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We estimate the relaxation time v of an average electron velocity relative to a dilute array
of vortex cores in a rotating, s-wave-paired neutron superfluid. At low temperatures, ~

is found to vary exponentially with 4 /ez, the energy scale of vortex core excitations, where
E is the gap parameter and &z is the neutron Fermi energy. For reasonable choices of 4 and

e&, we find values of 7' which include the values of a year and of several days observed, re-
spectively, in the post-speedup relaxation of the Vela and Crab pulsars' slowdown rates.

I. INTRODUCTION

The slowdown rates of both the Vela and the
Crab pulsar have been found, in post-speedup ob-
servation, to relax back to pre-speedup slowdown

rates, with relaxation times of about a year and a
few days, respectively. ' This observation has led
to the suggestion of a two-component model2 of a
neutron star, in which speedup occurs when the
star's solid crust cracks slightly, reducing the
star's moment of inertia by decreasing its ellip-
ticity, and in which relaxation of the slowdown
rate proceeds as the crust transfers its excess
angular momentum to the star's liquid interior.

It is not possible to maintain the two-component
picture, however, if the neutron liquid interior is
taken to be normal; for in this case, its spinup
would occur in a time very short compared to a
day. ' Thus, in order to explain the long relaxa-
tion times of the Vela and the Crab slowdown
rates, their interiors are assumed to be neutron
supe rfluld.

In a rotating superfluid, aQ circulation is con-
fined to vortex cores; spinup of a superfluid oc-
curs when angular momentum is transferred to

the vortex cores, which may ultimately cause
them to increase in number or to increase in
length or to move toward the axis of rotation, de-
pending on the details of their original distribu-
tion in space, their pinning, etc. In the present
work we estimate the rate at which angular mo-
mentum is transferred to already existing vorti-
ces, and make no attempt to study their final con-
figuration. In a neutron star, angular momentum
is transferred from charged particles which re-
side in the liquid interior, but which, because of
electromagnetic coupling, rotate with the crust.
Of the charged particles, electrons are somewhat
more effective than protons at interacting with the
neutron liquid, even though electrons do not have
strong, but only magnetic, interactions with neu-
trons. This is because the electrons are normal,
while the protons are superconducting; thus only
a small fraction of the protons, those in super-
conducting vortex cores, interact at all with the
neutrons; the magnitude of the effect of core-pro-
ton scattering off neutrons is, however, further
reduced because the proton levels in the plane
perpendicular to a vortex core are quantized.

This -quantization has the effect that proton-neu-
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tron scattering events may be divided into two
classes, inelastic events in which the proton
changes its quantum state in the plane perpen-
dicular to a vortex core axis, and quasielastic
events in which the proton changes only its state
of motion along a vortex core. The phase space
for quasielastic events is evidently one-dimension-
al, and thus is of the order (1/t~')dk, where $~ is
the proton superfluid coherence length, and is of
the order of the radius of a proton vortex core.
The phase space for inelastic proton events is
essentially the three-dimensional k'dk; however,
the inelastic cross section is weighted by a ther-
mal activation probability, e ~, where sE is
the proton energy change. Thinking of a proton
vortex as a cylinder of radius $~ containing nor-
mal protons, we see that the scale of proton-ener-
gy-level differences, corresponding to states of
motion perpendicular to a core axis, is g'/2M~]~'
—= n'L~'/4m~ ~, where M~, 6, and e~ are the pro-
ton mass, superconducting gap, and Fermi energy,
respectively. For a typical neutron-star temper-
ature, ' T= 10"K=0.01 MeV, taking (a~/e~ ~)'
-5 x10 ', and c~ ~-10 MeV, we see that the ther-
mal activation factor is rather small, on the order
of 10 4.

Taking into account both the phase space and
thermal activation factors, we see that proton-
neutron scattering is reduced from what it would
be if the protons were normal (b,~= 0) by a factor
on the order of

46@- pT 2E'~
p (46@ pT

-5x10
In making this estimate, we have taken the proton
Fermi wave number, k- k~ ~, and have used the
relation )~=kk~ ~/mM~a~.

The proton-neutron coupling constant square is
about 10~ times that of the electron-neutron inter-
action, and the percentage of protons in cores is
about 10 4. Combining these numbers with the re-
duction in proton-neutron cross section, -5x10 ',
we see that the effects of proton-neutron scatter-
ing are roughly comparable to or less than those
of electron-neutron scattering. In the present cal-
culation we deal only with the latter process.

This. discussion of proton-neutron scattering
has made use of an important feature of relaxa-
tion processes in a neutron star, which we will
now apply in considering the effects of electron-
neutron scattering. It is that neutron stars are
very cold, and only processes which require very
little thermal energy, therefore, can occur.

In principle, electrons can give up angular mo-
mentum to neutron vortices either directly, or

by a two-step process wherein an electron creates
or interacts with a bulk excitation of the neutron
superfluid (a quasiparticle), and this excitation
then transfers angular momentum to the vortices.
But because the temperature of the neutron star
is so low, there are very few excitations present
in the bulk of the superfluid. If, for example, the
gap parameter ~= 2.5 MeV and the temperature
T =10"K=0.01 MeV, then the probability of there
being a neutron quasiparticle in bulk is proportion-
al to e '.5/'o. ox 10-xm. The probability, of an elec-
tron having enough energy to create a quasiparti-
cle pair in the bulk is even less, e ' ' '=10 "'.
Thus the two-step process of angular-momentum
transfer is very unlikely to occur.

Again in the case of the neutrons, vortex cores
may be thought of as cylindrical normal regions
in the neutron superQuid, aligned along the axis
of rotation of the star, and having a radius of the
order of the neutron coherence length, g

= hvar/vb„
where v~ is the neutron Fermi velocity. The scale
of the separation of core energy levels is clearly
on the order of K~/2M (', or v~a'/4m~, where M is
the neutron mass and e~ = —', Mv~' is the neutron
Fermi energy. Typically one might expect a/e~
=0.05. Thus the probability of the presence of a
neutron core quasiparticle is proportional to
exp(-v'b, '/4e~T)=10 '~ at T=0.01 MeV. This fac-
tor evidently governs the probability of electron
scattering from thermally excited core quasiparti-
oles. Quasiparticle creation processes, e.g. ,
electro-excitation of a pair of core quasiparticles,
requires an electron energy of at least 2 times
s'a'/4e~, and is therefore weighted by the factor
exp( v'n, '/2e~-T) =10 ". We thus decide to re-
strict our attention to scattering of electrons by
thermally excited neutron-core quasiparticles,
the dominant relaxation process kt low tempera'-
tures.

Using the variational approach to the linearized
Boltzmann transport equation, we estimate the
relaxation time of an average electron velocity
relative to a dilute array of neutron vortex cores.
This relaxation time is to be identified with the
post-starquake relaxation time of the pulsar slow-
down rate. In Sec. II of this article we quote the
formalism briefly. In Sec. III we describe our
estimates of electron-neutron matrix elements
and indicate how we carry out the calculation of
the relaxation time 7. Finally in Sec. IV we pre-
sent our results and conclusions.

W'e find that z depends exponentially on the scale
of core-excitation energy b.'/ez. Because the gap
parameter is a sensitive function of neutron densi-
ty, therefore, our model implies widely different
values of w for regions of the pulsar with different
densities. The conclusion to be drawn from: this
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fact is not that the minimum v is to be identified
with the observed y, rather, it is that the fric-
tional force on a vortex is a strong function of
position in the pulsar. The calculation of an "aver-
age" ~ to be compared with observation is a diffi-
cult hydrodynamic problem in which the vortex-
vortex interaction as well as the position- depen-

dent frictional force must be taken into account.
We do not attempt to solve this problem; we are

content here to show that for reasonable values of
L, ~~, and T, we obtain a range of values of 7-

that includes the relaxation times of a year and a
few days, respectively, of the Vela and the Crab
pulsar slowdown rates.

II. FORMAL THEORY

We assume that immediately after a starquake, the pulsar's electron distribution is spatially uniform
and characterized by an average velocity v relative to the neutron liquid. We neglect the curvature of ej,ec-
tron orbits, due to electromagnetic fields, in calculating the electron-neutron scattering. These two as-
sumptions imply that the streaming terms in the Boltzmann equation may be neglected, and we have sim-
ply

N d'' f (P', ]))[1—f (p, t)]g f„(n')[1 —f„(n)]—W(p, s; p', n')6(e~ —e~, &()„— „,}

-f (p, )[1)f(p', t)] g f-(n)[1-f (n')] —))'(p', n';p, n)ll(a, —,+ e„,—w)).
n, n'

(1)

In E(I. (1), f,(p, t) is the single-electron distribution function, which relaxes slowly in time; f„(n) is the
neutron-vortex-core-excitation distribution function, which is assumed by virtue of the strong neutron-
neutron interaction to relax quickly, and which is therefore always an equilibrium distribution. The fac-
tors (2][/k) W times 5 functions give the rate of electron-neutron scattering. W(p, n;p', n') is the matrix ele-
ment squared of the magnetic dipole interaction between initial and final electron states of momentum p
and p, and energy e~ and e~„and initial and final neutron states characterized by indices n and n, and
excitation energies ~„and co„,. The factor N„ is the number of vortices. Since the rotational velocity of a
typical pulsar is 10 "times the critical velocity at which vortices are close packed, ' electrons scatter
from single vortices, and the relaxation rate is N„ times that for scattering from an isolated vortex. The
volume of the system V enters E((I. (2} as a normalization constant.

We linearize E(I. (1}. Let

f,(p, f) =f,"'(p) +f,"'(p, t),
where the equilibrium distribution is

f.'(p) ={I+exp(PR(p) -E,l)] '

(2)

Ez is the electron Fermi energy and )S= I/kT . Because of th. e sharpness of the Fermi surface, it is con-
venient to define y(p, I) by

f,"'(p, t) = —
d (') y(p, f) .

Substituting E(ls. (2) and (4) in E[I. (1), retaining only terms of first order in p, using the fact that
W(p, n;p', n') = W(p', n';p, n), and Laplace-transforming y according to

q(p, t)= ds e "y(p, s),
0

we obtain the eigenvalue equation for q.
3 1

sf,"'(5}[l-f."'(p}]q(p )=—"
2 ~ [q(p, ) -q(P, s)]&(p, p'),

where

S(p, p') =f,'(p')[1 —f,"(p)]g fN(n')[1 —f„(n)]—W(p, s; p', n')f](e —e, + (()„—(()„,) . (7)
n.n~

It is important to recognize that 8(p, p ) is a symmetric function of its arguments, by virtue of the symme-
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try of the n and n' sums and the presence of the energy-conserving 5 function.
According to Eq. (5}, the minimum relaxation time for y is determined by the largest possible s for

which y(s) x0. We therefore seek the solution of Eq. (6) with the maximum eigenvalue s. Using the sym-
metry of S(p, p'), we see that Eq. (6) corresponds to the variational equation

6s/6y =0,
where

d' -1
(3 2 g 3 2[(p(p) —(I()(p')1'S(p, p )

2 & &
f( '(p)[1 -f,'"(P)jy'(p)

I

Since $(p, p'} and f~o~(p)[l —f(0~(p)] are positive for all values of their arguments, Eqs. (6) and (9) repre-
sent a, maximum principle. Thus by substituting a trial y(p) in (9), we obtain an upper bound on s, and a
lower bound, 1/s, on 7, the relaxation time. s

In order to represent a spatially uniform initial electron distribution with average velocity v, we must
choose

y(p) =p ~ vg(p ),
where g(p~) is a trial variational function, for example, g(p~) = 1.

(10)

m. EVALUATION OF THE LOWER BOUND ON T

We estimate here the lower bound on ~ given by the substitution of y(p) =p ~ v into Eq. (9). With this sub-
stitution and the change of variables, P = —,'(p+ p') and k= p -p' in the numerator, we obtain

1

(2 ~), —.(k v) f(~ ~)s(P+lk, , P--',k) f(~ ~)f,"'())[),-f.'"())](p v)'

In order- to derive an explicit expression for $, we must evaluate the electron-neutron scattering matrix
element. The interaction responsible for electron-neutron scattering is the magnetic-dipole interaction,
whose Hamiltonian is (in second quantized notation)

Hr=ep, „g„d'xd'x' X y x ', 3,&& y~ x' a'cpa X'
a

(12)

In Eqs. (12), the neutrons are taken to be nonrelativistic; gent(x') is the neutron creation operator with spin
index o. The electrons are relativistic; their creation operators are the T()(x). The components of y are
Dirac y matrices. p,„is the nuclear magneton, eh/2M„c, while g„ is the neutron g factor, equal to -1.91.

The unperturbed superfluid is represented within the Hartree-Bogoliubov self-consistent field theory by
the Hamiltonian

qn™q,n, a q, n, a &

nba

where the n and n~ are neutron quasiparticle annihilation and creation operators. For an infinitely long
vortex in an otherwise uniform superfluid the quasiparticle-state quantum numbers are the momentum q
along the direction of the vortex (the e direction), a radial and angular quantum number n, and a spin in-
dex o. The e), (x), assuming s-wave pairing, are related to the n by

(x) — q {o) ei())l% (r) (yl -((q) 15 0 (r))2' qn qn
~

qn
n

(x) = it (c( e-"~"'u (r)+ nt e "+'v*(r)),
J 2nk qn qn

~
qn

n

(14)

where r is the coordinate vector in the x-y plane. Explicit approximate expressions for the u„and v„, as
well as the quasiparticle energies, co,„, have been given by Caroli and Matricon' for the system of inter-
est, a single vortex in a Fermi superfluid. (We emphasize that our calculation is based on the assumption
of s-wave pairing in the superfluid; for p-wave pairing the quantitative results will be different. )

We now calculate (0 ~
c-, o., „;H,nt, ct&, ~0), the transition matrix element for electron-neutron scatter-

ing, in which c&t, creates an electron of momentum p and z-component of spin s, and in which ~0) is the
superfluid neutron state with a vortex present, times the electron vacuum. The square of this matrix ele-
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ment, summed over final aud averaged over initial states, is what we referred 'to as W(p, g; pr;s') in our
discussion of the Boltzmann equation [cf. Eq. (V}. Note also that in what follows, the neutron state label s
is replaced by the more appropriate (q, n).]. Performing the spin averaging by taking traces of y matrices,
we find

W(Pqqqn;P'qq'qn')=~ "
~

I, x2v%5(k, -q+q')I[(P, P')$(kk;q, s;q', n'),(2n ag„k'l ~

(15)

where (](=e'/Sc, and M and m are the neutron and electron masses, respectively. ln this equation the elec-
tron contribution is

2m c 1 &(p +m'c')' '(p" +m'c')' '
] (k p)(k p')

(~+m»)V ~(pq~ + ~p) «~ km I m~p
—

&I

—
m&c2k& (16)

while the neutron contribution is
a

a(k;q, a;q', a')= f q r vr a"a'' [v"(r)v, ,„,(r)+v,"(r)v, .(r)„],„ (17)

The 6 function in Eq. (15}expresses momentum conservation along the vortex core."
In order to evaluate I/r according to Eq. (11), we need

l d P
}() S($+ 2k 5 2k)

S is given in terms of W(p, q, n;p', q', n') by Eq. (7). Substituting Eq. (15) in Eq. (7), we obtain

d'I QP S
(18)

in which

V,(k, ~) gf qq [f (~=-). , ) vf(~,.,a,..),]q(-~, „,-q. „,„.a ~„)
n.n~

(4/%)(kj r)(d ye a-tea, aa a+gkar)qa Ca-tjaaaqea+pkaana)

and

V (k, ta) =fa)'P[f',"(aq)ql -f'q(aq )q)]a(P+-,'k, P --',k) q(aqa„"- aq )q+tv), (2O)

where we recall that both F~~ and F„are equilibrium Fermi distributions of the form F(e) = [1+e'r' aF~[)] '.
In order to derive the formula, Eq. (18}, we have used the identity

f(e,)[1-f(ek}]f(e,)[1 -f(Ca)]=[f(e,) -f(&,)][f(e,) -f(ea)] 8(~ a-) q(a a ) a
(21)

which holds for f(~}=(1+e ') ' when e, —~, =e, —e,.
Substituting Eq. (18) in Eq. (11), we obtain

1 N a~g„~k jd k ', (v ~ k}elder(l— ee") (1 —e— ) p, (ak, &d)p)(((k, (q))

7 A 2skf* ld*pf,"'(~,)[i -f',"(~,)](~ p)* (22)

in which A =—F/L, is the cross-sectional area of the star (N„/A = number of vortices per unit area). It re-
mains for us to evaluate p, and p„explicifly.

Since we are working in the small-temperature limit, p, may be evaluated at T =0. Using Eqs. (3}and
(16), and e~=(p'c'+m'c')'~', we find

p,(k, ~)- = "(-p (pr'+-', k')e(4pr* -k*),
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where p~ is the electron Fermi momentum, related to the electron Fermi energy pz by

p =(1/e)(z '-m'c')'i*,

e(x) -=
x&0

In order to evaluate p„, we need information concerning neutron core excitations. Because of the cylin-
drical symmetry of a vortex, these excitations are characterized by a radial and an angular quantum num-
ber, and the momentum q, -parallel to the vortex. In Ref. 10 it is shown that the radius of a vortex core
is so small that only excitations with the lowest radial quantum number are bound to the core. Core exci-
tations are found to exist for values of q &k~, the neutron Fermi momentum, and for half-odd-integral
values of the angular quantum number:n, with excitation energies

s 8 -mx'(y) d~ ~ -gx(g)ek'" (k '-q')'~' r J,
where A(r) is the gap parameter as a function of radial coordinate in the unperturbed vortex core, and

r
+(&)

(k s sxiym d& &(& ) ~

k~ -q j'

The functions u,„and g corresponding to these excitations are of the form e'"e times a slowly varying
envelope function of radial coordinate r which falls to zero for r & t', the coherence length, times a rapidly
varying sinusoidal function of r.

At low temperatures, only states corresponding to the lowest excitation energies contribute to p„, Eq.
(19). Thus the n and n' sums are trivial; we retain only the term corresponding to s =

~ and n'= ~. More-
over, for T -0, only small momenta along the vortex are permitted. Thus, q «k~ and

1 1 Q'

(k 9 2)1/2 k 2 k $ (2V)

In the same spirit, we evaluate the matrix element

(28)

as though the change in it due to the fact that: q w0 was negligible. Taking account of the normalization con-
dition"

ltd'~(IN I'+ I~,„|')=1,

we thus obtain

(29)

f,k,
Mgq) =M@0)= Il d~ZJ g' e ' '"'~

~~
dec-'"'~"~

~jo j
where J', is the zero-order Bessel function. Referring to E|l. (26), for q'«kr', we have

(8o)

(82)

&(r) = dr'A(r') =—|dr' g(+i)
S5g rt' , A(~)

' (81)

Since we are interested in obtaining only a rough bound on 7, we do not attempt to evaluate kf ~+0) very
precisely. Vfe axe satisfied with a matrix element that has the correct asymptotic properties at A~ -0 and

k~-~. At k~=0, it is obvious from E|l. (81) thatlll~+0)-1. As k~-~,

Mgo) j s.z '"'~~(~it' s..--l)'~~'= ' .
To obtain the limiting form, Eq. (82), we have used [cf. E(j. (81)] X(0)= 0, and the knowledge that X is a
function that decreases slowly for r/] z 1 and exponentially for r/( &1, which allows us to estimate
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J d~ e -a44'(4 ) -g g
0

where g, is a constant of order 1. Thus we arrive at the estimate

1
IMMY) I'=„(g qk

a smooth function of k~ with correct asymptotic properties. Similarly, we estimate

(84}

(35)
44 4I ~+44 + 14r* 4 I 4+44 +'")4'

where g, [see Ref. (10)] is another constant of O(l), and e~ is the neutron Fermi energy, equal to k~*/2M.
Substitute Eqs. (84) and (35) in Eq. (19), remembering that only the term n =n' =

~ contributes at small T.
This yields

(8Va)

where

(36)

in which exp(-sb, 'p/4m~) has been assumed to be small compared to 1. We carry out the 4f integral immedi-
ately using the 5 function to obtain

2k ' ~ k ) Pk'felt~ . Pe 1
ylk l ~ 8~ *) 2y ~k ) 2 1+(gg,'/}l)"

n 6'g2
Y 4 ~

Su»tttuttng «results, Eqs. (28) and (8V), in the inequality (22), we find

2 2 sy 2X1 N„n g„pe dsk, ( k)~P4, «k @4 )
k f pyk

)A c'M„' yD ' k« f~ lk l
plI 8k*~

(8Vb)

where the denominator is

(u Pk
' ( (u)'

1+(g, t'k, /I)' J 4sinh-'p(u 2y ( k ) (88)

e p 1 p v'p = p~ g~. (89}

The integral on a& cannot be done in closed form. An analytic expression which has «correct asymptotic
behavior for both k,-0 and 0,-~ may, however, be constructed. We use the fact that

a-0
zdz e-'~cschaz-

~00 2 a-~2

(40)

to suggest the interpolation formula

(ud(u f Pk~' ~'t syk, '/2P'k~* l'~*
4sinh —'p&oeml(-2yk s &) 1+(„pyk s/8k ~)

Substitute Eq. (41) in Eq. (88). The factor exp(-Pyk, '/8k~} in the remaining integral forces k, ' to be
small. Therefore in the other factors, we replace A' by k~'. Vfe thus obtain'

2yD ' ' k ' ' 1+(g,g /g)* CP J [1+(sPyk '/Sk, ')]"*
(42)
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The direction of the pulsar's speedup velocity is perpendicular to its axis of rotation; thus v is taken to be
perpendicular to the vortex core, and (v k, P = v'k, 'cos'8~ . The integrals in Eq. (42) are straightforward.
We find that

(44)

IV. NUMERICAL ESTIMATE OF THE RELAXATION TIME; DISCUSSION

where K, is the zero-order Bessel function of imaginary argument. Using Eqs. (39), (4la), and the rela-
tion (=5k~/vM„a, we obtain

T A 4gggg (Zp SP er eg
'

(44m j I, 4er J

In (44), we note that the factor N„n $'/A is the ratio of normal fiuid (inside vortex cores) to superfluid. It
equals Q/Q, , the angular velocity of the pulsar divided by the critical velocity Q, at which the vortices
become close packed.

We identify the relaxation time of the post-speedup pulsar slowdown rate as the electron velocity relaxa-
tion time. According to Eq. (44),

For convenience we recall that, in Eq. (45), Q, /Q is the upper critical angular speed of the neutron liquid
divided by its actual angular speed, et= e'/Iic,-g„ is the neutron g factor equal to -1.91, e~ and Zr are the
neutron and electron Fermi energies, respectively, M is the neutron mass, b, is the superfluid gap param-
eter, g, and g, are constants of order 1, and K, is the zero-order Bessel function of imaginary argument.

Let us take g, =g~=1, T=0.01 Mev, and Q,,/Q=10'8, appropriately to the Crab pulsar. " We take &+=50
Mev, corresponding to a neutron density of about 10' gcm ', and 8~=100 Mev, corresponding to a num-
ber density of electrons one-tenth that of neutrons. Substituting in Eq. (45), we thus find

10s x10" sec t (46)

where ~ is in Mev. 7 is on the order of days for ~=1.7 Mev, on the order of a year for ~=2.4 Mev.
These values are in the range of ~'s given by Hoffberg et al."for s-wave pairing in neutron liquids whose
densities lie between 10' and 5x10" gem '. The remarkably strong dependence of z on ~ makes it possi-
ble to fit a wide range of 7's with a reasonably narrow range of ~'s. However, it also complicates the
problem of calculating an average v for a pulsar. According to Ref. 15, ~ decreases rapidly as the densi-
ty of neutrons increases from 0.4x10"gcm ' to 1.5x10"gem '. Thus w is a very rapidly decreasing
function of density, and in order to calculate an average 7, one will have to take into account the strong
radial dependence of the frictional force on vortices as well as the vortex-vortex interaction.

For neutron liquid densities greater than 1.5x10' g cm s, Ref. 15 indicates that neutron pairing will
occur in relative p-waves rather than s-wave states. Our calculation bears only on the s-wave case, how-
ever. The study of vortices in p-wave superfluidity, to say nothing of electron-core scattering in this
case, remains an important and open problem.
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It is assumed that the fluctuating radiation energy density in a blackbody' cavity is the sum
of two stochastically independent terms: a zero-point energy density po with Lorentz-invari-
ant spectrum which persists at the absolute zero of temperature, and a temperature-depen-
dent energy density p& which satisfies the laws of statistical mechanics. The mean-square
fluctuation ((dpr ) ) of pr is calculated from classical electromagnetic theory and is shown
to depend explicitly on (po). Classical-statistical mechanics leads then uniquely from
((Ape)2) to (p&), which turns out to satisfy Planck's formula.

I. INTRODUCTION

Some fascinating new ideas concerning the phys-
ical meaning of the quantum theory have been de-
veloped in a series of papers by Boyer' ' and a
related paper by Nelson. ' In Boyer's work the
main new concept is the existence, at the absolute
zero of temperature, of a classical, Quctuating,
electromagnetic background radiation which is, in
some unknown fashion, equivalent to the ground
state of the radiation field in quantum electrody-
namics. Boyer demonstrates that incorporating
his radiation background into classical statistical
physics makes possible a classical derivation of
Planck's blackbody spectrum. He also suggests
that the universal background radiation might be
the source of the random perturbations, postulated
by Nelson, which transform continuous classical
particle motion into an equivalent random-walk
yrocess. Since Nelson is able to derive Schro-
dinger's equation for particles from this classical
random-walk model, we may well witness the
emergence of an exciting, new interpretation of
the quantum theory.

The prese~t payer makes a small contribution to
Boyer's work by deriving some of his results in a
simple, axiomatic fashion. This procedure would

be quite unconvincing without Boyer's penetrating
analysis of classical statistical mechanics. How-

ever, once the foundations of the new theory have
been established, an axiomatic approach has the
virtue of conciseness, and may help to make the
new ideas more readily accessible to a large audi-
ence.

Boyer has presented two different classical der-
ivations of Planck's blackbody spectrum. One is
the Einstein-Hoyf derivation' of the Rayleigh-Jeans
radiation law which leads to Planck's law if the
classical radiation background is taken into ac-
count. This ayyroach yromotes valuable insights
into the processes which establish dynamical equi, -
librium between radiation and matter. Unfortu-
nately, the method is formally very cumbersome'
and subject to doubts as to its general validity.
The situation is such as if one derives Maxwell's
velocity distribution from Boltzmann's statistical
analysis of binary collisions between rigid spheres,
and wonders what would happen if a more realistic
model of molecules was used. The simple and uni-
versal approach to MaxweQ's distribution is sta-
tistical mechanics, and that is the second road to
the radiation law adopted by Boyer.

Following Einstein's pioneering work on energy
Quctuations in the electromagnetic field, Boyer


