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Some techniques are presented for studying the virtual photon-photon interaction available
through electron-electron and electron-positron colliding beams, The two-photon processes
are analyzed with the helicity methods presented before by Muzinich, Wang, and Wang, and
with invariant amplitudes in the special case of forward elastic photon-photon scattering. A
discussion of the high-energy behavior of some particular hadron production amplitudes as
determined by Regge theory is given. In particular, we emphasize the possibility of measur-
ing the real photon-photon hadron production cross sections. If only the Anal lepton momen-
ta are measured and one attempts to isolate the total real photon-photon cross section into
hadrons, there are electromagnetic background effects that may make this measurement dif-
ficult.

I. INTRODUCTION

A topic of considerable interest now is the role
of the two-photon annihilation in electron-electron
and electron-positron colliding-beam experiments.
One striking feature immediate from the outset is
the possibility of obtaining information about pho-
ton-photon interactions, in yarticular, hadron pro-
duction. In fact, it now seems not only possible
but perhaps unavoidable. Brodsky, Kinoshita, and
Terazawa, ' Balakin, Budnev, and Ginzburg, ' and
Arteaga-Romero, Jaeearini, and Kessler' have
made the interesting observation that the two-pho-
ton annihilation processes can be dominant in the
high-energy limit.

Theoretical interest in this topic is not new.
Some time ago, Low' studied pseudoscalar (e.g. ,
&' and q) production, and later, Calogero and
Zemach' suggested studying lepton and pion pair
production in terms of the two-photog annihilation
mode. Because of the higher energies and im-
proved luminosities that we will see at CEA,
SLAC, and DESY, and because of the aforemen-
tioned dominance of this mode, photon-photon in-
teractions may. at last be of primary experimental
interest.

The theoretical analyses seen in the literature
have, for the most part, emyloyed the Weizsheker-
Williams equivalent-photon approach. Further-
more, specific hadron-channel estimates have
been confined to perturbative phenomenological
point couplings. Such analyses exhibit very nice-
ly the enhancement due to the yroyagators for pho-

tons with small spaeelike mass. However, we feel
that a more complete treatment of the relevant
Feynman diagrams will ultimately be useful as the
technology of experiments improves.

Specifically we consider the possibility that the
energies and directions of both final electrons can
be measured. Therefore we apply a helieity and
group-theoretical formalism' for extracting the
dependence of the cross section upon lepton energy
and angle. A similar helicity analysis is also con-
tained in Arteaga-Romero et ak. '; we became
aware of their reports after starting to communi-
cate our results. We also present and use a set of
invariant amplitudes to analyze the total photon-
yhoton cross section if only the final lepton mo-
menta are measured. The total cross-section
measurement has been suggested in Ref. 2.

We begin in See. II with a discussion of the spec-
ific production process in the envisioned colliding-
beam experiment. The notation and Feynman am-
plitudes are given there. Next, the helicity form-
alism is contained in Sec. III. Section IV is con-
cerned with Hegge predictions for our photon am-
plitudes and some numerical estimates. We pre-
sent a short description of competing processes in
Sec. V. If only the final electrons are observed
and one attempts to isolate the total real-photon-
photon cross section into hadrons, some back-
ground processes apped' to be important. For ex-
ample, at high energies the process yy- e'e-e+e-,
double electron pair production, dominates the had-
ron production process for real photons. However,
effects due to finite virtual photon masses are cru-
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cial with regard to the size of this background.
An appendix is included which contains a kine-

matic-zero-free and kinematic-singularity-free
amplitude expaggion for the forward virtual pho-
ton-photon scattering amplitude.

II. FEYNMAN AMPLITUDE AND NOTATION

M& =~1' = V&- P2)' u2 =r2' = (P2 Pl)', -
S = (P, +P2)' &

S = (q1+q2) =P»

We concentrate here on the colliding-beam reac-
tion

e(p, ) + e(p2) e(p,') + e(p2') + "anything" .
Here, e(P;) corresponds to either an electron or
positron with four-momentum p; and "anything"
consists of even charge-conjugation (C =+1) states
(which also have zero charge, baryon number, and
strangeness). That is, we deal with the virtual
intermediate reaction

y(q, ) + y(q2) "anything",

where y(q;) refers to virtual photons with space-
like four-momentum q;.

We assume that the final leptons e(p,'}and e0&2')

are detected (in coincidence). If only the leptons
are detected, there is a background problem from
competing processes. This background is dis-
cussed in Sec. V.

If information about reaction (ii) can be obtained
from experiment, we have a new and very rich test
of theoretical ideas. As examples, Begge behav-
ior, production of C =+1 resonances, and current-
algebra predictions could all be investigated.

In detail, the amplitude for reaction (ii} corre-
sponds to the Feynman diagrams in Fig. 1. We
need consider both Figs. 1(a) and 1(b) for the anti-
symmetric electron-electron amplitude but only
Fig. 1(a) in electron-positron collisions. In order
to be definite, let us restrict ourselves to the elec-
tron-electron case; later, we will work in a kine-
matic region where (a) dominates over (b) and
hence our results will be applicable to the elec-
tron-positron case as well.

Vfe define an assortment of notation' in terms of
Fig. 1:

1 ql (Pl Pl) & 2 q2 (P2 P2)

FIG. 1. Hadron production in electron-electron colli-
sions via two-photon annihilation. For electron-positron
processes, (b) is disregarded.

4 1
Mn = -e'

t t Q(p1')&,u(p, )u(p2')ysu(p2)T' (q„q„' N)
1 2

q1 TO 8(q1& q2& N) = q2 T»B(q&& q2& N) = 0 . (.2.5)

We wish now to choose more specific momentum
coordinates for the electrons. For colliding
beams, the laboratory is considered to be the c.m.
reference frame. Then

u(P2')y, u(P, )u(P,')ysu(P2}T' (r2„r N2&)

(2.3)
The quantity T'2(q„q„N) in the expression (2.3)

is the covariant amplitude for the reaction (ii) with
c (P) the polarization index of the virtual photon
q, (q, ). (Also, N represents collectively all of the
labels necessary to specify the C =+1 hadron
state. ) This amplitude is defined in terms of the
covariant time-ordered product of two electro-
magnetic current operators:

&'&t&„q„»)=&fd'xe "'

X(Ni T*(Z'(2)JS(0)}i0). (2.4)

Here, in the definition of the T* product, all nec-
essary Schwinger terms are understood to be sub-
tracted. Thus T 8 is truly a second-rank Lorentz
tensor and

p. =E '-p. '=m' pI2 gP pi2 m &

The S-matrix element can now be written as

mmmm 'i2

(211)2 E, E2 E,' E2

"6'(P1+P2+P» -P&-P2)iiff»

where the Feynman amplitude is given by

(2 1)

(2.2)
p,'=(E,', ip1'csin&, cos&j&„(p1'isin8, sing„ ip1'icos8, ),

(2.6)
P2' =(E2',lip2'ising, cos&j&2& ip2'i sine, sin&j&2&: —ip2'i cose,},
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m
(E —E,')'

3

u, (8, =0)= 4EE,',-M, (8, =0) = -4EE,',
(2.8)

the crossed final-state contribution corresponding

so that 8„g„and & —8„$2 are the polar and
azimuthal angles for the final electrons p,' and p,',
respectively. As a consequence,

f, =2(m' EE-1 + Ip i Ipl I
cos8,}—= -4EE,' sin'(-,'8,),

f2 = 2 (222' —EE2 + I p I I p2 I
cos 8, )=—-4EE,' sin'( —,

'
8,),

M, =2(m' -EE,' —)p( )p,' j cos8, )=—-4EE,' cos'(28, ),
u2 =2(m' —EE,' —fp J Jp,

'
f cos8, ) —= -4EE,'cos'(-, 8,).

(2 7)

At this point, we make the important remark to
the effect that we restrict ourselves to small 8,
and 8, (and, of course, all energies much larger
than 222). Since

to Fig. 1(b) and the T(r„r„N) term in Eq. (2.3) can
be neglected. [The dominance of the (t,t2)

' term
produces the enhancement discussed in Sec. I.]
Therefore, we can ignore this Pauli-principle
effect in our work and the electron-electron and
electron-positron cases can be treated simulta-
neously.

The differential cross section for reaction (i) and
a particular final state S is

do I m d p~dp2
d4» (2&) 2E E,' E2

x 5'(P,'+p,'+f2„-P, —P,)-,
' g iM&; i', (2.9)

SPlllS

in which d4~ denotes the phase-space volume for
the hadronic state. A final remark before discuss-
ing Eq. (2.9) in terms of the helicity formalism is
that we could neglect m in many of our expressions
but often find it just as convenient to retain the m
dependence.

III. THE HELICITY AND O(2, 1) FORMALISM AND INVARIANT AMPLITUDES

We now relate the differential cross section in Eq. (2.9) directly to the T' amplitude in Eq. (2.4) through
the density-matrix formalism of Ref. 7. The upshot of the analysis in that reference is that the lepton ver-
tex can be handled in a simple manner using its invariance under Lorentz boosts along the direction of the
virtual photons (say q;}. Namely, we go to the frame where a given q, is of the form q; =(-t, )'"(0, q,.); in
such a (brick-wall) frame, the lepton pair distribution takes the form of a finite-dimensional nonunitary
representation of the 0(2, 1) group in the helicity basis.

Specifically, after squaring the amplitude and using the techniques discussed in Ref. 7, the colliding-beam
differential cross section becomes

1
dg dE dg 9v2 E2 g t 2t 2 mimi(4t 41) m2m2(4t, 4)Pmlm2. 1tm2 fit I2i.

I 1 2 2 2 I 2
all m~, m~, n

1
2 Re[fmlm2nln2(alt 'Pit 52t 42t hit )it 52t 42)Pmlm2nln2(Clt 92t +it +2i N)]

+ 2 2 Imlmlt(&lt 41) Im2m(25tt242)Pmlm2mltm2t(+it +2i N) (3 1)

The newly introduced quantities here are discussed below; we note first that the helicity index m, takes on
the values m, = +j., 0.

The density matrices for the lepton pairs ("meeting" at each electromagnetic vertex) in Eq. (3.1), lm~mfy

etc., have been derived in Ref. 7. For example, we have'

I...;(&1 Ol}=-tl[&.'*,l(4 41&.';l(4, kl}+&.', -1(&1 41)&-';-1(4 41)]
(3 2)

I...;(k„fl)= -sl[&.",1(fl, 41)&.';1(fl, ki)+&.'*, 1(&u 41)&.';-l(&1 41)]

if the beams are unpolarized and the final electron spins are unspecified. Also,

mlm2nln2( hit Pit (2t 42t 4t kit 4t 42)

(tlt2 1 2) [ mll((lt $1) 1($m2t'122)&nil(tlt $1) n21((2t 4) ml l(alt $1) nt2 1($2t $2) ttl l((lt '$1) tt2 l($2t $2)] '

(3 3)

In both Eqs. (3.2) and (3.3), electron mass terms have been neglected in our high-energy approximation
[notice that these quantities appear in the ~nume2ators of Eq. (3.1)]. The complete formulas correct for
nonzero electron mass can be found in Appendix B of Ref. 7.
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In the preceding eguations, & „(5,g) is a finite-dimensional representation of O(2, 1) and is given by

8)i (( P) s~ydi (f()flml-In[

vghere d „ is the reduced rotation matrix as defined by Rose." The variables $;, $; parametrize the boosts
transverse to the direction of the momentum transfer q;, r;, respectively, and are related to the labora-
tory quantities by"

»ng; lp t lpl I
=(~'- 4/4)'" l0; l»nh(;,

»»~ lp I I pl I
=(~' ~~-/48'I r~ I sinh(~, i =» i =2 o» =2, j=1.

The angles between the normals to the lepton planes and a fixed y axis have been called p& and g&

(ps xp&) 3' =
l p) xpf I cosf~ ~

(p& x ps }'
& =

I p~ xps I cost& i

Hence we use

(3.5)

(3.6)

4&=0'a 42=4'i- v (8 7)

in terms of the azimuthal angles introduced in Eq. (2.6). The O(2, 1) transformation specified, for example,
by $, and P, is simply the Lorentz transformation that brings us to a frame where the pair of electron mo-
menta, p, and p,', are collinear vrith the direction of the "current" q, .

The density matrices in Eg. (3.1) corresponding to the current correlation functions T'8 defined in Eq.
(2.4) are denoted by p and take the form

p. ...(n. q.' N) =(»)'&'(&~ —q, —q.)&+~(-) ~"~'"' '
«.', (q, )».'; (q,)~.', (q.}&.",*(q.)T.B(q„q.; &)Ti.(q„q.; N) (8.6)

x'e' (q, )~ ~,*(r,)~ 8,(q,)c„"*(r,)T,B(q„q„E)T~~ (~„r;,Ã}. (8.9)

An expression analogous to Eq. (3.8) holds for p „,„(r„r„E}.We have introduced a standard set of
polarization vectors ~ (q) in projecting out the helicity matrix elements in Eqs. (3.1)-(3.3), (3.8), and
(3.9). These have the usual properties"

~.(q). q=0, ~.*(q) ~. (q) =(-) 5... E( )~."(q)~".*(-q) =g"" q"q'!q'- (8.10)

for spacelike q &0.
This completes our presentation of the general formula for the differential cross section. Any particular

distribution function can be derived from Eq. (3.1)„ the formulation with the helicity basis and the O(2, 1)
group has a big advantage over the usual tensor basis since all physical quantities are immediately acces-
sible. Restricting ourselves, as we said, to small angles 8; allows us to neglect the last two terms in Eq.
(8.1), simplifying matters considerably. However,
me have included the u;-term formulas here for
completeness.

A fear remarks are in order here. We see' that
there are sht linearly independent elements implied
by E ~ for the lepton pair. Of course, the number
of linearly independent elements of p depends upon
the nature of N but its detailed symmetry properties
and relevant counting formulas have been given in
Ref. V. The relation between the O(2, 1}variables
and laboratory variables exhibited in Eq. (8.5) seems vO' q, P
to dictate that the helicity density-matrix elements
are to be evaluated in the laboratory frame. But the
density-matrix form of Eg. (3.1) is Lorentz-invari- FIG. 2. The connected part of the forward virtual
ant. %e can thus generalize our results readily to photon-photon Scattering aIQplitude, Tyegg.
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any frame provided the relation between the O(2, 1}variables and the momentum variables of the particular
frame, Eq. (3.5), are changed accordingly.

We conclude this section with some discussion concerning an interesting relation to real photon-photon
scattering and the total photon-photon cross-section measurement. If we stay in the region of small
angles, " the longitudinal (m =0) components of p as well as the crossed terms can be neglected in Eq. (3.1).

If we sum over all final states N and drop the crossed term in Eq. (3.1}, we obtain the following result in
terms of the absorptive part of elastic forward virtual photon-photon scattering (Fig. 2):

dQ 6 EIE2 1
dE/dfl dEedg 8))2 E2 t 2t 2 z m1m1(fl) 41}m2m2(~2) %F2) m1m2m1m2 '

I I 2 2 g$ yg, , m.'

In Eq. (3.11), a (q„q,) is given by

(3.11)

a, 2, 2=(-1) 1' 1' 2' 4' (q))e (q2)e,*(q))e 2*(q2)A1, 8(q1, q, ), (3.12)

where A„,()(q„q2) is the absorptive part of photon-photon scattering (Fig. 2) and use of completeness 1n

Eq. (3.8) gives the expression

A„„(e„d)=fd'ed'ed'e e "d"' "'"*'(0(T'(d (d)d (e))ed'(d(e)d (0)))0) . (3.12')

For some theoretical models it is desirable to have an invariant-amplitude description of the tensor
A& z. In general there are eight independent covariants I; corresponding to the invariants A; and helicity
projections a ~ ~ in the expansionI 2 I 2

8
A1,8(q„q2) = g (f, )),„,BA, (w, t„ t, ), (3.13)

where q, q, = w. The actual form of the covariant functions of q, and q, and the analysis of their kinematic
constraints is lengthy (see the Appendix) and we quote only the essential results here. Use of the standard
trace techniques yields the following exact expression for the differential cross section:

dEIdQIdE2d02 8&' E t, t2
, , (4t, 't, 'A, +Osr —u,u, )'+ -,'t, t, [(s —r)'+ 2t, t, + (u, —u2)2]t (A, +A, )

+ t, t2'[(s +u, )'+ (r +u, )'+ 2t, t,]A, + t,'t2[(s +u, )'+ (r + u, )'+ 2t, t,]A,

+t,t,[s'+u, '+u, '+r'+4t, t,](A, +A, )

+ t, t,[(s +r)(sr —u,u, + t, t, ) + (u, +u, )(u,u, —sr+ t, t,)]A,). (8.13')

Parity conservation at the lepton vertex limits the number of independent combinations of amplitudes that
appear in Eq. (3.18 ) to six of the eight in Eq. (3.13). The invariants s, u;, and t; are given in terms of
laboratory quantities by Eq. (2.7) and r =—2p,' p2 =2w —s —u, —u, . In addition there is an explicit factor of

t, t, in the expression in heavy parentheses in Eq. (3.13') if one makes use of the relation

(sr —u,u, )' = t, t,[(t,t,)'"—(u, u, )'"2 cos((t), —(t),)]'

in the coefficient of (A, + A, ).
If we retain the leading terms at small t, in Eq. (3.13') or (3.11), we obtain the following approximate for-

mula in terms of laboratory quantities:

dG 4 EeEe 1 (E2+E)2)(E2+E)2) E2E~E~

dE'dQ'dE'dQ' 4w E t t (E —E') (E —E') '"' ' " ' (E —E') (E-E')~a +a I+ ' ', cos2&h —4 &l.a
'8

(3.14}
The amplitude combinations in the square brackets of Eq. (3.14) are easily expressed in terms of the in-

variant amplitudes of Eq. (3.13') by [see Eq. (A14)]

a»»+a, », = w'(A, +A., +2A, +2A, +2t,A, +2t,A, )+t,t, (2A, +A, +A,),

a„, , = w'(A. , + A. ,) + 2w t,t,A, + t,t,(A, +A, ) .
(3.14')

In the region of large E, small t„and small E&, we have the following limiting distribution which follows
from Eqs. (3.13') and (3.14):
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(3.15)

(3.16)

d0' 4 E'E' 1 E'+E" E'+E"
dEgdfl IdEgdfl s 4v2 E2 t t (E Et)2 (E Et)2 ( ill 1 1 11 1}'

Also we obtain the following crude but effective differential cross-section formula from Eq. (3.14):

dQ a 2E'+(E —&u, )' E'+(E —~2)' 1 cr(s')
dE,'d cos8,dE,'d cos8, ~, . & 2E' 2E' sin'( —,'8,)sin'(-,'8, ) s'

where v; =E —E,' are the equivalent-photon energies from each lepton pair. Here s' =—4e, co, for small t;
and

vy + yy
pi g (Cllll ++1-11-1}

16
(3.17)

is the total real photon-photon hadron production cross section. Equation (3.16) was derived by ignoring the
azimuthal angular dependence in the a"&'s and considering t& small but with -t; » m'. This azimuthal ap-
proximation should be reasonable since s' is weakly dependent upon &P, —P2 at small angles. We will use
Eq. (3.16) for order-of-magnitude estimates later in Sec. IV.

It is interesting to note that we recover the WeizsKcker-Williams (WW) equivalent-photon formula"

dg 2a. ' E 'E'+(E —ld, )' E'+ (E —(u2)'

de,dc@, & m 2E'v, 2E'co,
(3.18)

upon integrating Eq. (3.16) over 8, and. 8,. This entails reverting back to the (t,t, )
' form and also neglect-

ing the 0; dependence of s'. Furthermore, we have kept only the leading logarithm term and have under-
stood s 4Q)

Equation (3.18) is applicable to the e'e case generally, but it can be compared to the e e case only if
the final electrons are limited to the forward cone -because of the Pauli principle. With this remark in
mind, the total colliding-beam cross section for the two-photon annihilation into hadrons is"

o„(s)=
"' „,do(s, s')

ds"sth
(3.19)

where sth = m, ' for + production, 4m„' for pion pair production, etc. We have introduced

—= 2(—) (ln —), , (2+—
) 1n(—,

)
—(1 ——)(1+—),

with

1 (s)1/2

(3.20)

IV. REGGE PHENOMENOLOGY

AND LARGE s' ESTIMATES

In this section, we apply some techniques avail-
able from Regge or J-plane phenomenology in dis-
cussing the high-energy behavior of the various
photon-photon amplitudes that arise in the cross
sections, Eqs. (3.1) and (3.11). Although the pro-
duction of high-energy hadronic systems is inhib-
ited, "some general statements are in order in
view of the foreseeable progress in colliding-beam
technology. Also, some numerical estimates are
included.

We proceed by making the following remarks:
(1) Production of final states N that can proceed

through the exchange of the Pomeranchuk trajec-
tory will ultimately dominate at high values of the
invariant mass s' =P„2 (the c.m. energy squared of
the two virtual photons). For example, production
of four pions (and other systems which can be pro-

duced diffractively from two virtual photons}
should dominate over the production of a pion pair,
kaon pair, or a nucleon-antinucleon pair. For the
latter, the production takes place according to the
exchange of the leading trajectory with the quantum
numbers of the y&, yK, or yN system, respective-
ly.

(2) Since the density-matrix elements occurring
in Eqs. (3.1) and (3.11) involve second-order (in
perturbation theory) electromagnetic amplitudes,
there are fixed poles at nonsense correct-signa-
ture J values which contribute fixed-power s'
growth. Therefore, a simple and general Regge-
behavior statement cannot be made.

(3} At lower values of s', there is no reason that
low'er-lying trajectory exchange will be unimpor-
tant. Also, resonances (perhaps long-lived) with
even charge-conjugation parity could be produced,
and it is clearly interesting to search for them. "

(4) In the situation where only the electrons are
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detected (where all the hadronic states fq are
summed) and we obtain a closed form for the cross
section, Eq. (3.14), the Regge picture is again
simple. The cross section involves the absorptive
part of the reaction y(q, )+y(q, )- y(q, ) +y(q, ), de-
picted in Fig. 2. This reaction entertains only
even-C trajectory exchange, there are no fixed
powers in the absorptive part, and factorization
yields

~.ss(q» q2) = Z &lb".~ '"".
s'~ n

(4.1)

The index n ranges over the leading even-C trajec-
tories with the quantum numbers of two photons.
Since we are dealing with the forward absorptive
part and since there are apparently only M=O
Lorentz-pole trajectories in the real world, we
obtain the more restrictive no-helicity-flip form

= Q 5",5",s' ~5„5,~.
8 tl

(4.2)

Thus the last term in Eg. (3.14), a, » „would
vanish in this limit.

The problem concerning the size of these hadron-
production cross sections follows on the heels of
these remarks. One can give a simple numerical
estimate' for the 'total hadron production cross
section 0~ by factorization. We have

I.„(-)l'
cr(s') = = 0.25 pb, (4.3)

s'~ ~ opt

where oz~(~) = 100 pb is the total photoabsorption
cross section off a proton and o»(~)= 40 mb is the
total proton-proton cross section in the infinite-en-
ergy limit. As a result, we can look back at Eq.
(3.16) and say something about the size of the dif-
ferential cross section.

Consider the following situation: E = 3 (s =36)
and E,' =E,' = to, = or, = 1.5 (s' =9) in units of GeV
(GeV'). If 8, =8, = —,", we obtain about 10 '~ cm'/
(cos8, cos 8, GeV') for (3.16). If 8, =8, = 5', we get
10 "cm'/(cos 8, cos 8, GeV. '}. If this sort of signal
is satisfactory to the experimentalists when reason-
able acceptances are taken into account and if the
electromagnetic background can be separated out,
one has a handle on the size of cr(s') at high s' via
the double inelastic experiment.

sky et al. is appropriate here, namely, the n' e'e
competition is damped by the photon propagator
which decreases as s ' whereas the a' diagram in
Fig. 1(a) has no such damping. In fact, our pro-
cess of interest has an enhancement at small angles
not present in the n' competition and, moreover,
present in at least one less power of t; ' in the a
competition of Fig. 3(b). The latter suffers from
damping due to the timelike photon propagator and
there is no enhancement due to the electron propa-
gator that competes with the additional t ' of the
process in Fig. 1(a). The two-timelike-photon
production of even-C hadron states not pictured in
Fig. 3 has s ' damping.

In spite of the aforementioned possibility of over-
coming the 0.' competitor, recent evidence from
Frascati" indicates anomalously large multihadron
production (at low enough energies that we proba-
bly have to describe the n' single-photon mode as
the perpetrator) in e'e collisions. As a conse-
quence of the above remarks the electron coinci-
dence detection scheme that we have been discus-
sing may be just as interesting to the extent that it
may be effective in measuring the total photon-pho-
ton hadron production.

There is, however, a background problem pres-
ent in the situation where we attempt to measure
photon-photon total cross sections into hadrons.
Summing over N corresponds to detecting only the
two electrons for an experimental comparison with

Eg. (3.14). Thus we have to face up to new com-
petitors, the escape of which requires coincidence
detection of the final electrons at the very least.

Pp

V. BACKGROUND PROBLEMS

In the event that only specific hadron states are
detected (with the electrons integrated out), the
major background of the n4 photon-photon mecha-
nism is the. odd-C single-photon annihilation pres-
ent in order 0.' for electron-positron collisions and
in order n' for electron-electron collisions. (See
Fig. 3 for the related Feynman diagrams )The.
remarkable comment made most cogently by Brod-

FIG. 3. (a) The e2C =-1 competitor in e+e collisions.
(b) The 0.4C =-1 competitor in both e+e and e e experi-
ments. The remaining graphs left understood by the
three dots include the antisymmetric p & pz ones in the
e e case. We have not shown the two-timelike-photon
C =+1 competitor in e+e which is less favored.
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FIG. 4. The competitors up to and including e4 order
for the measurement of the total hadron production cross
sections by photon-photon annihilation in e e collisions:
(a) elastic, {b) single bremsstrahlung, (c) double brems-
strahlung, and (d) e+e- pair production. The three dots
imply higher order in 0. for (a) and (b), and other permu-
tations and antisymmetric contributions for. (c) and (d).

This coincidence scheme furnishes the missing
mass" (s')'" of the ensemble of particles produced
if we know the energy and momentum of both final
electrons. Simply knowing that the collision in-
volved a final e with energy significantly less than
E removes the elastic-channel [Fig. 4(a)] possibil-
ity. Knowledge that s'4 0 eliminates single brems-
strahlung [Fig. 4(b)]. Unfortunately, single and
double pair production and double bremsstrahlung
offer more resistance [Figs. 4(c) and 4(d)].

Inasmuch as the electron propagators offer en-
hancement for certain angles in Fig. 4(c) and inas-
much as there are three indistinguishable e 's in
Fig. 4(d), we feel these competitors will require
careful estimation. It is to be noted that double
pair production via the real photon process, y+y-e'+ e +e'+ e, has been calculated to be quite
large. " In fact, at high s', a(double pair) = —,'o. '/m'
=6 p.b for real photons, compared to the total had-
ron production cross section of 0.25 p,b. This
large cross section arises from the small Feynman
mass in the electron propagators and the only pa-
rameter to set the scale for the asymptotically

constant cross section is the electron mass. It is
quite probable that at small but finite photon mass
t, and t„ the scale is set by t; ' instead of the
electron's mass. There is support for this behav-
ior in other model investigations. " While it ap-
pears that double lepton pair production will
swamp the hadron production total cross section
for real yhotons, we feel that the question of how
the scale changes for small but finite photon mass
is an interesting question.

Note added in Proof. Further investigation has
shown that for finite values of photon mass,
-f, »m', the scale of o (double pair) is given
roughly by (t,t, ) ".Details will be forthcoming
in a later publication.

Getting back to lepton pair production, we can
estimate such a competitor by way of Zq. (3.16).
[The odd-C pairs are damped for the same reasons
given in the hadron discussion and the crossed
even-C pairs seen in Fig. 4(d) lack some of the
photon propagator enhancement. ] From Bjorken
and Drell, "we see that y+y- e'+e has a total
cross section for real yhotons

o~ (s') =4&o."(s') '[In(s'/m') —1]

for ~, = e, in the photon's c.m. frame and s' =4~,'
» m'. Hence this dies out as s' 'lns', in contrast
to or(s'), and for our earlier example (s' = 9 GeV'),
v, . &0.48 gb. (Note added in p~oof. The scale in
the logarithm remains m, for s'» -t„m . Details
will be published elsewhere. ) So we are led to seri-
ously consider double inelastic scattering at small
angles where s'- s- large (determined by detect-
ing both electrons), since o . decreases with re-
spect to o ~ by a whole power of s'. The next com-
petitor of interest is double bremsstrahlung.

The demand that s' be large implies that neither
photon in double bremsstrahlung [see Fig. 4(c)]
can be soft since each is massless. Double brems-
strahlung can, in principle, be separated from the
process of interest, Fig. 1(a), since the external
lepton pairs do not attach locally and the distribu-
tion in the electron's energy and angle is different.
Preliminary indications from the photon spectrum
analysis of Ref. 20 are that double bremsstrahlung
will not dominate the process of interest at high s'.

In conclusion, the specific background problems
mentioned above may not be disastrous and can be
calculated explicitly and subtracted from the data.
However, there are background problems of high-
er-order a, e.g. , triple bremsstrahlung which may
very well give rise to large radiative corrections.

VI. DISCUSSION

One of the most interesting results to come out
of the recent inelastic electron-proton scattering



1504 R. W. BROWN AND I. J. MUZINICH

experiments performed at SLAC was the precise
measurement of the total photoabsorption cross
sections at high energies. Consideration of the
reaction e+P- e+ "anything" at small momentum
transfers allowed by extrapolation the estimation"
of the total cross sections for y+P-"anything".
We have discussed the analogous possibility that
by double inelastic electron-electron scattering,
e+e- e+e+ "anything", the total cross sections
for y+y- "anything" could be measured.

Even though we have gone so far as to ask that
the final electrons be detected in coincidence, se-
rious background still persists for the total-cross-
section measurement. This includes multiple
bremsstrahlung, pair production, etc.

Both the total hadron production cross section
and specific hadron production have been dis-
cussed in terms of Regge notions. This was done by
considering "double inelastic" electron-electron
scattering so that s'- ~. The possible confronta-
tion of the enigmatic C =+1 photon-photon channel
with Regge phenomenology certainly ranks as an
important one when information about this channel
is finally known.

In discussing the forward photon-photon scatter-
ing matrix element, we constructed a set of in-
variant amplitudes according to the outline in the
Appendix and with an eye towards future disper-
sion-relation applications.

Recently, some other related work has come to
our attention. Stodolsky" has proposed a method
utilizing high-energy collisions with nuclei for
measuring the y-y total cross section.
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APPENDIX

We present here an invariant-amplitude expan-
sion of the rank-four forward amplitude T„Bfor
virtual photon-photon scattering [good, of course,
for A~„,8 of (3.12)as well]. The steps in the deriva-
tion of this expansion are sketched below, in par-
ticular, those taken to reach kinematic-zero-free
and kinematic-singularity-free invariant ampli-
tudes. Also, we give the relations between these
invariants and the helicity amplitudes in the c.m.
system of the process y(k, }+y(k,)- y(k, ) +y(k2).

There are 43 independent rank-four tensors
which can be constructed out of the available ten-
sors g"", q,", and q,". Omitting e"' corresponds
to assuming invariance under parity transforma-
tions, all of which agrees with helicity counting for
the four virtual photon helicities and forward scat-

8
Tkno8 glXno~A (K (A2}

where the A; are invariant amplitudes. The inde-
pendent tensors are

IXnal (f Xo 'kqa)(t+n8 n 8)

I kna 8
(gran q~tqn)(go8 qaq8)

(A3)

(A4)

(A5)

x(t@ ' —qnq, s),

I kna8 (t Xa qX a)

(A6)

x [t,q,"q,' —su (q,"q,'+ q,"q,') + gg'g"']
(A7}

tering. Further agreement with such counting is
the fact that time-reversal invariance (or, equiv-
alently, charge-conjugation invariance) limits us
to 27 possible tensor combinations. Finally, gauge
invariance connects the scalar and longitudinal
photon spin states, leaving eight independent ten-
sors. But the last requires care insofar as we
wish to avoid forcing zeros or poles into the in-
variant amplitudes. "

Specifically, since the electromagnetic current
is conserved,

X
8 ql Xna8 q2 Xna8

(Al)
and we obtain 19 relations between the 27 invariant-
amplitude coefficients of the 27 independent ten-
sors. Let us use the three scalars, t, —= q, ', t, —= q, ',
and w = q, q, = —,'(s' —t, —t,) as the independent vari-
ables for the invariant amplitudes. The first step
then involves searching for those invariant ampli-
tudes appearing in the 19 relations without a t„ t„
or w coefficient. These are then eliminated. Note
that in a relation like t,A+t,B=0, where A and B
represent invariant amplitudes, w'e say A = -B.
(We assume that there are no 6-function ambigu-
ities at f, =0 by appealing to analyticity. ) We then
have remaining relations similar to t,A +suB =0.
These imply that A =A'm and 9=B't, and that fin-
ally A' = -B', where A' and B' are the invariant
amplitudes we would eventually use.

Needless to say, this is an exceedingly tedious
task and it was made palatable by judicious use of
an algebraic computer program. By listing the re-
lations on a program and sequential substitution,
a remarkable amount of effort was avoided and a
minimization of errors-by-hand was achieved.

Finally, we write what we believe to be a kine-
matic-singularity-free and kinematic-zero-free
complete basis for T " (but see our crossing
discussion later},
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and the remaining unsimplified forms

'=2wt, t~"g '
and the odd combinations

I2 —I3y I6, I7 —I8,

where

I,'=2I, —3wI, —wI, +(t,t,/w)(I, I,)-.

(A12)

(A13)

+ t,(q,"q,'+ q,"q,'}q, q,

I,'~"= w'g"'g~'+ t,t~"g

—w(q,'q, +q,"q,')g '

I ~~o8 = w~ ~o+8 +t t+~~g~~

—w(q,'q:+ q.'q;)g'

(A8)

+ t, t2(t2A4+ t,A 5+ 2wA6),

ao,o, = -t, t2(A, +A7+AB) —t, t~~A4 —w~t, A~,
(A14)

a„„=-w(t,t,)"'(A, +A, ) —(t,t,)'"( w' t+, t,)A„
a„„=-t,t,(A, +A, +A, ) —w't, A, —t, 't,A„
a~ ~) ~

= tgt2(A g+A7) +w (A~+A7+A8}

+ w'(t2A~+ t,A, ) + 2w t, t2A6 .

The invariant coefficients (amplitudes) of the odd
tensors (A13) would have explicit w factors ac-
cording to crossing symmetry. [jNote that crossing
here means A, (w, t„ t,) -A, (-w, t„ t,).]

Because we have restricted the discussion to the
forward case (where q, and q, are both initial and
final momenta), we cannot uncover restrictions on
the invariant amplitudes for the other crossing
(Bose) symmetries, e.g., q, (initial) —q, (initial)
and a—P.

We give the relations between the eight invariant
absorptive amplitudes A; and the eight helicity am-
plitudes of Eq. (3.11}. These are found most easily
by going to the c.m. frame of the two virtual pho-
tons using the polarization representation seen in
Ref. 7. We have

a„„=t, t,(A, +A, ) + w'. (A, +A, +A, ) + w'(t, A, + t,A, ),

a„„=w(t, ,}"'(A,+A, ),

a„, , = w(A, A+, ) 2+tw, t,A, t+,t, (A, A+,},
a««= t, t2(A, +AS+AS+ 2AV+2AS)

(A10)

It should be noted that I, —I, ~ w (that is, I, —I,
has an over-all factor of w}. But we do not choose.
to include (1/w)(I, I,) as part of o-ur "miniinal
polynomial" set since the general nonforward pho-
ton-photon amplitude should be O(q, q, q, q, ). In
order to have a smooth extrapolation to the for-
ward set, we ask that our expansion be fourth
order in q;. The reason for the second-order pos-
sibility is that we only have two independent q; in
the forward direction.

In order to explicitly implement crossing sym-
metry like q, - -q„~—o or q, —-q„o.—P we
should form the even combinations

a~~ g g
= w (Am+AS) ~

a, „,=w (As+A +A ),
(A15)

At threshold and at pseudothreshold defined by the
condition w'= t,t, the number of independent am-
plitudes drops from eight to three; the reduction
in amplitudes takes place because of conservation
of total spin, s = s, +s, (s, = 1, s, = 1). We have
checked that the relations between the helicity am-
plitudes of Eq. (A14) on the manifold defined by
w' = t,t, due to conservation of total spin (i.e., or-
bital angular momentum zero) are indeed satisfied.

For real photons, t, = t, = 0, the nonvanishing hel-
icity absorptive amplitudes are

a„„=w'(A, +A, +As} ~

I„ I2 +Is, I4, I5, I7 +I (A11) as expected.
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