

Definition I32:

(a I
[A,(x), B(y)]lb)

= e(xo —y.) [&o I TA(x)B(y) Ib& —&b I
TA"(x}B'(y)lo&*].

Perturbation
Theory

Feynman Scattering .

Rules Amplitudes

:Properties of,
Scattering
Amplitudes

1)

Current
Commutator

1)

ETC's
Schwinger Terms

LSZ ET Terms

techniques of
current algebra

FIG. 1. Two methods for calculating properties of scat-
tering amplitudes in perturbation theory. Consistency is
obtained by equating (LSZ-T-ET terms) =seagull dia-
grams and (LSZ-6-KT terms) = (seagull diagrams
+renorm. ET terms).

The in.dividual matrix elements on the right-
hand sides of D1 and D2 are well defined in renor-
malized perturbation theory; however both defini-
tions suffer from ambiguity since the formal sums
in D1 may diverge, and since one cannot unambig-
uously multiply arbitrary distributions by e(x, —y,).
One expects that the sum in D1 should be defined
so as to agree with 02 for single-particle matrix
elements. Formal definitions, analogous to D1
and D2, may also be given for other (e.g., Wight-
man) products of fields.

These formal ambiguities may be entirely elim-
inated provided the matrix element of the time-
ordered product can be written in the spectral
form
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I

(~]TA(x)R(y}~P)

dM C x-y x+y M & P g~ x-y'I
(6)

where the spectral function C" s(x- y, x+ y; M', o(, P)
has the support properties (in momentum space}
appropriate to a JLD spectral function for the com-
mutator of A and B. In this case the unordered
product is simyly obtained by replacing id~ with

A, in the integrand. [The replacement has no

effect for spacelike (x —y} where the T product
and unordered product agree, and global validity
follows from Wightman analyticity. ] Thus once
the spectral representation (6) is obtained, one has
the following unambigous definition.

Definition D3:

(G)l(&(x), &(y))IP& = fdM*C" b(x yl I*). ()—)

In Sec. IB the relevant spectral functions C"~ are
obtained directly from Feynman diagrams.

In order to define the ETC of two currents, we
first define the commutator matrix elements as
distributions in S'(R') using D 3 and then take the
ET limit of the resulting distribution. Thus we for-
mally define

(a.„,([A(x), &(y}]„,jb,,)= lim (a )[A(x), &(y}])b).
"o 3'o

(6)

It is well known that this definition is often ambig-
uous in practice; the limit depends on the, precise
mechanism by which the limit is taken. The point
is that such ambiguities can be resolved by de-
manding consistency with the Feynman rules in
practical applications: the limit on the right-hand
side of (6) should be taken in such a way that the
resulting object is really what appears in a sum
rule.

Z. Schzvinger Te~ms and LSZ ET Terms

It frequently occurs that the ETC of the two cur-
rents is not well defined as a distribution in 3'(R')
but only as a linear functional on a proper subspace
of &(R'); in such a case we refer to the ETC as a
real Schwinger term, in strict analogy to the case
in quantum electrodynamics by Schwinger' and also
by Brandt' and others. Suppose, for example, that
one has

(a ~[A(x), &(y}]„~b)= n6(x —y)+Psk 6(x —y).

We refer to the quantity Ps k 5(x -y) as a real
Schwinger term only in the case that a is infinite.

When one formally performs the differentiation

occurring in the LSZ reduction formulas, one en-
counters other ET terms, formally defined by

(I.SZ-T-E T) = o„Ty(x)j(y) —T( .p(x)j(y}),

(LSZ-R-ET) =I:I„O(x,—y, )[(t)(x),j(y)]
—8(x. -yo)[ 0(x) j(y}].

Thus formally

(LSZ- T-ET) = (LSZ-R-ET)

= 26(xo —yo)8.,[4 (x),j(y)1

+6'(xo —yo)[4'(x) j (y)].

In various models in which Schwinger terms occur,
the LSZ ET terms are infinite; in order to under-
stand the physical significance of the former, the
latter must also be understood.

Having formally defined the objects to be in-
vestigated, we now turn to the problem of finding
corresponding precise definitions in perturbation
theory.

B. Diagrams Corresponding to LSZ ET

Terms and Commutators

Diagramati c Identification ofLSZ- T-ET Terms

The LSZ ET terms have been formally defined
as the difference between CITA (x)j„(y) and

Tj „(x)j„(y), where A„denotes an interpolating
field and j„denotes a current expressed as a Wick-
ordered product of fields, satisfying the Lagrange
equations GA„=j„.' Each matrix element of
TA„(x)j„(y) corresponds to a set of diagrams.
These diagrams fall into two classes: (i) the dia-
grams in which A„ is directly connected to a point
representing the interaction Lagrangian, and (ii)
the seagull diagrams, in which A„ is directly con-
nected to the point representing j„(y). (The latter
diagrams occur when the operator j„contains the
field A explicitly, as in scalar electrodynamics. )
The diagrams corresponding to Tj „(x)j,(y) are in
one-to-one correspondence with those of the first
class; thus the desired identification is obtained
upon identifying the LSZ-T-ET terms with seagull
diagrams. The seagull" diagrams vanish for xw y
and thus have the support properties one expects
from the formal definitions. It will be shown that
these seagull diagrams also contribute to the re-
tarded-commutator LSZ-R-ET terms.

2. Diagrams for Current Commutators,
SPectral AePresentations, and LSZ-8-ET Terms

Diagrams may be given for current commutators
corresponding to each of the definitions, D1, D2,
D3. Thus to find the contributions of given order
to the matrix element (a,„)~[j„(x),j„(y)]~b;„)
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using definition D1, one first draws all diagrams
for the corresponding T product. Pairs of cuts are
then made in the diagrams, such that the out-ex-
ternal lines and the point representing j„(x)are
separated by both cuts from the in-external lines
and the point representing j„(y). The cut lines cor-
respond to sums over the intermediate states ~n)

and
~
m) of (1), and on them the Feynman propaga-

tors are replaced by 5,(p' —m'). On uncut lines
lying between the cuts the Feynman propagators
are replaced by their complex conjugates. The
contribution to the commutator is obtained by sum-
ming over all such cut diagrams (each multiplied
by the appropriate numerical factor), then sub-
tracting the contributions of similar cut diagrams
in which the roles of j„(x)and j„(y) are interchanged
in making the cuts. Instead of dealing directly with
these diagrams, " we attempt to satisfy the con-
ditions of definition D3.

Feynman diagrams may be expressed in spectral
form by completing the square of the relevant mo-
mentum variable. Let T„„(k„k,) denote the Fourier
transform of a matrix element of a time-ordered
product:

T„(k„k,) fdxdy e'i' ' ' "((P [Tje( )j „(ye)x)P j. y

(12)

Each Feynman diagram denotes a contribution to
T„„(k„k,) of the form 5((I- k, + k,}I„„(ps,p, K),
where K= k, + k, and (I = +ps - pp~, and where

Introducing the Feynman n parameters and using
standard techniques, " I„, may be expressed as a
sum of terms of the form

0(1 Qn;)-d'u. (K,p8,py, n)BJ)
d'(n)

where

J= g(n)([K -q(ny ps, p])]' —M (ps, p] y n) + is C(n)) y

(14)

where Iy =+ps+ gp and where for convergent dia-
grams the function F is an inverse power. The
functions d', A, C, M', Q, 6'„„are obtained using
the standard rules, then completing the square
with respect to the variable K.

Now (14) may be expressed in spectral form by
integrating over subsets of the n parameters on
which the functions Q and M' are constant. " Thus

with

d dM' p~+~~„"-' Z- '-~'+~-'+p~-~ e "-' Z- (15)

p'„J =p'„'!(K,P~P„M')
d „A(1 -Qn;)e(+C}5(M' —M'(p„p„, n))5(q- q(n, pa p,)}

~ ~ ~

d'(n) [A(n}]"(n —I)!

(16}

i„„(x, )=e" *yfdiM xd()e'ei [Pie'i(ie; ie„P' P',M')e„" 'k (x-y M')-Pi ~eM" 'ke(x-y M')]. ()y)

Making the appropriate substitution of Green's functions, one obtains the contribution C„„(x,y) to the com-
mutator matrix element (p8~[j„(x)yj„(y)]~p ),

(x y)=e"i*'e ' JdM'dj}[(—e )" '(p~'~-pi i}]p(x—y' M } (18)

Taking the Fourier transform of (15)y one finds that each I~, corresponds to the contribution I„,(x, y) to the

matrix element of the time-ordered product, with

[The fact that b,(x; M'} vanishes faster than any polynomial in M' as M'- ~ has been used to eliminate sur-
face terms in M'. lt should be noted that p„„has a polynomial dependence on the derivative (d„—d,)."J

The LSZ-R-ET terms may now be determined by the requirement that scattering amplitudes defined by

the two reduction formulas agree. When p~„' vanishes and products of distributions are defined such that

the retarded commutator is obtained by replacing A(x- y; M'} with e(x, —y, )h(x-y; M') then, since the

Fourier transforms of these distributions agree for positive frequencies, the desired consistency is ob-
tained by equating the LSZ-R-ET terms with the LSZ-T-ET terms, the latter corresponding to seagull

diagrams.
It has been assumed that the initial expression (1V) is well defined, and in particular that (M') "p(M') is

integrable. This should occur in every theory in which the Bogoliubov-Parasiuk-Hepp-Zimmermann re-
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normalization procedures are used to define the time-ordered matrix elements, for these procedures have

been proved to yield tempered distributions corresponding to each Feynman diagram. ~"" Schwinger terms
should occur in the matrix elements of such renormalized theories only when they occur in the integrand of
(1?). However, for completeness we now examine the case in which (ME) "p(ME) is not integrable, and (I'?)
is ambiguous. The following method for resolving such ambiguities has been given by Steinman.

Since the distribution b~ is a solution of the inhomogeneous Klein-Gordon equation, one has, for b c m', "
.
) Q(It+t )" e (o+t)".

)?=0

and thus, for b&0,

l
()o np-1 f? 0

dM'p(Sf')A (x; ~') =pa„(a+ k)"S(x)+ d?)f'p(M'), ~,(x; kf2).
0 n=p

In the case that (m' —?)) 'p is integrable, the coefficients a„are well defined and are given by

(20)

tl (k kf 2)tl+1 '

When (m' —?)) 'p is not integrable, several of the coefficients are formally infinite, and must be specified
by definition as part of a renormalization scheme. Applying a similar procedure in our slightly more com-
plicated case, we arrive at an expression to replace (1?),

f?p

I'„(e, t)=(reeerm. ET ter m)
e"eee fet d()dM''e'ee et)„em"', e (r —EM ). (21}

Here the renorm. ET terms all have support consisting of the origin x- y=0, and n, is the smallest non-
negative integer such that the integral is well defined. This does not change the definition (18}of the com-
mutator matrix element. If the retarded commutator is defined by replacing the commutator function
h(x- y; m') by the free-field retarded commutator in (18}, then to obtain consistency one must equate

[LSZ-R-ET terms] = [renorm. ET terms]+ [ LSZ- T-ET terms]. (22}

At this point, the program proposed in Fig. 1 has been completed for the case in which currents are the
sources of fields. Current commutators and ET terms have been defined so that the retarded commutator
LSZ reduction formula agrees with the Feynman rules. Thus any property of the scattering amplitude one
deduces from properties of the current commutator will agree with the same properties obtained directly
from the Feynman rules. In the Sec. II we take up the matter of deriving such properties; equal-time com-
mutators are defined, and a convolution theorem is proved and used to derive sum rules.

[T,*TE](u) = [T,(k, )TE(kE)](u(k, +k,)) (23)

when (under conditions we now specify) the right-
hand side of (23) is well defined. The direct prod-
uct T,(k,) T,(k, ) is a well-defined element of
S'(RM); however, since u(k, +k,) is not an element
of S(R"), (23) is not meaningful for arbitrary
pairs of distributions. Suppose that the supports
of T, and T, are such that there exists an infinitely
differentiable function v(k„k,) taking the value 1
identically within the support of T,(k,)ST,(k,) and
such that the product u(k„kE)u(k, + k,) is in S(R E).
Under such conditions, (23) is defined by

II. CONVOLUTION OF DISTRIBUTIONS

A. Sequential Products and Convolutions

The Schzoartz Convolution

The Schwartz convolution [T,E T,] of a pair of dis-
tributions T, and T, in S'(Rd) is defined by its ac-
tion on a test function uE S(R'):

[T,d' T,](u) = [T,(k, ) (3 T,(k, )](u(k, + k, )v(k, —k, )).

(24)

These conditions are met, for example, when

T„T,C S'(R) and the supports of T, and T, are
semibounded on the same side. Schwartz has also
proved that the convolution (in this sense) of two
distributions in S'(R') exists provided their sup-
ports lie in the forward light cone. One frequently
encounters physical problems, the formal solution
of which involves convolutions of distributions
lying outside the domain of the Schwartz convolu-
tion. The following is a straightforward generaliza-
tion of the Schwartz convolution.

2. Sequential Convolutions and Products

Let (v„) be a sequence of test functions each in
S(R ) with the following properties: (i) v„(k)u(k)- u(k) for each u E S(R") and (ii) S„k-0 for each
k & CgR") such that the support of the k excludes
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the origin; in each case convergence is in S(R~).
We now define the convolution with respect to the

sequence (v„) of a pair of distributions T, and T,
by

[T,*T,]„(u}
—= lim [T,(k, )S T,(k, )](u(k, + k, )v„(z(k, —k, ))) .

(2S}

The sequential convolution (T,*T,)„ is thus defined
as a linear functional on a subspace of S(R'); when-
ever the Schwartz convolution of T, and T, exists,
the sequential convolution is well defined, and
agrees with the Schwartz convolution (independent
of sequence). On the other hand, it frequently
happens that [T,+ T,]„ is a sequence-independent
element of S'(R ) when the Schwartz convolution
does not exist.

We now define a product of distributions which
similarly generalizes the pointwise product of
continuous functions. Let (w„) be a seq!!ence of
functions in S(R~) with the following properties:
(i') w„*u-u in S(Rz} for each u6 S(R') and (ii')
w„h-0 in S(R'} for each h & CgR~} such that the
support of h excludes the origin. The product
[T,~ T,] of a pair T„T,of distributions in S'(R')
with respect to the sequence (w„) is defined by

[T,~ T,] (u) = lim [T,(x) T,(y)](u(-,'(x+ y))!q,(x —y)}.
n~~

(26)

[T,~ T,] is again a linear functional on a subspace
of S(R ); when T, and T, are continuous functions,
the product [T, T,] agrees with the pointwise
product.

Property (ii') guarantees that the sequential pro-
duct is "local" which we state precisely as

Lemma 2. Let T, and T, have finitely separated
supports. Then [T, ~ T,] = 0.

Proof. The assumption of finite support separa-
tion implies the existence of a real ~ & 0 such that
support [T,(x)CST,(y)]C((x, y)~ ~x- y~&z]. Pick
h C C„(R~) such that h(z) vanishes for jz~ & 4z, and
takes the value 1 identically for ~z~& zz. Then

(5;+T.].„)"= (2z)"'[T, T.]g„.

It follows that when T, and T, are distributions of
the form T,. =S,. +u, , where the S, have finitely
separated supports and u, E S(R'), then [T,*T,]„

Sy+u2 + u, +u, + u, *S„. these conditions admit T,
which are unbounded functions with unbounded sup-
ports.

Dilation sequences are particularly useful se-
quences satisfying (i) and (ii). One easily verifies
that for each vC S(R') with v(0) = l, the correspond-
ing sequence v„(x) = v(x/n) satisfies the require
ments. (It should be noted that no support restric-
tions need be made; thus simple exponentials may
be used. ) For such dilation sequences the subscript
n will be omitted from the corresponding products
and convolutions.

8. Products of Distributions in S'(R) with
8 I'unctions

It is readily verified that, for any distribution T,

[I T]. = [7" I]. = 7

and that

[(T, +T,) ~ T] =(T, T] +[T, T)„

whenever the latter both exist. Let T'E S'(R) have
support contained in [0, +~), support w„' g (0, *~),
and B,(x) =8(ax). Since w„'(x- y) vanishes identical-
ly within the support of [8,(x) T'(y)], it follows
that (cf. Fig. 2)

[e, T"].,=0, (28)

and since [I T']„~ = T', one obtains

[e, ~ 7"] ~ = T'. (29)

Similarly, locality of the product (.) implies that

lim [T,(x)e T, (y)](uI,(x- y)u(-,'(x+ y))}
gg~ OO

= lim [T,(x)e T,(y)](h(x —y)tq, (x —y)u(~a(x+ y)))

= [T,(x)8 T2(y)](limb(x- y)tq, (x- y)u(2(x+ $))}

(27}

For each sequence v„satisfying (i) and (ii), the
corresponding sequence 8„=(2w) 't'v„satisfies (i')
and (ii'), and the following convolution theorem
holds.

Theorem 1.With conventions as above,

Support

Frc. 2. I.e .z'+], =0.
~n

upport w„(x-y)
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for every suitable sequence (se„) and real e&0,

[8(+(x-e)} T'] = Iim[8(+(x-e)} T']
q~P

(3o)

4. Products of Distributions tvith 5 Functions,
and Distributions Evaluated at a Point

Let (sv„) be a sequence of functions satisfying (i')
and (ii'}. The value of a distribution T at the point
x= b, defined with respect to the sequence (cv„), is
given by"

T (b) = lim T(sv„(x —b)}. (32)

Property (ii') guarantees that the definition is
strictly local —it is not necessary that the functions
w„have compact support.

The value T (0}of a distribution T at the origin
is simply related to the product [5(x) T(x)]

[5(x) T(x)] (u) = lim'[5(x) 8 T(y)](u(-,'(x+ y))ce„(x- y))
ff~ Oo

= lim [T(y}](u( y}sv„(-y)}
ff~ oo

= [u(-'y) T(y)]-„(o), (33)

where iv„(x) = so„(-x).
The proof of Theorem 1 of Ref. 18 is easily ex-

tended to give the following theorem.
Theorem 2. For any causal distribution T in

3'(R4}, there exists a homogeneous polynomial P
of finite degree in the variables (x„x„x„x,) such
that [P(x)T]„(0)is well defined and sequence-in-
dependent.

Having given rigorous operational definitions of

and that for every function u E S(R) which vanishes
at the origin, u=u++u, support u'C (0, +~),
suitable sequence (cu„), and distribution T,

[e, T]. (u) = [T](u,). (31)

Unfortunately, these results are the strongest
which generally obtain; the sequential product
of an arbitrary distribution with a 8 function is not
generally sequence-independent (or even finite} at
the origin. One may decompose any distribution
into two parts T = T'+ T, support T' C [0, + ~).
The operationally defined product with 6, of each
part is given above; however, the decomposition
is unique only up to a finite number of 5 func-
tions at the origin. In Sec. I, we have effectively
made such decompositions and resolved the am-
biguity at the origin using physical arguments.

It is worth noting that Fourier transform of Eq.
(30) gives meaning to the Hilbert transform of an
unbounded function. '

the formal products and convolutions of distribu-
tions which occur in current algebra, we return to
the topics of Sec. I.

2. Sum Rules for Off Mass Shell--
Scattering AmPlitudes

Let Cg(x) = (p ~ [j„(&x),j,(-kx)]
~
p') denote the ma-

trix element of a commutator of two currents, be-
tween improper states of definite momentum, and
let (cu„) be a sequence of testing functions in s(R)
with the properties (i') and (ii'). The equal-time
limit with respect to the sequence (w„) of C'„'„(x)
may be expressed in terms of its Fourier trans-
form:

[ET limC„~] (u(x)) = lim [C~v'„](sv„(x,)u(x))

= lim [C'„'„]"(su„(k,)ug)}. (34)

The right-hand side of (34) is formally the integral
of the Fourier transform of the commutator over
the energy variable, and corresponds to a sum
over intermediate states. [The sequence m„plays
the role of a convergence factor —examples exist
in which C„„ is not integrable, but for which the
limit in (34) is sequence-independent. ]

Let w„' be a suitable sequence, with support
u„' C (0, ~). The ET limit of the commutator agrees
with the ET limit of the retarded commutator when
taken with the sequence w„'; this agreement holds

B. Applications of Results of Sec. II A to

Current Algebra

We stress again the necessity of the approach
taken in Sec. I to define commutators in terms of
specified T products of operators. One may give
various interpretations to the formal product of a
8 function with a distribution -the difference be-
tween any two such interpretations is a distribu-
tion with support consisting of the origin. In Sec.
I, a particular interpretation was chosen, and the
ambiguity at the origin was resolved by demanding
agreement between two versions of the LSZ re-
duction formula. One hopes that in all cases of
physical interest (including those involving currents
which are not sources of fields} that a similar
natural resolution of the ambiguity is possible.
(Alternatively one might hope that the relevent dis-
tributions are smooth enough that no ambiguity
arises —this latter hope runs counter to simple ex-
amples in low orders of perturbation theory. )

In the following sections we review two methods
which have been used to derive sum rules, relate
them, and indicate how they may be generalized
to apply in the case that real Schwinger terms are
present.
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independent of any ambiguities in the definition of
the retarded commutator. Thus the commutator
on the right-hand side of (34) may be replaced by
the retarded commutator to obtain a sum rule in-
volving the off-mass-shell scattering amplitude,
defined by deleting the LSZ ET terms from the re-
tarded-commutator matrix elements.

The method above is a slight generalization of a
method used by Schroer and Stichel. ' An alterna-
tive rigorous procedure is obtained by defining the
product [5(x,) C'„'„(x)], and using the convolution
theorem just proved to derive corresponding sum
rules. This technique has been used formally by
Bollini and Giambiagi" and later by Amati, Jengo,
and Remiddi. " The relationship between these
methods is contained in Eg. (33).

2. Schseinger Teems

Real Schwinger terms (as defined in Sec. I,
variously denoted super-Schwinger terms, etc.,
elsewhere in the literature) correspond to the non-
finiteness of the limits in Egs. (34). The
presence and nature of Schwinger terms in any
model can be determined by expressing the current
commutator in the spectral form given in Sec. I,
and using tables given in Ref. 4 which relate
spectral functions with ET behavior. Theorem 2,
states that although C~', may fail to have a finite
ET limit, it may be multiplied by a polynomial in
(xo, x„x» x,) such that the resulting distribution
has an ET limit; sum rules analogous to Egs. (34)
hold in such situations and they involve derivatives
of scattering amplitudes. This occurs in scalar
electrodynamics when an additional Q' interaction
is introduced.

III. SUMMARY AND CONCLUDING REMARKS

A method has been given whereby the matrix
elements of current commutators and their ET be-

havior may be unambiguously determined to all
finite orders of perturbation theory. An ambiguity
in the definition of retarded commutator is resolved
by the requirement that the LSZ reduction formula
agree with the Feynman rules. It is shown that for
an appropriately defined ET limit, the ET limit of
the retarded commutator agrees with that of the
commutator, independently of how such ambiguities
are resolved.

Rigorous versions of sum rules are obtained, and
generalized versions of them are shown to hold
even in the presence of highly singular Schwinger
terms.

Studies of current commutators in low orders of
perturbation theory have produced many examples
in which the assumptions of current algebra break
down. The present investigation has been an
attempt to clarify such examples and to extend the
techniques of current algebra to cover such cases.
The full program indicated in Fig. 1 has thus far
been carried out only for the case in which currents
are the sources of fields. The spectral-function
technique should be useful in extending the program
to more interesting cases, such as the o model.

The apparent "disentangling" of the JLD spectral
representation to give similar representations for
unordered and time-ordered products which ap-
parently occurs in perturbation theory might be
expected to hold more generally. One would like to
know how generally it does occur.
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Classical mechanics of two point particles interacting at a distance is given a Lorentz-co-
variant formulation without introducing unphysical degrees of freedom such as usually ac-
company the two-time formalism. The theory is then quantized and compared with quantum
field theory to allow the determination of realistic potentials. Exact solutions are obtained
for an inverse distance potential; classical orbits as weQ as quantum energy levels are de-
termined.

I. INTRODUCTION

There exists no widely accepted formulation of
relativistic classical mechanics of two or more in-
teracting particles of finite mass. For some time
it was believed that no satisfactory theory was pos-
sible, until this was refuted' by the actual con-
struction of self-consistent models. Existence
theorems have only limited interest, however. The
nonrelativistic theory is useful only because of the
fact that the potentials happen to be known to con-
siderable accuracy, and a relativistic theory
should include a prescription for the potential in
order that it predict effects like the precession of
the perihelion of Mercury. The only sure source
of knowledge, from which accurate potentials
can -at least in principle -be derived, is relativ-

istic quantum field theory. (We do not mean to dis-
count the theory of general relativity, but to sim-
plify the perspective by treating it as a field the-
ory in flat space. ) Hence it would seem plausible
that relevant models of classical relativistic
mechanics must be obtained deductively from rel-
ativistic quantum field theory, rather than induc-
tively from nonrelativistic mechanics.

A direct deduction of a classical relativistic
mechanics from quantum field theory has been
given recently, and now, with the incomparable,
advantage of hindsight, it is possible to proceed
inductively and arrive at the same theory by naive
arguments based on nonrelativistic mechanics and
the requirement of Lorentz invariance.

The theory that had been obtained previously from
quantum field theory is recovered in Sec. VII as an


