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It is assumed that the fluctuating radiation energy density in a blackbody cavity is the sum
of two stochastically independent terms: a zero-point energy density p, with Lorentz-invari-
ant spectrum which persists at the absolute zero of temperature, and a temperature-depen-
dent energy density p, which satisfies the laws of statistical mechanics. The mean-square
fluctuation ((GpT)z) of p, is calculated from classical electromagnetic theory and is shown
to depend explicitly on (p,). Classical statistical mechanics leads then uniquely from
((Gp,.)z) to {py), which turns out to satisfy Planck’s formula.

L. INTRODUCTION

Some fascinating new ideas concerning the phys-
ical meaning of the quantum theory have been de-
veloped in a series of papers by Boyer!~ and a
related paper by Nelson.® In Boyer’s work the
main new concept is the existence, at the absolute
zero of temperature, of a classical, fluctuating,
electromagnetic background radiation which is, in
some unknown fashion, equivalent to the ground
state of the radiation field in quantum electrody-
namics. Boyer demonstrates that incorporating
his radiation background into classical statistical
physics makes possible a classical derivation of
Planck’s blackbody spectrum. He also suggests
that the universal background radiation might be
the source of the random perturbations, postulated
by Nelson, which transform continuous classical
particle motion into an equivalent random-walk
process. Since Nelson is able to derive Schré-
dinger’s equation for particles from this classical
random-walk model, we may well witness the
emergence of an exciting, new interpretation of
the quantum theory.

The present paper makes a small contribution to
Boyer’s work by deriving some of his results in a
simple, axiomatic fashion. This procedure would

be quite unconvincing without Boyer’s penetrating
analysis of classical statistical mechanics. How-
ever, once the foundations of the new theory have
been established, an axiomatic approach has the
virtue of conciseness, and may help to make the
new ideas more readily accessible to a large audi-
ence.

Boyer has presented two different classical der-
ivations of Planck’s blackbody spectrum. One is
the Einstein-Hopf derivation® of the Rayleigh-Jeans
radiation law which leads to Planck’s law if the
classical radiation background is taken into ac-
count. This approach promotes valuable insights
into the processes which establish dynamical equi-
librium between radiation and matter. Unfortu-
nately, the method is formally very cumbersome’
and subject to doubts as to its general validity.

The situation is such as if one derives Maxwell’s
velocity distribution from Boltzmann’s statistical
analysis of binary collisions between rigid spheres,
and wonders what would happen if a more realistic
model of molecules was used. The simple and uni-
versal approach to Maxwell’s distribution is sta-
tistical mechanics, and that is the second road to
the radiation law adopted by Boyer.

Following Einstein’s pioneering work on energy
fluctuations in the electromagnetic field, Boyer
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emphasizes the concept of entropy and, in order to
describe the effect of the radiation background, he
distinguishes between a caloric and a probabilistic
entropy. While this distinction contributes much to
the understanding of the general theory, it is not
the simplest approach to our problem, and an al-
ternative method is presented in this paper which
treats the electromagnetic fluctuations more ex-
plicitly than in Boyer’s work. A qualitative dis-
cussion of the photoelectric effect is also included
which supports the basic assumptions of Boyer’s
theory.

II. CLASSICAL STATISTICAL MECHANICS OF

BLACKBODY RADIATION IN THE PRESENCE OF
A UNIVERSAL RADIATION BACKGROUND

We shall obtain all results from a small number
of basic assumptions which are either self-evident
or equivalent to Boyer’s postulates. The following
axioms go beyond conventional statistical mechan-
ics and establish the conceptual framework for the
subsequent analysis.

(1) There is a classical, fluctuating, electro-
magnetic radiation at the absolute zero of temper-
ature with a Lorentz-invariant spectral energy
density function of the form

(Po(w)) = (w?/mc®)3hiw, (1)

where (w?/7%c®)dw is the number of modes in the
frequency interval dw, and 37w is the average en-
ergy per mode. 7 is an adjustable universal con-
stant which turns out to be Planck’s constant di-
vided by 27. Thus, the universal radiation back-
ground has formally the properties of the radiation
ground state in quantum electrodynamics. Note,
however, that this result has nothing to do with
quantum theory, and is a unique consequence of the
required Lorentz invariance of the spectrum. A
derivation of Eq. (1) is given in Boyer’s paper' and
will not be reproduced here.

(2) The zero-point radiation fluctuates randomly
just as if it was produced by a large number of in-
coherent sources.

(3) At a finite temperature T, a blackbody cavity
contains the zero-point radiation and a tempera-
ture-dependent component which is the convention-
al blackbody radiation. Thus,

p(w) =py(w) +pr(w), (2)

where the subscripts indicate the temperature.
Both p, and py fluctuate randomly and are stochas-
tically independent of each other.

(4) In line with a well-established tradition,
classical statistical mechanics holds for the tem-
perature-dependent density p; and its fluctuations.
In particular, the mean-square density fluctuation

4
of py satisfies the general relation®
(B P = (o7 = (pr? =222, @)
where
a=- = W (4)
kT

and k5 is the Boltzmann constant.

In spite of the fact that statistical mechanics is
only concerned with the properties of py, atoms
and molecules in dynamical equilibrium with the
blackbody radiation interact with the total radiation
field, including the universal radiation background.
The dynamics of this interaction is discussed by
Boyer!'? and the nature of the fluctuations is in-
vestigated in Sec. III.

(5) The principle of detailed balancing is valid
such that thermal equilibrium is established sep-
arately for each mode characterized by the wave
vector k, frequency w,, and polarization index p*
which distinguishes between clockwise (p*) and
counterclockwise (p~) circular polarization.

III. RANDOM FLUCTUATIONS OF
ELECTROMAGNETIC RADIATION

In view of the principle of detailed balancing we
consider only one Fourier component E(E ') of the
radiation field, and omit the labels k and p* for
simplicity. We assume that the zero-point radi-
ation is produced by a large number N, of inco-
herent sources each of which produces at some
point T the field E with a random phase angle
0, (s=1,2,..., No) Since all the E belong to the
same k and p*, vector notation may be dropped,
and we get

No o
Ey= Y Eoe'®. (5)
s=1

The corresponding fluctuating energy density is
Po = (4m)" [ Eo |

= (41r)"[2 E 2+, ;EOSEO, cos(6, - 6,)] .

(6)
The average density is then
(pe) =(4mM)1 35 (Eqos?) =(4M)2Ny€, (7
s
where
(4m)" Noeo = 3T, (8)

is the average energy dens1ty associated with the
Fourier component E( k,p'). The average of the
double sum in Eq. (6) is zero because of the ran-
dom phases.

The mean-square energy density is
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(061 = (40T B BB +2 5 B T (B Bosos 00816, = 00)

+25 52 Z; (EooEorEqsEqt cos(8, — 6,) cos(6; — 9:))] . 9)
qQ r*q 8 #8
The triple sum vanishes on taking the average, and since
drupl d t doubl
the quadruple sum reduces to two double sums (0opr) =000 » (19)

which satisfy the conditions g=s, r=¢, or g={,
r=s. Since

(cos®(6s - 6,) =3, (10)
we get

lim (p ) = (4T)"2N,2(€,% +2€,2/2) = 2(py)2 . (11)

No—>

The difference between (E,;*) and (E,%? has been
neglected since the contribution from (Eos“) is neg-
ligible in the limit N,~«. Combining Egs. (11)
and (7),

((8p6)®) ={po”) = Po)® =(pe)* - (12)

Equation (12) is typical for classical wave fields in
which strong fluctuations can occur because of lo-
cal constructive and destructive interference.

Next we add to the zero-point radiation a tem-
perature-dependent radiation field which is pro-
duced by N, random sources and the corresponding
fields E;,. The total fluctuating field is then

No Np
E=EO+ET=z=3lEose“’s+az=)lE,oe“’o, (13)
and the total en:.rgy density is
P=po+pr= (4ﬂ)"{[ z Ey,e'% 2]+[ z Epqe'®%
+ 223) ? E,E;,cos(6, - 0(,)]} ,
(14)

where the first square bracket is p, and the second
square bracket, containing all the temperature-
dependent fields, is pg.

Invoking the random phases as before, we get for
the various averages

(©)=(py) +(pr), (15)

(0®=2(p)?, (16)
and

((Bp)?) = (o). (1)

Next we shall prove that the mean-square fluctu-
ations are additive. To this purpose we invoke
Eq. (14) and present ((5p)?) in the form

((8p)%) ={(0o +p7)) = (o) +{pp))?
=(pz") = {on? +(ps?) = (po)*
=((6p0)") +({(6p7)% , (18)

as may be readily deduced from Eq. (14). Combin-
ing Eqgs. (18), (17), (15), and (12), we get finally
the fundamental relation

((8p7)® =((80)% = ((6p0)> =(p ) +2(p)pz) .  (20)

If we form the fractional fluctuation we get a sum
of two terms:

(Gen)’ L 200
on® T lon

The first term represents the familiar classical
result for fluctuations in a radiation field without a
zero-point background radiation. The second term
is inversely proportional to {p;) and, if taken sep-
arately, has the typical behavior of energy fluctu-
ations in particle systems which are associated
with fluctuations in the particle density. Thus,

Eq. (21) represents the fundamental result which
Einstein® used as an argument in favor of the pho-
ton hypothesis, and of the wave-particle duality of
light.

(21)

IV. DERIVATION OF PLANCK’S FORMULA

Combining the Egs. (3) and (20) gives the differ-
ential equation

(pp® +2{p){pr) =

with solution

d(PT)
f <pr>’+2(po><pr> =a+C. (23)

Evaluating the integral and using Eq. (8) gives,
with C =0, Planck’s formula

(op=— 202 P (24)

e2Po) pT_ 1 k/hBT 1

3(pr>

(22)

V. PHYSICAL INTERPRETATION

According to the preceding analysis it is the
zero-point radiation which fully accounts for the
apparently nonclassical features of blackbody radi-
ation. If that is more than a formal accident at
least two questions should be answered:

(1) What is the origin of the zero-point radia-
tion?

(2) Can the zero-point radiation explain other
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particlelike properties of the radiation field, e.g.,
those exhibited in the low-intensity photoelectric
effect?

At present, both questions can be answered only
in terms of hypotheses which are still unconfirmed
but, in my opinion, deserve serious consideration.
Concerning the first question the following hypoth-
esis comes naturally to one’s mind:

The zero-point radiation is a self-consistent ra-
diation field in dynamical equilibrium with all the
electrically charged particles in the universe.
These particles perform a complicated Brownian
motion, in the spirit of Nelson’s work, which is
caused by random absorption and emission of the
self-consistent zero-point radiation. And this ra-
diation has such an energy density that there is no
net, time-averaged energy exchange between mat-
ter and radiation at the absolute zero of tempera-
ture.

Concerning the low-intensity photoelectric effect,
it was found'® that photoelectrons are released im-
mediately after the incident light beam hits the
photocathode. This is surprising from a classical
viewpoint since it takes time until a very weak ra-
diation field with a continuous energy distribution
can transfer an energy Zw to an atom with a tiny
cross section for electron excitation. Thus, the
instantaneous release of photoelectrons is accepted
by many as a proof for the existence of localized,
particlelike photons.

However, the classical fluctuation theory pre-
sented in this paper can explain the instant re-
sponse, at least in a qualitative manner, without
invoking a nonclassical particle nature of light.

To understand this explanation let us first consider
the behavior of electrons in the photocathode be-
fore the light beam is switched on.!! At low tem-
perature all the electrons are in full valence bands
and do not produce a current. However, these
‘electrons are exposed to the fluctuating zero-point
field, and in addition to the Brownian motion which
is induced by this field, they are occasionally ex-
cited up into the conduction band. However, since

energy is conserved in the time average, the elec-
trons fall back to the ground state after a very
short time which, presumably, satisfies Heisen-
berg’s uncertainty principle. This model is quite
similar to that used in quantum electrodynamics
for Lamb-shift calculations,'?'!® with the main dif-
ference that our fluctuating-radiation ground state
is real, while it is only virtual in the quantum
theory.

Let us now switch on the incident beam of light.
This beam will immediately affect the magnitude
of the fluctuations in the radiation field and will
make it possible that some of the “virtual” elec-
trons in the conduction band can stay there for
good without being forced back to the ground state
by the exigencies of energy conservation. We see
then that the incident beam does not by itself excite
electrons into the conduction band; it only affects
the statistics of fluctuating phenomena and deter-
mines the number of “virtual” electrons which are
transformed into real, permanent conduction elec-
trons. This statistical effect is not localized and
operates instantaneously after switching on the
beam.!*

It still remains true that energy is exchanged be-
tween radiation and matter only in quanta of mag-
nitude Zw. However, in our model that is a conse-
quence of the quantization of matter and does not
imply a particle nature of light. Furthermore, as
pointed out in the introduction, it is possible that
the quantization of matter has the same origin as
the quantization of the electromagnetic field, name-
ly, the self-consistent zero-point radiation. While
it is the prospect of a universal classical theory
which makes Boyer’s work so interesting, the
present paper does not require a commitment to
this idea since its sole purpose is an analysis of
the blackbody radiation spectrum.
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We discuss the observational consistency, possible properties, and detection of collapsed
nuclei C,4. These may be considered as elementary particles with mass number A >1 and of
much smaller radius than ordinary nuclei N,. The existence of C, of (perhaps much) lower
energy than N, is observationally consistent if N, are very long-lived isomers against collapse
because of a “saturation” barrier between C 4 and N4, Barrier-penetrability estimates show
that sufficiently long lifetimes 2103 sec are plausible for A 216-40. The properties of C, are
discussed using composite baryon and quark models; small charges and hypercharges and,
especially, neutral C, are possible. C, can be effectively a source or sink of baryons. Some
astrophysical implications are briefly discussed, in particular the possible large scale pres-
ence of C, and the possibility that accelerated collapse in massive objects may be a source

of energy comparable to the rest mass.

I. INTRODUCTION

We consider the possibility of collapsed nuclei
and conjecture about their possible properties and
about the observational consequences of their ex-
istence. By collapsed nuclei C , we understand
systems with baryon number A >1 and with (pre-
sumably much) smaller radii than normal nuclei
N,. Collapsed nuclei are thus best regarded as
elementary particles, in contrast to ordinary nu-
clei. C, of (perhaps much) lower energy than N,
can be consistent with observation if N, are ex-
tremely long-lived isomers. We show that this is
possible for moderate A. States with A=2 and
nonzero strangeness have been previously consid-
ered® using SU,. However, these states consist of
baryons not bound or only loosely bound together.

Our conjectures arose on the one hand from
quark models which give no obvious reason why
tightly bound systems of quarks with A >1 should
not exist. Secondly, recent phenomenological nu-
clear forces with soft (or momentum-dependent)
repulsive cores? do not necessarily satisfy the sat-
uration conditions.®

The observational consequences of the existence
of C , are dependent on the properties conjectured
for C,. To obtain some indications about these
we have considered two types of models for C,,
namely quark models with quarks as the constitu-

ents, and composite hadron models with the
known hadrons as the constituents. Some possible
astrophysical implications are also briefly dis-
cussed.

II. SATURATION CONDITIONS;
“STABLE NUCLEI AS ISOMERS”

Since the A-baryon Hamiltonian H, is not known
for collapsed conditions which could be vastly dif-
ferent from normal ones, we use H, (C) and H4(N)
for the appropriate forms of H,. Collapsed and
normal conditions, in particular states, are de-
noted by superscripts (C) and (N), respectively.
Some speculations about H,(C) are given in Sec.IV
in connection with the discussion of the properties
of C,. For the time being we merely assume that
the radius R, of C 4 is much less than the radius
Ry =7,A"? of N, and we consider two options for
R;: (1) R is roughly constant, about the nuclear-
force range (0.5 F) with C , resembling the usual
collapsed state with all nucleons (generally had-
rons) within R¢; (2) Rg~7cAY® with 7,50.4 F,
corresponding to saturation at very high densities,
perhaps appropriate to a saturating quark model.
The binding energy calculated with a trial function
is barred. The exact eigenvalue is unbarred; e.g.,
for H,(N) the binding energies BC’(N) and B¢ (N)
are for collapsed and normal trial functions, re-



