Narrow Peaks near $\eta'(958)$ †

S. F. Tuan

Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822 (Received 19 April 1971)

It is pointed out that recent evidence for sharp mesonic peaks near the $\eta'(958)$ may lend support to a theory proposed some years back that the broken nonchiral SU(2) \otimes SU(2) symmetry is relevant to classification of hadronic states.

Some years back Tai Tsun Wu and I1 proposed that the degeneracy observed between $\eta'(958)$ and a narrow δ (962) peak² was not accidental, but reflected the presence of a different underlying symmetry [distinct from SU(3)] at work. We suggested that the optimal clashing symmetry besides SU(3) [with multiplets of $q\bar{q}$ and qqq type] was a group³ $g \equiv SU(2)_{I_1} \otimes SU(2)_{I_2}$ [not contained in SU(3)], describing multiplets with isospin $I = I_1 + I_2$, in analogy with the use of two different overlapping schemes in nuclear physics - e.g., the shell- and collective-model descriptions. For physically meaningful assignments to $SU(2)_{I_1} \otimes SU(2)_{I_2}$ multiplets, we must require that the Gparity of members of such a multiplet be the same. 1,4 The pair $\eta'(958)$ and the sharp charged $\delta(962)$ ($\Gamma < 5$ MeV) state² thus lend themselves naturally to assignment to the $(\frac{1}{2}, \frac{1}{2})$ representation of this clashing $SU(2) \otimes SU(2)$ symmetry. Hence, the $\delta(962)$ is predicted to have quantum numbers $I^G = 1^+$, $J^{PC} = 0^{-1}$ if we accept that the $\eta'(958)$ has quantum numbers $I^G = 0^+$, $J^{PC} = 0^{-+}$. These mesonic degeneracies now no longer appear to be isolated cases, since other examples of $SU(2) \otimes SU(2)$ classification have been suggested in connection with the $\omega(784)$ anomaly⁵ and perhaps the A_2 -splitting problem.6 The baryonic system is replete with examples of the doublet-symmetry type.3,7 However, since the G-parity constraint (exact in strong interactions) is not relevant for the baryons, nor for the $\Delta S \neq 0$ mesons, a typical $SU(2) \otimes SU(2)$ multiplet here might incorporate even a mass difference like the Σ - Λ one; hence, they are less spectacular than the remarkable degeneracies found in $\Delta S = 0$ mesonic systems discussed above.

Let us return to the situation near $\eta'(958)$. There are two additional (and independent) experimental pieces of information which bear on this question. The CBS group⁸ in the test run of the CERN-IHEP boson spectrometer identifies a " δ " ~955 MeV (at the $4\frac{1}{2}\sigma$ level) narrow enhancement (consistent with experimental resolution \pm 15 MeV) from the cascade process (at 10–11 and 25 GeV/c)

$$\pi^{-} + p \rightarrow p + X^{-}$$

$$\pi^{-} + X^{0}$$

$$\pi^{\pm} + (MM)^{\mp}$$

$$\delta^{"} \text{ at 955 MeV.}$$
(1)

where $1240 < M(X^0) < 1300$ MeV, and (MM) denotes the missing mass. Little is known about the state associated with X^0 though the identification $X^0 \equiv D(1271)$ has been suggested.⁸ It is tempting to identify this narrow $\delta^{\pm}(955)$ with the previously found δ (962) sharp peak (Γ < 5 MeV) of Kienzle et al.2 because of common mass (within experimental error) and width characteristics. Both features are consistent with the assignment $I^G = 1^+$, J^{PC} =0 for this charged meson state as required by the $SU(2) \otimes SU(2)$ theory. Since the dominant strong decay mode of such a $J^{PC} = 0^{-1} \delta(960)$ state is expected to be $\omega^0\pi^{\pm}$ with a predicted width Γ_{δ} ~1 MeV, accurate measurement of the branching ratio for the decay of the charged δ into three charged particles plus possible neutrals (3c) versus one charged particle plus neutrals (1c) in missing-mass experiments remains highly desirable. As emphasized earlier, 1 the 3c mode dominates for $J^{PC} = 0^{--}$, $I^G = 1^+$. Additional information concerning the G parity of the $\delta(955)$ is possible if a clear-cut identification of X^0 in the strong decay $X^0 - \pi^{\pm} + \delta^{\mp}(955)$ of Baud et al.8 can be made. If $X^0 \equiv D^0(1271)$ and $D^0(1271)$ was *clearly* identified as a G = +1 state, then G = -1 would be the appropriate assignment for $\delta(955)$. The situation relative to D(1271) is, however, confused; Astier⁸ suggested that the hypothesis of two Denhancements in this mass range is entirely compatible with data. In fact, little reliable empirical information is available concerning the quantum numbers of 9 D(1271) other than that it is probably an I=0 state.

Another experiment which may be relevant to the present discussion is the recent evidence¹⁰ for the existence of a new narrow meson resonance M(953), with mass 953 ± 2 MeV and width < 10 MeV,

produced in the final state $K^-p \rightarrow pK^-M^0$ at incident momenta 3.9 and 4.6 GeV/c. These results are based primarily on a signal of 68 ± 12 events in the decay mode $M \rightarrow \pi^+\pi^-\gamma$ where the $\pi\pi$ does not show a ρ^0 signal, in sharp distinction to the $\rho^0\gamma$ decay mode of $\eta'(958)$. The decay mode $M \to \pi^+ \pi^- \eta_N^0$ (where η_N^0 signifies decay to all neutrals) is seen, and using the argument that G=-1would necessitate a large $3\pi/\eta\pi\pi$ branching ratio (unobserved), Aguilar-Benitez et al. 10 conclude that the $\eta_N^0 \pi^+ \pi^-$ mode of the M is mediated by the strong interaction, which implies G = +1. Assuming C invariance in electromagnetism, they also suggested that the absence of a $\rho^0 \gamma$ mode would imply that C = -1 for the M^{11} ; hence from $G = C(-1)^{I}$ the isospin is odd (I = 1, 3, ..., etc.). All the above features are consistent with the attractive possibility that M(953) is the neutral member of the predicted¹² $I^G = 1^+$, $J^{PC} = 0^{--}$ narrow δ^{\pm} in the mass range 955 to 962 MeV, required on the basis of the clashing-symmetry scheme. The two pions in $0^{--} \rightarrow \pi\pi\gamma$ will have relative l=2 and be produced by an M2 transition if C is conserved or have l=1 and be produced by an M1 transition if C is violated in electromagnetic interactions. Since $M2 = O(k^2)$ [and M1 = O(k)] in amplitude, where k is the photon energy in the M(953) rest frame, we expect that $M \to \pi^+ \pi^- \gamma$ will favor lower $\pi^+ \pi^-$ masses. For the strong decay $0^{--} + \pi \pi \eta$, the two pions can have l=1, while η^0 has L=1 relative to the c.m. of the $\pi\pi$ system. We shall not hazard at this stage a detailed guess of the $0^{--} + \pi\pi\gamma/\pi\pi\eta$ branching ratio¹³ (~1 experimentally¹⁰) nor the degree of structure expected in the $\eta\pi\pi$ Dalitz plot for this assignment. As emphasized earlier, the production and coupling of a C-exotic $J^{PC} = 0^{--}$, $I^G = 1^+ \delta$ (or M) in strong processes can be attenuated substantially relative to that of the nearby C-normal (i.e., having Yukawa coupling to $N\overline{N}$) meson $\eta'(958)$. It remains of the highest interest to search for a \delta in the 950-960- MeV region with $\Gamma_{\delta}\!\lesssim\!1$ MeV, and dominant strong decay $(\pi\omega)$ from say $K^- + N = \Lambda^0 + \delta$.

Remarks

(a) It is extremely important to emphasize that the *narrow* (δ and/or M) I=1 peaks^{2,8,10} near η' (958) are to be *differentiated* from the so-called " δ " meson produced in the reaction

$$K^-p \to (\mathbf{M}\mathbf{M})^0 \pi^- \pi^+ \Lambda^0 \tag{2}$$

at 3.3 GeV/ c^{14} with mass (995 ± 15) MeV, fairly broad width $\Gamma \stackrel{<}{\sim} 40$ MeV, and suggested decay " δ " $\rightarrow \eta \pi$. This " δ " corroborates earlier bubblechamber evidence for an $\eta\pi$ state at 980 MeV with comparable width15 and may be related to the socalled $\pi_N(1016)$. Such a broad $\eta\pi$ state is, of course, expected as the $I^G = 1^-$, $J^{PC} = 0^{++3}P_0$ state of the quark-antiquark system. Note that this quark-antiquark state has been seen in p+p+d+ " $\delta(980)$ or $\pi_N(980)$ " as a broad enhancement, whereas there is no evidence for a narrow δ near $\eta'(958)$ from this same reaction. The latter result is, of course, entirely compatible with a $\delta(960)$ assigned to $I^G = 1^+$, $J^{PC} = 0^{--}$, since such a meson is not coupled to a nucleon-nucleon vertex, 1 and this (together with isospin conservation) implies that it will not be produced in $p+p-d+\delta$ through either nucleon or $\Delta(1238)$ exchange.

(b) The existence of an approximate clashingsymmetry scheme to broken SU(3) in our understanding of hadron levels raises novel experimental and theoretical questions. For instance, strictly in terms of the $(q\overline{q})$ SU(3) picture, the presence of both $\eta'(958)$ and E(1420) with possible identical quantum numbers¹⁷ I=0, $J^{PC}=0^{-+}$ has been advanced as evidence for radial excitation in the $(q\overline{q})$ picture. However, though we do not rule out the possibility that SU(3) and $SU(2) \otimes SU(2)$ can share a common hadron level, 5,6 it is also possible that $\eta'(958)$ may owe its existence primarily to classification under the clashing nonchiral $SU(2) \otimes SU(2)$ symmetry¹⁸ in the $(\frac{1}{2}, \frac{1}{2})$ representation together with $\delta(962)$. Identification of E(1420) as the I=0 ninth member of the ${}^{1}S_{0}$ nonet of $(q\overline{q})$ (without radial excitation) gives then a much more satisfactory fit to the Schwinger mass formula 19

$$(\eta^2 - \pi^2)(E^2 - \pi^2) - \frac{4}{3}(K^2 - \pi^2)(\eta^2 + E^2 - 2K^2) = 0,$$
(3)

where each symbol $(\eta^2, \pi^2,$ etc.) denotes $(mass)^2$. From a theoretical viewpoint, it is evidently desirable to develop some meaningful criteria as to when such $SU(2) \otimes SU(2)$ -type degeneracy is expected and when it is not. Perhaps a study of the encompassing group structure which includes both SU(3) and $SU(2) \otimes SU(2)$ may shed useful insight on this question. It is well known that a simple choice which contains the physically realized representations of $SU(2) \otimes SU(2)$ is nonchiral $SU(3) \otimes SU(3)$.

[†]Work supported by the U. S. Atomic Energy Commission under Contract No. AT(04-3)-511.

¹S. F. Tuan and Tai Tsun Wu, Phys. Rev. Letters <u>18</u>, 349 (1967).

²W. Kienzle *et al.*, Phys. Letters <u>19</u>, 438 (1965); M. N. Focacci, W. Kienzle, B. Levrat, B. C. Maglic, and M. Martin, Phys. Rev. Letters <u>17</u>, 890 (1966). ³This is essentially the doublet-symmetry group of

A. Pais [Phys. Rev. <u>110</u>, 574 (1958); <u>110</u>, 1480 (1958); <u>112</u>, 624 (1958); <u>122</u>, 317 (1961)].

 $\overline{^4}$ T. D. Lee and C. N. Yang, Phys. Rev. 122, 1954 (1961). $\overline{^5}$ W. A. Simmons and S. F. Tuan, Phys. Rev. D 4, 663 (1971); G. S. Abrams, K. W. J. Barnham, W. R. Butler, D. G. Coyne, G. Goldhaber, B. H. Hall, J. MacNaughton, *ibid.* 4, 653 (1971).

⁶S. F. Tuan, Phys. Rev. Letters <u>23</u>, 1198 (1969).

⁷S. F. Tuan, Phys. Rev. D 2, 617 (1970).

⁸R. Baud et al., cited by A. Astier, Rapporteur talk, in *Proceedings of the Fifteenth International Conference on High-Energy Physics, Kiev, U.S.S.R.*, 1970 (Atomizdat, Moscow, to be published). Also W. Kienzle (private communication).

⁹C. Baltay (private communication).

¹⁰M. Aguilar-Benitez, D. Bassano, R. L. Eisner, J. B. Kinson, D. Pandoulas, and N. P. Samios, Phys. Rev. Letters 25, 1635 (1970).

¹¹See, however, J. L. Rosner and E. W. Colglazier [Phys. Rev. Letters <u>26</u>, 933 (1971)] where the assignment C = +1 is analyzed for M(953).

¹²The assignment I^G = 1⁺, J^{PC} = 1⁺⁻ for M(953) is possible phenomenologically; however, the dominant $\pi\omega$ decay width can be estimated to be as large as 30 MeV [with a reasonable choice of radius of interaction $\sim (500 \text{ MeV})^{-1}$, and with the dimensionless strong coupling g normalized to give the proper ρ width]. It would be surprising if such a state had escaped detection till

¹³Simple estimates would suggest suppression of the $\pi\pi\gamma$ mode relative to $\eta^0\pi\pi$. However, at least for the case of virtual electromagnetic contributions (e.g., $\pi^{\pm}-\pi^0$ mass difference, perhaps $K^+ \to \pi^+\pi^0$), enhanced effects over simple estimates have been known to occur.

¹⁴Oxford-UCLA group, Ref. 119 in A. Astier's rapporteur talk, Ref. 8. Note that this work does not claim that the $\pi\eta$ resonance is related to the narrow δ (960). We appreciate discussions with J. Mulvey. ¹⁵R. Ammar et al., Phys. Rev. Letters 21, 1832 (1968);

V. Barnes et al., ibid. 23, 610 (1969).

¹⁶M. A. Abolins, in *Proceedings of the Conference on Experimental Meson Spectroscopy, Philadelphia, 1970*, edited by C. Baltay and A. Rosenfeld (Columbia Univ. Press, New York, 1970), p. 171.

¹⁷Particle Data Group, Phys. Letters <u>33B</u>, 1 (1970). ¹⁸Since SU(2) \otimes SU(2) and SU(3) are both *broken* symmetries, both SU(2) \otimes SU(2) and SU(3) must share *all* hadron levels. The statement here relative to (η',δ) is to be understood in the approximate sense that SU(2) \otimes SU(2) is *better obeyed* as a classification scheme than SU(3).

¹⁹J. Schwinger, Phys. Rev. <u>135</u>, B816 (1964); P. N. Dobson and S. F. Tuan, Nuovo Cimento <u>67A</u>, 474 (1970).

²⁰Y. Y. Lee (private communication). See also S. F. Tuan, Tsing Hua University Lecture Notes, 1971, University of Hawaii Report No. UH-511-95-71 (unpublished).

PHYSICAL REVIEW D

VOLUME 4, NUMBER 5

1 SEPTEMBER 1971

Nonleading Energy Behavior and the Breaking of Scale Invariance in νW_2 †

Francis E. Close* and J. F. Gunion
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305
(Received 24 May 1971)

A recently proposed Regge model for describing the general features of on- and off-shell Compton scattering, using a simple form of scale-invariance breaking in q^2 , is discussed and confronted with recent data. It is suggested that the mass size characteristic of the scale-invariance breaking is indicative, as well, of the relative contributions of the Pomeranchukon, $f-A_2$, and additional nonleading power behavior. The observed rapid approach to "scaling" in q^2 (at given ν) is seen to require a small characteristic mass which in turn requires a substantial nonleading contribution to the scaling function νW_2 . Continuation of the resulting form to on-shell scattering predicts a nonleading power contribution to $\sigma_{\rm tot}(\gamma p)$; a recent continuous-moment sum-rule analysis is consistent with this prediction.

In this paper we wish to point out the gradual accumulation of evidence in support of a fairly simple Reggeization scheme for describing the main features of both on- and off-shell Compton scattering. The model incorporates a particularly simple form of scale-invariance breaking in the small- q^2 region. The evidence also appears to support a substantial nonleading Regge contribution to $F_2(\omega)$ which would be consistent with the presence of a polynomial residue for the right-signatured fixed

pole¹ at J = 0.

In a recent paper² we analyzed the available data on the electroproduction structure function νW_2 (ν , q^2), for both proton and neutron targets, in a Regge model [which incorporates the Pomeranchukon, an $(f-A_2)$ -type behavior with pure F coupling and nonleading power behavior $\nu^{-3/2}$] by demanding that the Regge form be consistent with:

(i) the existence of a fixed pole at J=0 in $\nu T_2^{p,n}$ with residue linear in q^2 and magnitude suggested