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%e extend an earlier canonical formulation of quantum electrodynamics in the infinite-
momentum frame by replacing the photons with massive vector'mesons. The structure
of the theory remains nearly the same except that a new term appears in the infinite-
momentum Hamiltonian describing the emission of helicity-zero vector mesons with an
amplitude proportional to the meson mass.

I. INTRODUCTION

Recently a canonical formalism for quantum
electrodynamics in the infinite-momentum frame
was developed by Kogut and the present author. '
Since then, discussions of current commutators
on the light cone in a quark-vector-gluon model
by Cornwall and Jackiw, ' by Dicus, Jackiw,

'

and
Teplitz, ' and by Gross and Treiman' have made
it seem useful to extend the canonical formalism
of Ref. 1 by replacing the photons with massive
vector mesons. The object of this paper is to pro-
vide such an extension.

We find that the required generalization is quite
simple if we consider in addition to the vector
field A" a scalar field B in the manner of Sbickel-
berg's 1938 paper on massive vector mesons
(gluons). "One significant result is that the for-
mal structure of current commutators on, the
light cone" is unchanged by the introduction of
the scalar field B.

The notation used here is that of Ref. 1, with
two minor changesv designed to facilitate calcula-
tions in perturbation theory. ' In addition, we make
free use of the results of Ref. 1 and devote most
of our attention to the changes made necessary by
going from massless to massive vector mesons.
It may be useful to recall briefly the main fea-
tures of the notation used in Ref. 1. The compo-
nents c" of a four-vector in the infinite-momen-
tum coordinate system are related to the compo-
nents a" of that vector in the usual coordinate
system by the transformation a =2 '~~(a'+ a'},
a'=a~, a'=a', a'=2 ' '(a'-a'). In particular,
the components of a position vector are x" = (i, x',
x', s), where v=2 ' '(t+x} and S =2 ' '(t-x}. In
the infinite-momentum system, the coordinate v.

plays the role of "time." The new components of
a momentum vector are p"= (g,p', p', H}, where

q =2 ' '(B+p,}and H=2 '(B p) Finally -we

recall that in the infinite-momentum coordinate
system, the vector components a&=g„„a"vvith a
lower index are related to the components labeled.

with an upper index by a, =a', a, =-a', a, =-a',
a ao Thus~ for instance~ P xu ~z+g& Pxzx

px -and 9 =as=el~& ~

II. EQUATIONS OF MOTION

The canonical theory of quantum electrodynamics
in the infinite-momentum frame' was based on the
Lagrangian

i', (x)QED %P—i &„-eA„)y"- m]%

—4 (s"A& —8"A")(B„A„-B„A„),

where A"(x) is the real vector field of the massless
vector mesons and 4 is a four-component Dirac
field. In order to introduce a meson mass z&0
and. allow for mesons with helieity zero while
maintaining gauge invariance, we introduce a real
scalar field B(x) in addition to A„and %. Then we
begin with the modified Lagrangian

Z(x)=%[(~i a„eA„)y-"-m]+

4(s"A—~ a~A")(-s,A„s„A„)-
+ —.'(xA& —s&B)(xA„—s„B).

Variation of the fields 4', 5, A„, and Bgives the
equations of motion

(a„s"+z')A"- 8"(a„A"+zB)= J",
ms+" —Bqs" B=0, (2)

[(is„-eA„)y"-m]%'=0, (4)

where we have defined Z"=e@y~k. [Notice that
B„J'"=0 as a consequence of the Dirae equation (4).
Thus Eg. (2) is merely the divergence of Eq. (2).]

The reason for introduction of the seemingly
superfluous scalar field B is that the gauge invari-
ance of quantum electrodynamics is thereby pre-
served. Indeed, the Lagrangian, and hence the
equations of motion, is left invariant by the gauge
transformation
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A„(x)-A„(x)+s„A(x),

B(x)-B(x}+«A(x),

e(x)-e-"~@&e(x).

We could, if we wanted, use this gauge invariance
to choose the "Lorentz gauge" B=O. In this gauge
the equations of motion wouM take the familiar
form (after some simplifications)

(sp" + «')A)'= Z)',

[{e„-eA„)y~-m]@=0

However, it turns out that it is very difficult to
quantize the theory in the infinite-momentum
frame in this gauge.

Instead, we choose the "infinite-momentum
gauge,

"
A'(x) =O.

Then the p, =O component of the equation of motion
(2) reads'

s,(8,A'+ gA'+ «B)= J'. —

This equation can be solved for A' as follows:

where 1/)l and I/q' are the integral operators"

—f (x)= —gi @e(x' —&)f(x', x, g},
n

I( .f)(~) l f4 I
—*' )If=(%—*.))-

Thus if we regard A', A', and 8 as independent
dynamical variables, then A3 is x'educed to the
status of a dependent field since it is determined
at any "time" x0 by the other fields at' that x0 ac-
cording to the constraint equation (I}."

The equations of motion for the independent fields
A~ and B can now be simplified by substituting the
expression (V) for A' back into the equations of
motion (2) and (3}. From (I}we have

8},A =-«B-—J .V 0

If we substitute this into (8}and remember that
e„P'=0, we get the equation of motion for a,

(ge"+«')B= ~ Za. — (9)

If we substitute (8}into Eq. (2) with p=1 or 2, we
get the equation of motion for A,

The equations for the Dirac field are changed
very little from those developed in Ref. 1 for
quantum electrodynamics. The two components
4, =P,%= 2y'y0% are independent dynamical
variables. The two components 4 =P 4 = gy0y34
are dependent variables, to be determined Qy the
constx'aint equation

e =—y'[-(@-eA),}y'+m]+„
2n

(11

which follows from the Dirac equation. The equa-
tion of motion for 4, is

iq,4, =eA'4, + p[(ie, -eA )y'+m]y'e . (12)

The only difference between this equation of motion
and the corresponding equation in quantum electro-
dynamics is that A' depends on B through the con-
straint equation ( I).

In order to make quantum fields out of the in-
dependent fields 4 „A, Bwe must specify their
commutation relations at equal v. By analogy
with Ref. 1, we choose

~2&~,( )..~I(0)d,=.=(P,)~~(s)~( ),

[A'(x), A~(0)], ,= ——.'@„e(S)&(x),

[B(x),B(0)], ()
= —~is(S)5(X),

[X(x),B(0)]„,= [X(x),4.(0)], ,
= [B(x),e,(0)], ,
=[)1,(x), %,(0)},,=0.

Using these commutation x'elations we can derive
the commutation x elations among the creation and
destruction operators appearing in the Fourier
expansion of the fields. Furthermore, the trans-
formation properties of the fields under space
translations in the tx'ansvex'se and 8 directions
and under rotations in the (x~, x') plane determine
the momentum and "infinite-momentum helicity'"'
of the states created and destroyed by these opera-
tors. Since the calculation is elementary, we only
state the results. Let b~(g, j, s) [d~()l, p, s)] be
creation operators for electrons [positrons] with
momentum ()(l, p} and helicity e (s=+2). I.et
at()(1, p, A) be creation operators for mesons with
momentum (q, p} and helicity X (Y).=-1,0, +1). These
operators have covariant commutation relations"

{b(p,e},ht(p', e')},= (d(p, e), d (p', e')},
= e„,(2s)'2qO()l q')O'(p p'),--

(s s~+d)A'= Z'- i—s"Z0. (10}
(14)

[a(p, g, d(p', ~')]= S„„(2x)'AS(q-q')a*(p -p').
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The expansion of %,(x) at r = 0 in terms of b(p, s} and d~(pp s) is

2'& C,(x)=(ps) ' Jdp) —P [dpp m(s)e 's P(P'*, s)edpp ss(—s)e a*de(P, s)],
0 2~ s= 41/2

(15)

where the spinors a)(s) are

(16)

current commutators. But according to the con-
straint equation (7), the dependent field )l (and
hence the current) depends only on 4'„and A but
not on B.

The expansion of X(x) at v =0 contains creation and
destruction operators for mesons with helicity +1
and -1; the expansion of B(x) at 7.=0 contains
creation and destruction operators for mesons
with helicity 0:

X(x) = {ps) '
J d p —Q [s {2)e ". *a(P, 2)

0

+e (x)*e"~'at(pp x)]2

(1V)

B(x)=(pe) 'Jdp —[-(e 's'a(P, P)
0

+ ie "~'"at(p, 0}]. (18}

The vectors e (X) appearing in (1V) are

E'(+1)= —2 ' '(1, i), e(-1)=+2 ' 2(1, -i) (19.)

We may notice here that the formal structure of
current commutators at equal v. in this theory, as
discussed in Refs. 2 and 8, is unchanged by the
addition of the scalar field B(x). The equal-r
commutators [4"(x),J'"(0)], , are calculated by
writing the current J'"=e(%,+5 )y"(21, +21 ) in

terms of the independent fields 4„A, B and using
the canonical commutators (18) to compute the

IV. HAMILTONIAN

dxdgÃ 7; x, y, (20)

where

X=%2$80yoe —(B,A.)(8BA")+(80B)(B,B)—Z.
(21}

The first three terms in (2l.}cancel the terms in
the Lagrangian containing e„and we are left with

X = %[(2i S])
—eA]2)y" —m] 4 —%Bi B,y 9+eA%y

--,(]],A')([],A') —(a,A')(q, A')+ —,([]'A')(8]A, )

-~B(]] A')(&, A~) - 2x A A]2- k(& B)([]),B)

+ ~A'(]},B)+~A'(]],B). (22)

It is apparent that this form for the Hamiltonian
is not very useful. However, if we substitute the
expressions for A' and I given by the constraint
equations (V) and (11}into (22}, then integrate the
resulting expression to form H, and finally inte-
grate by parts freely, we ob~~n a useful expre8-
slon:

The invariance of the Lagrangian under ~ trans-
lations provides us, using Noether's theorem,
with a conserved canonical Hamiltonian

H= dxds —,'e'v 2 014', —2&2%I@,+e&2%t4', —(p X- iaB)

edp B][m-(p-eX) x]—[ms(p-eX) y]C', ~fs(p d+x)d'+* B((T +e)B). '
271 A=1

(23)

Here p is the transverse part of the differential
operator p » = is 2 and y = (y~p y'}.

By using the equal-v commutation relations (18),
one can verify that the canonical Hamilton (28)
actually generates v translations in the theory.
One finds, indeed, that [i XH]= X],][iH, B]=s,B2

and [iH, 4, ]=8,21 „where the r-derivatives of A,
B, and 5, are. given by the equations of motion (9),
(10), and (12).

An examination of the Hamiltonian (23}shows

that the theory is changed very little when the vec-
tor-meson mass is changed from x=0 to a &0. One

must, of course, introduce a helicity-zero meson
into the theory and adjust the free-meson Hamil-
tonian from p '/2]7 to (p '+x')/2g. But the interac
tions among the electrons and helicity-(al) mesons
are unchanged, and the helicity-zero mesons in-
teract with the electrons only through the very
simple coupling iex&24t4-, (1/q)B. As z-0 this
coupling vanishes, so that the helicity-zero me-
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(p,s)—

(0) (b)

FIG. 1. Electron-vector-meson vertices.

sons are never produced.
We can illustrate the dynamics more vividly by

writing out the rules for old-fashioned (~-ordered)
diagrams using the Hamiltonian (23}."

(1} A factor {Hz-H+ie) i for each intermediate
state.

(2) An over-all factor -2vi6(FIi -H, ).
(3} For each internal line, a sum over spina and

an integration

(2.)- f d|-j —, .

(4) For each vertex, (a) a factor (2v}'5(q,„,-q|„)
x5'(p, „,-p ), (b) a factor (2q)'i' for each fermion
line entering or leaving the vertex. [The factors
(2q)' ' associated with each internal fermion line
have the effect of removing the factor 1/2q from
the phase-space integral. ]

(5) Finally, a simple matrix element is asso-
ciated with each vertex as a factor. There are
three types of vertices, as shown in Fig. 1. The
corresponding factors are (a) for single meson
emission [Fig. I(a}], a factor eM, where Mis
given by Table I, (b) for instantaneous electron
exchange as shown in Fig. 1(b), a factor e'/q, if
all the particles are left-handed (otherwise, a
factor zero), and (c) for the "Coulomb-force" ver-
tex as shown in Fig. 1(c), a factor e'rl, '&,,+&+,,

These equations can be solved exactly, given
initial conditions at v =0. If (1V) and (18) are the
Fourier expansions of A(x) and B(x) at time r =0,
then these same expansions will give A(x) and B(x)
for all ~ if we put

P, =If(q, p) =(p'+«')/2q

in the exponentials exp(sip x) inside the integrals.
With the solutions for A(x) and B(x) in hand, we

can write down A'(x} using the constraint equation
(V). Finally, we recall that A'(x) =0. Thus we
have the complete solution (A"(x), B(x)}for the
free vector-meson field in the infinite-momentum
gauge. We can use the gauge transformation (5) to
transform this solution back to the more familiar
Lorentz gauge. To do this, we let

A„'(x) = A„(x)+ B„A(x),

B'(x) = B(x)+ «A(x)

be the fields in the new gauge, and require that
B'(x}=0. Then

SABLE I. Matrix elements for meson emission.
P 2-1/2(P1 ggp2)

s'

V. FREE FIELDS

In this section and Sec. VI we will examine the
question of whether the infinite-momentum for-
malism presented here is equivalent to the usual
formalism for massive quantum electrodynamics
developed in an ordinary reference frame. We
begin with a short discussion of the free fields.

If the coupling constant e is zero, the equations
of motion for the meson fields X and B are simply

(8„8"+«')X(x}= 0

(&P" +«')B(x}= 0.

1
2

1
2

0

2 i12mg /gq'

(-e /n, )+(P /n)

(24)
1
2

1
2 0
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where the polarization vectors e"(p, A) are

e"(p, 1}=-2 '~'(0p 1, i, (p'+ip')/q}p

e['(p -1)=+2 '~'(Op1, i, (-p'-ip')/g}p

e"{p,0) = «-'(n. p', p', ff-«*/n)

= « 'P" - 58['«/q.

(2'I}

X„'(x)= A„(x)—«-'[[~(x). (25)

(Note that this gauge transformation becomes
singular in the limit «-0.)

The free field A'"(x) which results from these
operations ean be written as

p'e{e) = {pe) fe*{p —I„[e"{p,x)e 'e"e(p, a).
D 2I ){=

+ e['(p, X)*e"'"e'(p,X)],

(26}

The field A„'(x) which we have obtained by canonical
quantization in the infinite-momentum frame mQ
be equal to the usual free vector field if the polari-
zation vectors e"(pp X}form an orthogonal se't of
spacelike unit vectors each orthogonal to p":

e"(p, A}~e„(pp A, ') = -5„„„

p "e„(p,x}=0.

A quick cheek shows that this is indeed the case.
Qn,e can a18o shower, just as in Ref. 1, that the

free Dirac field obtained in the infinite-momentum
frame is equal to the usual Dirae field. - Vfe F01
not comment on this proof here except to note that
the gauge change discussed above does not affect
the Dirae fieM if e =0.

VI. SCATTERING THEORIES COMPARED

8 (e) (P )- fe Pe"e=-" P'P P '".*
p -IP+t6

One can show (by simple computation if necessary) that

-I['"+p "p"/«8 = g e"(p, X}e"{p,X}*+5,"6,"«'/q'+ 5,"5,"(p' —«I)/q' —(1/q)5,"p" {1/q)p "t),—"+ p "p"/«',

where the vectors e()l, p, X) are the polarization vectors for heiicity +1 defined in Eq. (2V). If one used this
expression in the numerator of the meson propagator, the 1ast three terms vriQ not contribute to any scat-
tering process because of current conservation. Thus one is left arith an effective propagator

(20)

~8

D~(x) "=(2w)-
Jt

d pe ' " g e"(ppX}e"(p A} +5['5" {p -«'+ie) '
„X,=&l

%'e have seen th:ii massive quantum electrodynamics in the infinite-momentum frame is the same as
ordinary massive quantum electrodynamics in the trivial case e =0. We cannot demonstrate that the two
theories are the same for e IO since me are unable to solve fox the exact interacting Heisenberg fields in
either theory. However, it is possible to show that the perturbation expansions of the 8 matrix in the two
theories are formmQy identical.

%(hat we have to shower is that the ordinary Feynman rules for massive quantum electrodynamics lead to
the same expressions for scattering ainplitudes as the rules for oM-fashioned diagrams given in Sec. IV.
Since the same demonstration has been given for quantum electrodynamics iri Ref. I, ere mQ indicate here
only how the argument can be modified to account for a nonzero meson mass and, the contributions from
helieity-zero mesons.

To that end, me exmnine the Feynman propagator for massive vector mesons

+5"5"(2«) ~ d'Pe 'P'[7 '
P2-x~+ie '

The H integral in the first term can be done by contour integration as in Ref. l. In the second term,
(p'-«*)(p'-«'+i&} '-1 as e-0 so that the H integral gives a factor 5(7). Thus the meson propagator
takes the form

Oe 2

8 (e)e"=-({pe) 'fep [ —I e"(p, X)e"(p, e)eeeee,"——, [8(e)e 'e e8( e)e'"*e ]-'*
.0 2~ x= kg

+(2«)-'S(~)0['g tdp t
d[iq-'e-'~» [' ~, -

~00
(22)
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p. = &= (p '+ «*)/2n

Note that this expression for the vector-meson propagator is nearly identical to the corresponding ex-
pression for the photon propagator derived in Ref. 1. In particular, the "Coulomb-force" term proportional
to ()(v) remains unchanged.

There are only two changes in D~", which account for the corresponding changes in the perturbatioq,
theory rules of Sec. lV between « =0 and «) 0. First, the free-meson Hamiltonian is. changed fromm p'/2g
to If= (p '+ «')/2r). Second, a new term describing the propagation of helicity-sero mesons is added to Dg",
namely,

i(aw) -f dp —s"(q(p, o)e,"f((p, o) [e(v)e"'~'*+e( r)e"~'),-
D

where the "effective polarization vector" for helicity-zero mesons is

s"if(p 0)= -(«/i))()s

This is also the effective polarization vector for helicity-zero mesons in the initial and final states, since
e"(p, 0) = « 'p"- («/)))5z)', and the term « 'p" does not contribute to scattering amplitudes because of cur-
rent conservation.

From here on, one can continue the argument just as in Ref. I to show that the covariant Feynman rules
are equivalent to the rules for old-fashioned perturbation theory in the infinite-momentum frame given in
Sec. IV.
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