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Multiplicity distributions, the dependence on n of g„=cr„/0, are discussed. Within the
framework of the Amati-Fubini-Stanghellini model, a cluster expansion for the moments of
g„ is derived. This same expansion is then derived as a consequence of asymptotic domi-
nance of inclusive reactiops by an isolated, factorizable Regge pole. Such an expansion fur-
nishes a systematic way of describing the shape of g„. It is argued that a Poisson distribu-
tion for multiple particle production can not be expected to occur, even for very high ener-
gies.

I. INTRODUCTION

The topic to be discussed in this paper is multi-
plicity distributions, ' that is, the dependence on n

of c„jo= P„ for a fixed. large energy. o„ is the pro-
duction cross section for two particles to go into
n particles, while 0 is the total cross section.
(Throughout this paper, only a single type of par-
ticle is considered. This is not necessary, but
such an assumption simplifies the discussion. )

In Sec. II the model of Amati, Fubini, and Stan-

ghellini' (AFS) will be used to derive a general ex-
pression [Eq.(2.11)]for the binomial moments in
n of P„. The approach used in deriving this equa-
tion is not unlike that used to obtain the cluster ex-
pansion in statistical mechanics, Equation (2.11)
is in fact a cluster expansion.

In Sec. III the basic result, Eq. (2.11), of this
paper is derived anew, this time without using the
AFS model. In this derivation the ingredients are
of a more general character, although they may
well not be correct in the physical world. In par-
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ticular, what is needed is that

1 dO'—
CO (d ' 'CO

0 '~ '2 'N d'q, d'q, ~ d'q„'

the inclusive cross section for two particles to go
into N particles with momenta q» q» ~ ~ ~, q» along
with anything else, approach a constant for large
energy, and that the dependence on, say, q, factor-
ize from all other variables when

~ q, —q,. ~
becomes

large for all possible jWi. Such assumptions fol-
low immediately if inclusive processes are domi-
nated by an isolated and factorizable Regge pole in
the appropriate asymptotic region. '4 If the leading
angular momentum singularity, the Pomeranchuk
singularity, is not an isolated pole, or nearly so,
all that is derived in this paper would not apply to
the physical world. "

In physical language, Eq. (2.11) is an asymptotic
expression for the Nth moment,

gn(n-1) (n-N+I)y„,
n=N

of P„ in a series of N terms of decreasing strength
in lns. The first of these terms, f,", which is pro-
portional to ln s asymptotically, is a completely
factor'izable contribution expressing the Regge-pole
factorizability of ~, ~ ~ ~ ~, (do/d'q, ~ ~ d'q„) when
all the various

~ q, —q, ~
are large. The second term,

—,'N(N-1)f, " 'f„which is proportional to ln" 's
asymptotically, expresses the correlation between
particles i and j in z, , e, (do/d'q, ~ ~ d'q„) when

( q, —
q& ~

is not large. ' All lower-order terms in
lns express higher-order correlations among three
or more of the q, .

In Sec. IV a discussion of the general character-
istics of P„ is given. It is emphasized, in this
section, that in general one has no reason what-
ever to expect that P„ is a Poisson distribution.
However, p„ is peaked in n about the value f„and
the half-width of the distribution is on the order of,
but not equal to, ~f, . An explicit counterexample
to the Poisson nature of P„ is given.

In the Appendix, the multiplicity distribution for
the Feynman-gas analog' is given. This is a spe-
cial case of the general distributions of Sec. IG in
which two-body correlations are the highest corre-
lations allowed.

The conclusions of this paper are partly negative,
in the sense that a simple and appealing Poisson
distribution is not found. However, I believe that
the higher-correlation functions f„ f„etc., which
are a direct measure of the non-Poisson nature of
multiple particle production, may be a convenient
way to express this deviation from independent
particle production. In particular, the expansion
in f, given by (2.11) is very similar to the expan-

sion in inverse powers of the volume for a dilute
gas.

II. MULTIPLICITY DISTRIBUTIONS IN THE
AFS MODEL

The AFS model furnishes a particularly simple,
and illuminating, framework in which to discuss
multiplicity distributions. A general analysis of
multiplicity distributions will be given, for this
model, using a method which is a direct general-
ization of the method used by AFS for determining
the average multiplicity.

In order to proceed to the main topic of this sec-
tion, it may be helpful to remind the reader of a
few simple facts about multiple particle production
in the AFS model. The first observation is that
0„, the production cross section for two particles
to go into n particles, is given by c„=(g')"A„,
where g is the coupling constant for the trilinear
scalar vertex. A.„has no g dependence whatever.
[In a Lagrangian formulation, the Lagrangian den-
sity Z, (x) is given by p, gy'(x), with cp the scalar
field in the theory and p, a mass inserted to make
g dimensionless. ] The second important fact is
that A(s, t), the scattering amplitude for two par-
ticles to go into two particles, has a Regge-pole
expansion at large s and fixed t. This expansion
takes the form

A (s, t), „= s" "P(t) + s" "P(t) + ~ ~ ~, (2.1)

oo
o Y ' I+8)

g( Y, tt) = Q g„(Y)(1+It)" =

[The notation o(Y,g') means that the total cross
section is evaluated at p„j~= p. 'cosh Y and with a
coupling constant equal to g.] Then the Nth bino-
mial moment of g„obeys the equation

(2.2)

oo gN

Q n(n —1)(n —2) (n —N+1)$„(Y)= „P(Y,h)
n=N ~=0'

(2.3)

where n(0)) n(0). Lower-order poles are not ex-
plicitly written.

Given these two pieces of knowledge, let me now
add a few definitions which will prove convenient
in what follows. For a forward elastic reaction in
which P~ and P~ are the momenta of the two inci-
dent, and outgoing, particles, denote P„.P~
= p, 'cosh Y. Henceforth, the energy dependence
of v„will be parametrized by the variable Y. A
normalized production cross section g„(Y)
= o„(Y)/a(Y) will be used throughout. The main
topic to be discussed in this section is the n depen-
dence of g„(Y) for a fixed large Y.

Introduce a generating function g(Y, h) by
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y(Y a) ef(F, )))+&-ar(8E(F, I«) 1)+.. .
with

(2.4)

Using (2.1) and (2.2), one can represent $(Y, a) for
large Y as

order to evaluate (2.7) write

AIn en
f(Y a)=Q —

! f.(Y)-=Q — .f(Y a)

(2.8)
f(Y, a) = «)«(a)Y+ p(a),

g(Y, a) =().(a)Y+ p(a),
(2.5) From (2.5),

f„(Y)= a„Y+P„, (2.9)

n(0) =P(0) =«), (0) =P(0) =0, a&0. (2.6) with

Equations (2.4)-(2.6) simply represent the Regge-
pole asymptotic behavior of v(Y) along with the
normalization of «j«(Y, a).

Now, going back to {2.3), ()"(()(Y,a)/Sa" can be
evaluated for large j'by using the first term in
(2.4). Then

e"'"=exp I —,f„)no

ef(Kh)
N

A=Q A=O
(2.7)

[Lower-lying Regge trajectories may be neglected
if F is sufficiently large compared to ¹ However,
it is definitely possible that for a large fixed Y
there may be an N, for which s"$(Y,a)/sa" is not
well approximated by 8"ef(~")/Ba"'for N&N, ]In.

Define (f„/n!)a"=X„. Then

~~vs g & (gx )

y'(v; a) n n n2 ... f ...X n&-n X n2-n~, ~, X n&-n&+& ~ ~ .
1 2

~ n$ 4 n2 ns nf+1

where the summation over n„n„etc. goes over all positive integers such that n, & n, & n, & ~ ~ n, + n„, & ~ ~ .,
Substituting for X„, the previous equation becomes

Finally,

gN &f(rh).
gI N

8=Q

(2.10)

The summation in {2.10) goes over all positive integers n, for which ~ & n, & n, & n, & - n, & n„, & ~

while the 5 function requires that N=P n«. Thus the final formula for the asymptotic values of the i))th bi-
nomial moment of P„ is

F„=Q («««« 1)(n- }2-".(n-X +)1y„{Y)
n=N

f "« "«+«1
i! (n« —n„,)!

(2.11)

A discussion of (2.11)will be postponed until the next section where a derivation of this equation will be

given which does not make use of the AFS model.
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III. AN INTERPRETATION AND GENERALIZATION
OF Eq. (2;11)

The object of this section is to give an interpre-
tation of Eg. (2.11}, and to show that such an equa-
tion occurs independently of the model of the pre-
vious section. This discussion will be limited to
the case of a world where only a single type of sca-
lar boson exists. This limitation is only for con-
venience. In the inclusive reaction P„+P~
—q, + q, + q, + ~ ~ ~ q„+ anything, the following para-
metrization of p„, p~, and q, is useful'.

p„= p, (coshY„', 0,0, sinhY„),

(3.1)pe = p, (coshYs, O, O, sinhYs),

q, = (p, '+q, ')'~'( coshy„j, /(p, '+q, ')'~', sinhy, ),
where q, is a two-vector. The differential cross
section for the above inclusive reaction will be de-
noted by do/d'q, d'q, . ~ d'q».

A simple counting argument allows one to write

g n(n —1)(n —2)~ ~ (n —N + 1)g„(Y)
n=N

d d.' . d q
do'

(Y) qy 'q2»d3q dsq. . .d&q

(Y) Jl y| y2' ' ' » dy dy . . .dy

(3.2)

Henceforth [1/o(Y)j(d&x/dy, dy, . ~ dy„) will be de-
noted by dP/dy, dy, dy„.

Begin with the special case, N= 1. Then (3.2}
gives

Consider a straight line between Y„and Y~ with y
someplace on the line. When y is not close to
either Y„or Ys the function dg/dy is independent
of y, if scaling occurs. ' Furthermore, if the lead-
ing Regge singularity is an isolated, factorizable
pole,

t dy ~ = ni Y+ Isi =fi( Y) .d8 (3.3)

Equation (3.3) serves as a definition of o., and P, .

=n +0(e '& ")
dy

when y is moved away from the point YB. A simi-
lar equation holds for y in the region of Y„. Thus,

The constant P, reflects the part of the integration
where yis near either Y„or Y~.

For N=2 in (3.2},

one obtains

g n(n —1)P„(Y) = f,'+ f, , (3.5)

in agreement with (2.11).
For N= 3, define dP~"/dy, dy, dy, by

dP dP dP dP dP~'i dg dg(') dP
dyidy2dy3 dy, dy2 dy3 dy, dy, dy3 dy, dy~ dy,

dg " dP dg "
+ +

dy2 dy3 dye dye dy2 dy3

or in an abbreviated notation,

dP ' dP g dP
'

dP dP~"

dy|dy2dy~ (=I dy( . dy(dyi dye dy|dy2dys

(3.6)

dP("/dy, dy, dy„a three-particle correlation func-
tion, is not small only when all pairs iy, —y,. i are
not large, as is evident from the definition (3.6).
Calling

dy( )

~tdy|dy. dy~ d d d
= ~,Y+ P, = f.(Y), (3 -7)

the formula

Qn(n —l)(n —2)g„= fis+3f, f2+ fs
is obtained. This equation also agrees with (2.11}.

One last example, %=4, will be considered.
After that it should be clear how one proceeds in
the general case to verify (2.11}for any N. Define
dP~"/dy, dy, dy, dy, by

Q n(n —1)y„= dy, dy,
dP

dy I dy2

Now write

dP dP dP dg('i

dye dy2 dyj dy2 dye dy2

Note that dr@ /dy, dy, is not small only when

iyi —yJ is not small. ' As iy, —yJ increases from
zero, the decrease of dg("/dy, dy, is exponential in

iy, —yJ so long as the leading Regge singularity is
an isolated, factorizable pole in the J plane. Call-
ing

dy"'
=2Y+P2 -=f,(Y),

dy, dy2

dP dg dP '
dP , dg ' dg

'
= rr + rL + +

dyidy~dy3dy4 ) dy( dy; dyk ]„Jk dy] dykdy) dye dy) dy& dye dyk dy) dyxdy2dysdy4
$, j&k, i
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i, j, k, and l can take on the values 1, 2, 3, and 4.
dg! ~/dy, dy, dy, dy4 is a four-particle correlation
function, and is not small only when all pairs
~y,

—y, ~
are simultaneously not large. If one calls

J
dy"'

dy, dy, dy, dy4 = n4Y+ P/ = f,(Y),
dy, dy, dy3dy4

then

Q n(n —l)(n —2)(n —3)g„

=f;+6f,'f.+3f.'+4f f.+f. ,

as demanded by (2.11). For the general case of
any given N, one has to define correlation func-
tions for up to N particles. With such appropriate
correlation functions, (2.11) is reproduced. The
essential requirement for (2.11) to hold is that only
a single factorizable Regge pole be exchanged be-
tween particles i and j (when there is no y, inter-
mediate in value between y, and y, , and when

~y, —y,. ~
is large) in a multiple O(3, 1)4 (multiple

Regge pole) analysis of dp/dy, dy, ~ ~ dy„.'

IV. DISCUSSION OF GENERAL CHARACTERISTICS
OF MULTIPLICITY DISTRIBUTIONS

Now that (2.11) has been obtained from the AFS
model, and in a somewhat more general context,
it is appropriate to give a discussion of the general
features of $„(Y). Firstly, is $„(Y}a Poisson dis-
tribution'P

In the AFS model, when the coupling is very weak
all the f„are small compared to f, . To be more ex-
plicit, suppose the y' theory from which the AFS
model is extracted has a coupling constant defined

by Z, (x)=jugal'(x). Then, when gis small f„(Y)is
proportional to g'". The only term in (2.11)which
survives when g- 0 is the term involving f, alone,
so that

Such a moment equation means that $„(Y)becomes
a Poisson distribution as g- 0. In general, how-
ever, there is no reason, either mathematical or
physical, to believe that the weak-coupling limit
is a reasonable approximation to the y' theory or
to the physical world.

When one looks closely at (2.11), an intriguing
situation occurs. To observe this situation con-
sider the first few terms of F„[Eq. (2.11)]:

F~(Y) = fg" + zN(N-1}fi" 'f2

, N(N —1) (N —2)(N —3) fi" 'fa'

y( Y z) —e fx/ 2 e-/z~ /2 (4.3)

Equation (2.2) can be inverted by contour integra-
tion to give

P„(Y)= . $(Y, z)z " 'dz,1
2 772

(4.4)

where C is a closed contour encircling the origin
in a counter-clockwise direction. Substituting (4.3)
into (4.4) yields

z-/~/2(&f ) /2

] (Y) r(-,n+1)

0, 'fI, odd .
(4.5)

Equation (4.5) is clearly very far from being a
Poisson distribution. The general case of arbi-
trary f, and f„ the Feynman-gas analog, is given
in the Appendix.

Although P„(Y) is not necessarily close to a Pois-
son distribution in general, the fact that F„(Y)- f,"(Y) as Y-~ does require that P„(Y) peak in
n about a mean value n(Y) = f, . By "peak" I mean
that the distribution must cut off sharply for n» f,
and for n« f, . More precisely, the half-width in
n of the distribution g„(Y) about f, must be on the
order of v Y . This result follows easily from
(2.11).

Finally, let me remark that (2.11) can be in-
verted to give

(ng —1)!

1
X . ..+ &,-Z+ n, -n, ...

(n, —n„,}!

As Y becomes large, each f„ increases linearly
with Y. This means that, for a fixed R, I'N is ulti-
mately dominated by f,"for sufficiently large Y.
That is, all moments I'„, for N less than some
fixed N„become the moments of a Poisson distri-
bution when Y is greater than some Y„. The ques-

0
tion is, then, whether such an occurrence is enough
to require that p„(Y) resemble a Poisson distribu-
tion for sufficiently large Y. To show that the an-
swer to this question is in the negative, a counter-
example w'ill be given.

The example consists in a specification of g(Y, h)
in (2.4) as

P(Y, h) =exp[(n Y+P)h+ z(n Y+P)h 1, (4 2)

with n and P arbitrary parameters. [Note that

f,(Y) = f,(Y'}=nY+P.] Define z= k+1. Then

N(N —1)(N —2)
Sl

(4 1)

x F,"~ "~+~6(n gn, ), - (4.6)

where, again, the summation is over all n, satis-
fying ~ & n, & n, & n, & ~ ~ ~ n, & n, +, ~ ~ . Equate ion (4.6)
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furnishes a way to relate the correlation functions

f, to the moments of the distribution P„.
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APPENDIX: THE FEYNMAN-GAS ANALOG

one obtains

gn
P„(Y)= —, „g(Y, h)

nl Bh"

Write z =1+h. Then

0(F, ) =exp( — ' exp ,f, —f,' i f2-fi '
f.

Call ~ = (-,'f,)' '[x —(f, —f,)/f, ) . Then

2

g (Y) = —exp — '
(,' f,)"~'-

n! 2f,

(A.S)

772

E„(Y)=N!
t t

(f~)"~ "2

ltd ~F2 (A. 1)

A suitable generating function for I'„ is

The Feynman-gas analog can be defined by saying
that all f„except f, and f„ in (2.11), are zero. In
such a case one can solve for P„(Y) exactly in terms
of known functions. The starting point is (2.11),
which in this case reads

X
~= n~, -~,~'t2 ~.~' ' (A.4)

~ (- )"H.( l(f. f,)'/2f, -)'"}. (A.5)

Now H„(x)= (-1)"e" 9"e " /sx", where H„(x) is the
Hermite polynomial of nth order. Thus,

(Y) p(2f2 f1) (lf )n/2
n1

2 2

g(Y, h) = exp( f,h+ —,
' f,h') .

Using

g y„(1+h)"=y(Y, h),

(A.2) Equation (A.5) is the most general solution to the
Feynman- gas- analog model. This distribution
approaches a Poisson distribution as f,/f, -0
but, in general, does not resemble a Poisson dis-
tribution for f, comparable to f,.
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The question may arise as to the connection of Secs.

II and III in this paper with (i) the standard virial ex-
pansion in statistical mechanics, and (ii) the expansion
of the logarithm of the characteristic function of prob-
ability theory in terms of cumulants. tFor (ii) see, for
example, B. V. Gnedenko, The Theory of I'robability

(Chelsea, New York, 1962).] The expansion given in
Sec. II is almost the cumulant expansion of probability
theory. The difference is that the characteristic func-
tion in probability theory is defined via a Fourier trans-
form, and one considers ordinary moments rather than
the binomial moments which must be considered in the
particle-physics context. In Sec. III this difference is
crucial. In order to deal with binomial moments, one
has to define the characteristic function via a Mellin
transform rather than a Fourier transform. This Mellin
transform may not exist in the context of Sec. III. For
example,

gf, h„,
n=0

the logarithm of the characteristic function, certainly is
a convergent series, for sufficiently small h, in the con-
text of the AFS model, but it may not exist in the more
general context of Sec. IG. Similar remarks hold for the
connection to statistical mechanics, for in this case the
"free energy" may not exist. All in all, I feel that too
close an identification with the cumulant expansion, or
with statistical mechanics, may be unwarranted until a
characteristic function or free energy can be shown to
exist.


