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Although this analysis is based upon a few additional as-
sumptions, the numerical results obtained there are aQ
consistent with a simple naive picture. Even if they
changed by a small amount, our basic conclusions would
not be affected.

~2The matrix elements in (2.11) and {2.12) are taken
from U(12) symmetry, but they are of course unique up
to (-t)2. B.Sakita and K. C. Wali, Phys. Rev. 139,
B1355 (1965). The right-hand side of (2.11) satisfies con-
servation of the axial-vector current, and that of (2.12)
is in agreement with mild t dependence of 9„&5.

~3See P. S. J. McNamee and F. Chilton, Rev. Mod. Phys.
36, 1005 (1964).

4This should be compared with the U(12)-symmetric val-
ue G ~(0) =1+ (m&+ m&)/m& = 3.85.

~5The present method of determining the pion coupling is
quite different from that in the U(12) symmetry.

6Y. Nambu and M. Yoshimura, Phys. Rev. Letters 24,
25 (1970). We have readjusted their normalization to

agree with that of Brene et al. in Ref. 14.
~YMass splittings do not affect any results to highest

order in s, except in (3.7) where the masses explicitly
appear.

The form factors are real by time-reversal invariance
and Hermiticity.

Vfe follow the conventions of V. Singh, Phys. Rev. 129,
1889 (1963).

2 W. Rarita et al. , Phys. Rev. 165, 1615 (1968). The re-
lation of their A' to Singh's (our) A and 8 is given in note
6 of their paper.

If 0.(t) —= 1 for at least one of the Regge poles, the cut
produced by it has a branch point independent of t. Re-
call that 0'cut{t) = Max[a~(t~)+0'2(t2) —1], where 2tt&

+2tt2+2tgt2 —t —tg —t2 —0. We have taken o.'g (t) =1.
2If SU(3) symmetry were exact, M,~o„g (pZ) =Mstrozg (pp)

in the high-energy limit. However, m &=mN in this limit.
In the charge-exchange process there is no obvious can-
cellation among different diagrams.
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Conditions are explored which require the presence of leading positive- or negative-signa-
ture trajectories of the form 0. (t) =1+const v t +O(t). General forms of continued partial-wave
amplitudes with such trajectories are given, and their implications for high-energy limits
are evaluated. The restrictions on the character of the complex singular surfaces are
discussed. Explicit examples are given for amplitudes with complex Regge trajectories.

I. INTRODUCTION

From a semiclassical point of view, diffraction
scattering looks like one of the more straightfor-
ward and simple phenomena. Nevertheless, since
the notions of dispersion theory and complex
angular momenta appear to form a reasonable
framework for the descriptions of fundamental
particles, it is relevant to look for a description
of diffraction scattering in terms of crossed-
channel properties. The features that are relevant
to the asymptotic expansion of an amplitude in the
s channel are the singularities in the complex
angular momentum plane for the t channel.

The Regge-pole trajectories associated with
physical particles and resonances are usually
assumed to be approximately linear functions in
the neighborhood of t = 0, and so are the branch-
point trajectories associated with these Regge
poles. However, the singular surfaces directly
related to diffraction scattering may well be of a
quite different type. Independent of their charac-

ter —i.e., whether they are poles, square-root
branch points, etc. -we may ask whether there
are reasons to think that these trajectories, as
analytic functions of t, have a singular point at
t=0. Many years ago, we introduced two-valued
singular surfaces of the form

n(t) = n(0)+const&i + O(t),

where, of course, the continuedpartial-wave
amplitude E(f, X) must not inherit the branch point
at t = 0.' Trajectories of this type appear in
Schrodinger theory with repulsive t ' potentials,
and in several field-theoretical calculations which
are in principle related to the Schrodinger case."

Since high-energy limits of amplitudes are often
considered to be calculable by iteration schemes
involving s-channel unitarity, we also have con-
sidered trajectories of the form

n(t)=1+const' f

in the neighborhood of t = 0, because they are a
solution of the bootstrap-type condition+'
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a(t) = o.„(t)= nn(t/n') —n+ 1. (1.3)

In the s channel, with an appropriate choice of
F(t, A), trajectories of the form (2) give rise to
amplitudes which are rather directly written as a
superposition of Bessel functions like

However, the properties of the forward-scatter-
ing amplitude E(s, 0) may be such as to require a
stronger shrinkage than in Eq. (2.2). We can
easily derive a bound for the integral over the
diffraction peak in terms of E(s, 0). Since, with
our normalization,

1

E(s, t)-s ding(g, s)J,(gv'-at lns),
0

(1.4) o,'„-(16s/s) ImF(s, 0),
(2.4)

II. CONDITIONS REQUIRING

COMPLEX TRAJECTORIES

A Regge trajectory is a complex singular sur-
face X = a.(t) of the continued partial-wave ampli-
tude E(t, A) corresponding to the invariant scatter-
ing amplitude E(s, t). At this point, we do not

specify the character of this singular surface ex-
plicitly, but we will restrict it indirectly in the
following. As is well known, the position of the
singularities A, = o.(t) in the complex angular mo-
mentum plane determines the power behavior of
the corresponding contribution to the asymptotic
expansion of the amplitude E(s, t) for s-~.

For a trajectory which is regular near (t, A)

=(0, 1), i.e.,
n(t) = 1+a'(0) t+ ~ ~ ~, (2.1)

we know that we obtain a logarithmic shrinkage of
the diffraction peak for a'(0) & 0:

0

«If(s, t)l' (») ',
~S

(2.2)

with weight functions g($, s) having support for
nonzero values of $ in the limit s-~.+"'

In a recent paper, ' we have shown that amplitudes
which give rise to constant and different asymptotic
total cross sections for particle and antiparticle
scattering must have leading negative- and posi-
tive -signature trajectories with a square-root
branch point at t = 0 as in Eq. (2). In this paper,
we discuss the more general conditions under
which trajectories of the form (2) are required to
be present. We write down general forms of con-
tinued partial-wave amplitudes with complex
trajectories and evaluate their implications for
the high-energy limits in the crossed channel. We
study the implications of t- and s-channel unitarity
and analyticity properties for the character of
these singular surfaces. Finally, we give an ex-
plicit one-parameter family of amplitudes with
different asymptotic cross sections for particle
and antiparticle scattering, and we consider
examples for amplitudes with rising cross sec-
tions.

&x„- dt's E(s, t)i',16'

we obtain from the condition o„&o„,the bound

f «If&~, ~)I'-~™,0' ~ . (2.5)

Furthermore, using the partial-wave expansion
for F(s, t) and recalling the Schwarz inequality, we
find the familiar bound"

16v )F(s, o)~'
s —,'as(lns)' ' (2.6)

where the radius Wa is defined by the maximal
orbital angular momentum I.= —,'v as lns which is
relevant for s-~." From Eq. (2.6), we deduce
the lower bound

dt~ f(s, t)('- —(lns) '.4

S a
(2.V)

The bounds (2.5) and (2. '1) indicate that ampli-
tudes with F(s, 0) restricted by

4( ), s 1mE(s, 0)
IF(s, o) I' (2.8)

E,(s, t) = F(s, t)+ F (s, t), (2.9)

where I' is the antiparticle amplitude correspond-
ing to I', we assume the forward amplitudes
F,(s, 0) to be of the form'

E,(s, 0)~is(lns —2') +

= is(lns)s +-,'s+p, s(lns)s+ '+ ~ (2.10)

and

E (s, 0)~ —— s(lns ——,is)-2 1 I ~ 8 +1
g p+1
2 1 s(lns)s-"+ is(lns)s-+
n p+1

(2.11)

c & 0, require a leading Regge trajectory which has
a branch point at t=0. A regular trajectory would

generally not give sufficient shrinkage.
Let us analyze the bound in Eq. (2.7) in more de-

tail. Splitting the amplitude E into its positive-
and negative-signature parts

where

f(s, t) = E(s, t)/F(s, 0). - (2.3)

We have the bounds"

p &2 and p &~p„ (2.12)
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and we restrict ourselves to nondecreasing total
cross sections, which implies p, ~0. The
Ansiztse (2.10)and (2.11)are consistent with the
forward dispersion relations. " The negative-.
signature term (2.11)may be completely absent,
corresponding to cases where n (0}«1.

In order to distinguish between positive- and
negative-signature trajectories, it is convenient to
consider in place of Eq. (2.5) the related ineguaii-
ties

dt ' «s[imE(s, 0)] 'ImE(s, t)
Im s, o (2.13)

'„ReE(s, t)
' slmE(s, 0)

ReE(s, 0) [Re E(s, 0)]'
' (2.14)

The right-hand side of Eg. (2.13) is proportional to

(lns) s+ (2.15)

and, if p+~l+c, c&0, we see that the positive-
signature trajectory requires a branch point at t=0
in oxder to provide sufficient shrinkage.

The right-band side of Eg. (2.14}is relevant for
us only if o. (0) =1. Then it is proportional to

(2.18)

I/p= ns/n, (2.22)

with m and n being integers. Under these circum-
stances we have a finite number of trajectories
e e which cross at 8=0 If RD these branches
of the function n(t) appear in E(t, A) in a completely
symmetric fashion, we find that the branch point
of n(t) is not inherited by E(t, X). However, we can
exclude all ratios (2.22) except m/n = ~ by using
bounds in the s channel. The range of interest for
p ls j.+6' ~~p&22 and hence we bRve 8~~33 tÃ &s. As
we have described in I, there is then always a
branch of u(t) such that the appropriate part of the
amplitude E(s, t) contains terms which, as far as
the power law is concerned, behave like

)g)fthm/n8 (2.23)

have p=2, but in general the conditions (2.21) do
not require this. Nevertheless, using the methods
descxibed in I, we can argue that trajectories of
the form (2.18) are only consistent for P =2, unless
we are willing to intxoduce special "hiding cuts. '"~

If the trajectory n(t) in Eg. (2.18) is considered
as a singular surface of the continued partial-
wave amplitude E(t, X), this amplitude will generally
acquire R branch point Rt 8=0 which is not Rl-
lowed. " There are exceptions in cases where

provided P, «2+P, and we have more than loga-
rithmic shrinkage fox'

with c & 0. Such terms violate bounds like

~ E(s, t)~«consts(lns)', (2.24)

2P +2 —P+~1+e. (2.1'I) and also the simple unitax'ity requirement

Under these circumstances, the negative-signature
trajectory must provide the excess shrinkage and
requires a branch point at t =0. It always domin-
ates the asymptotic behavior of ReE(s, 0}if the
inequality (2.1V) holds.

Let us now consider a leading trajectory of
either signature which has a branch point at t = 0.
If o.(t) is given by

Q(t) =1+constt p«2

it can contribute to the high-energy limit of the
appropriate part of E(s, t) a term which is pro-
portional to

Re(sl+COSStt~~s) (2.19)

(2.2o)

Then we get sufficient shrinkage for

P&P, or P&2P +2-p„ (2.21)

respectively. We see that it is always sufficient to

We assume that the branches of c.(t) are chosen
such that, either in Eg. (13) or (14), the integral is
proportional to

(lns) s.

ImE(s, t) «ImE(s, 0), (2.25)

for t ~0. Only through the introduction of a very
special hiding cut in E( t, X) can we arrange to have
the offending branches of u(t) removed from the
physical sheet of the A. plane while preserving the
symmetry which prevents E(t, k) from having a
branch point at t=0 for A. wl."

Summing up, we conclude that leading Regge
trajectories for a positive- or negative-signature
amplitude are expected to have a square-root
branch point at 8=0 under the following circum-
stances

(a) n,(t) is of the form (2.1) if p, ~ 1+&; also if
u (0}=1, p, =p =O. The latter case has been
discussed in I.

(b) o. (t) has such a branch point if u (0)=1 and
p ~ ~(p, -l)+e.

In order to arrive at these conclusions, we have
assumed that the shrinkage must be generated by
the properties of the appropriate trajectory func-
tion. This is generally the case for singular pole
and branch-point surfaces. However, if we allow
appropriate essential singularities in the complex
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HI. PARTIAL-WAVE AMPLITUDES AND

HIGH-ENERGY LIMITS

For later use in the construction of explicit
models, we consider in this section a certain class
of continued partial-wave amplitudes F(t, A} which,
in the neighborhood of (t, A) = (0, 1), are mainly de-
termined by complex singular surfaces of the form
(1.2). We write for (t, X) near (0, 1)"'

p.(4, f
) ~

[(g 1}2 $2 f]1/2
(3.1)

There are several restrictions for the real weight
functions p,($, t) which follow from s- and i-channel
constraints; but within these restrictions our
Ansatz (3.1) is rather general, in particular, if
we allow p, to be generalized functions. As an
example of t-channel restrictions, we mention
the important relation

I
4h 'p ($, 0}=0,

0
(3.2)

which prevents unwanted singularities of the P-
wave amplitude F,(t) = E (f, X =1}at t=0.

The contribution of the singular terms (3.1) to

angular momentum plane, theri there can be some
other possibilities, at least in situations where
the shrinkage is less than (lns)'. But essential
singularities are considerably restricted by con-
straints in the s and t channels. In particular,
they violate unitarity in the t channel unless they
have a very special t-dependent character. ' In
this paper, we do not intend to explore the details
of these essential singularities. As has been men-
tioned before, we have also assumed that there are
no hiding cuts."

For some of the cases mentioned in (a) and (b},
the requirement of complex trajectories can also
be derived by using only s-channel constraints. ""
For example, s-channel methods are often suf-
ficient for P = yP, or p, = 2, where the bounds
(2.13}and (2.14) already require (1ns)2 shrinkage
by themselves.

We have not considered here possible lnlns
factors in the asymptotic expansion of F(s, f}.
These factors depend upon the character of the
singular surfaces n, (t) and are not related to the
position of the singularities in the complex angular
momentum plane. At present, they are relevant
only in cases where they would lead to a violation
of a rigorous bound.

Finally, we remark that Regge trajectories with
square-root branch points at t = 0 may well be
present in other cases where they are not directly
required by general principles.

the high-energy limit in the s channel are obtained
from the contour integral"

F,(s, &)
-

2
. dr s"s,(z)K(t, x)F,(t, z),

1
(3.3)

where C is an integration path enclosing the sin-
gularities of the integrand,

e-3m'
s,(~}= (3 4)

is the signature factor, and the function K(t, X) is
given by

3

K(t, X}=2&wq 21(t)
r(~+1) ' (3 6)

For simplicity, we ignore in the following the
function K '(t, X} and other possible A. -dependent
factors of F,(t, X) which are regular in the neighbor-
hood of (f, ~) =(0, 1).

For the positive-signature amplitude, the signa-
ture factor (3.4) is regular near X= 1, and we write
it in the form

S,(A} = i+tan-'2 (X-1). (3.6)

The high-energy limit of F,(s, t) is then given by

F,(s, t) - is @p,(g, t)J2()V'-at lns)
0

1
+ s dt p,($, t)C,(& v'-at lns, t}, (3.V)

4+= -2~w) v'-at J1((v'-at 1ns)+ O(f2). (3-9)

Note that we have expanded in powers of at, and
not of at(lns)2.

For f = -7/a(lns)2 and fixed values of 7.&0, the
first and imaginary term in Eq. (3.7) is dominant. "
But for fixed t & -c, e& 0, this is generally not the
case, since the Bessel functions J, and Jy have
analogous asymptotic expansions for 1ns-~.

As a special example for p,(t', t}, we mention the
case

p (& t) cc -—5'(g - 1+e)

for which

(3.10)

F,(f, ~)~ [(~-1)2-af]-2~2. (3.11)

In the s channel, this gives the asymptotic expresi-
sion

with

4+($v'-at lns, t)

1 "d sin(x$l-at lns)d2;, &, tanh wed-at . —
77 „~ (1-X )

(3 6)

For small values of at, this function may be ex-
panded:
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}
J (v at lns)

g-at lns

+ 2ws(lns)- dx, ,i, cos(x))'-at Ins}
w g x m&xg-at

1 " x' sin(xv'-at lns) 1
w, (1 —x')'t' g-at lns cosh'( —,'wxg-at} '

For small values of t, the two real terms in this equation can be expanded with the result

2ws(lns) J,(v'-at lns)+ O(t).

(3.12}

(3.13)

Again we see that the imaginary part dominates only for fixed values of 7. = -at(lns) )0, but not for fixed t.
For negative signature, the factor S (A) in E(I. (3.3) has a pole at A=1, and it is convenient to write it in

the form

S (X) =i- — +C(X- I),
2 1
w A, -1 (3.14)

with

C(A —1) =— —cot&w(X-1) =-, w(X-I)+0[(A.—I)'].2 1
n' A, —1

%'e obtain then

1 2 ' p(xt)F (s, t)-is dt p ($, t)J,(gv'-at lns)+ —s(lns) d$ dx ' J„($V-at lns)
0 0 0

2 p (h, t) 1
——s(ins) d&

' dx Jo(xv'-at lns)+s dt'p (t', t)4 ((v'-at lns, t),
0 0 0

with

1 +1 1 1
4) =— dx . »i, sin(tv'-at lns —co)h(, wx(d-at)).w, (I —x')'i' 222 @)g-at

(3.15)

(3.16)

For small values of t, we can expand the real part
of E(I. (3.15). Using the constraint (3.2) we obtain

J 4 (' =& &(( '
~(g ((, c)),=.+0(&')

0 0

I

impact-parameter representation, which, in turn,
i.s related in the high-energy limit to the partial-
wave expansion. " We write this representation in
&he form

and

(3.17) , b s2(g.,a)

E(s, t)- &s I dbb ' . Jo(b)t-at)
2ip(s)

C =-Bw)v'-at J( vt'-at 'lns)+O(t'). (3.18)

In contrast to the positive-signature case con-
sidered before, in E(I. (3.15) the real part of the
amplitude dominates by a factor of lns for fixed
t 40, and not only for fixed v = -at(lns)'. The
leading asymptotic expression is given by the
second (and the third} term. This feature is.a
consequence of the pole at A.=1 in the signature
factor (3.14).

Since we started with an Ansatz for the continued
partial-wave amplitudes, the weight functions p,
could be assumed to have some dependence upon t
(or upon A). Let us now, however, take only the
characteristic singular part of E(I. (3.1) and re-
strict the functions p+ to their dependence upon the
parameter $. Then the expressions for E,(s, t) in
E(ls. (3.7) and (3.15}can be related to the general

-I

= s d(f(g, s)J,(gv'-at lns),
0

where we have the identification

Re(II($, s) = (Ins)'t-,'ay sin25,

Img((, s) = (Ins)')&a(1 —g cos25).

Here

s -4m'
p(s)= =1, b=)va lns,

(3.19)

(3.20)

Im((l), (g, s) =p„(g) (3.21)

and 5 as well as g are real functions of s and of
=b&atins, with 0 ()7(1.
Comparing E(Is. (3.7} and (3.15) with the repre-

sentation (3.19) for t-independent weight functions,
we have the exact relation
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and the approximate correspondence

2 '
p xRe) (t, s) --(Ins) dx

0

Re(, ((, s)--+2!ns) 'l
&

[(p(()e((-)))),, &d
(3.22)

except for a factor 2, and Ot t o
We have used the form (3.4) for the signature

factor because it gives a simple representation of
the absorptive parts in terms of the weight func-
tions p, . Instead, we could write, for example,

8 (X) = ie &'"+X ')(sinai) '
which gives only the leading terms for lns- ~.

The special example (3.11) for the amplitude
F,(t, X) has a t-dependent factor in the weight
function p,($, i), but we can make an identification
with g,($, s) on the basis of Eqs. (3.12) and (3.13),
which gives

Imp, (t', s) ()(: & (lns)'

and the approximate connection

Rey, (], s) ~ ~2(ins)6(& -1).
By writing partial-wave amplitudes in (3.1) as

superpositions of square-root terms, we have se-
lected a form which gives rise to Bessel-function
representations for the high-energy limits which
have some similarity to familiar classical forms
for the description of diffraction scattering. " In
order to illustrate this feature, we conclude this
section with some well-known examples. From our
equations we see that for certain cases the leading
terms of the amplitude F(s, t) are completely de-
termined for s-~ and r =-at(lns)' fixed. """
This happens if we demand that the inelastic cross
section ayproaches the limit

cr,-„„-wa(ln s)', (3.23)

which is the maximal value of the inelastic cross
section which is compatible with the bound
I.&2V'as lns for relevant orbital angular momenta
in the s-channel partial-wave expansion. Since

Ha 1ns

(7;„„-2w db b[1 -rP(s, 5)],
0

(3.24)

we see that Eq. (3.24) implies q=0, and from Eqs.
(3.20}, we find then for the leading terms

Ref -0, Imp -—,at'(lns)', (3.25)

so that

E s, t = - i-', as lns
2J', (v r)

a lns
(3.26)

which corresponds essentially to a fully absorbing
disk with the radius R(s) =@a lns, with o„,-2o„

2+incr
Complete saturation of the Froissart bound for

otQt implies

(z...- 4wa(lns)'. (3.2'I)

It corresponds to q 1, 5--,'ir for 0&)&1. We have
the same expressions as in Eqs. (3.25) and (3.26)

absorb the factor sin(-, wA) into K(t, A), and obtain
a high-energy limit of the form

as an expansion of S (A) near A, = 1.

IV. CHARACTER OF SINGULAR SURFACES

As we have seen in Secs. II and III, the required
high-energy behavior and the unitarity constraints
in the s channel imply certain restrictions for the
character of the singular surfaces (1.2). Another
important constraint is the continued unitarity con-
dition in the t channel, together with the analytic
properties of the partial-wave amplitudes F(t, A).20

Of course, the unitarity condition applies a priori
for real, positive values of t~t„where t, is a
two-particle threshold. But even if we write an
expansion of F(t, A) which exhibits the relevant
terms in the neighborhood of (t, X) = (0, 1), we
should take care that the singularities of this func-
tion are either compatible with the unitarity con-
straints if continued to t ~ t„or at least that they
can reasonably be expected to be made compatible
by correction terms which are not important for
the calculation of the high-energy limit of E(s, i)

As an example, we assume that E(i, X) satisfies
the elastic unitarity condition for t, t & t„and we
consider the implications of this condition for a
singular surface X= (w(t} which has fixed (i.e., i-
independent) character. " Suppose that

lim F(t, X)=~. (4.1)
A.~ n(g)

Then we find that either
(a) the function oi(t) has a branch point at i= i,

with a cut for real t~ i, so that a"(t}&a(t}, where
(w"(i) is the continuation of a(t) through this branch
cut, or

(b) the function E(t, X) has specific, square-root
type branch-point surfaces X= i).~(t) such that
(w(to) = a~(io)

In order to see how the requirements (a) and (b)
come about, it is convenient to define the function

q '(t, z)=F '(t, X)+ip(t), (4.2)

F,(s, i}- is g p,($, t)Z, (& v'-at (lns ——,'iw}).
0

Analogous expressions emerge for.negative-signa-
ture amplitudes, where we may use
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with p(t) = [(t—t,)/t]'~'. Since the continuation of
E(t, X} through the branch cut t, ~t & t, into the
second sheet is given by

but

g "(t,~ -a,(t))-0

[E"(t, ~)]-' = E-'(t, X)+2ip(t),

we find thai

y"(t, A) = y(t, x}.

(4.3)

(4.4)

Hence the function g(t, X) does not have a branch
point at t = t, . But from Egs. (4.1}and (4.2) it fol-
lows that

y '(t, X= a(t)}=ip(t). (4 5)

We see that either a(t) has a branch point at t = t,
in order to generate the corresponding branch
point at the right-hand side of Eq. (4.5), or y(t, X),
and hence also E(t, X}, has a shielding cut. This
shielding cut is a singular surface X= as(t) or
t=t (As) with ts(A=a(t})=t,+, which generates
the branch point in Eq. (4.5) in the manner2'

[t,(A)-t]' '-(tQ —t)' '
for X - a(t). The limit X - a and the continuation
F-F" are then no longer interchangeable.

In order to give an example, we suppose that
F(t, A} has a logarithmic branch point at A. = a~(t) so
that the expansion of F near A, = o.~ is dominated by
the term

since

g"(t, X) = ([t,(X)- t]'"—(t, —t)"]In[a- a,(t)].
Hence g(t, A} is an example of a function which is,
compatible with the continuity theorem. More
complicated forms are required in order to comply
explicitly with the unitarity condition (4.3).

In Sec. IG we have written the partial-wave
amplitudes with complex trajectories a»(t)
=1+const v t as superpositions of terms like

([Z- a, (t)][X-a, (t)jj -'". (4.8)

There are several ways in which these expressions
can be made compatible with t-channel unitarity.
Most simply, we could choose weight functions p,
such that E(t, X) remains finite for X -a, ,(t}. Then
there is no problem. In the following section we
give some explicit models of this type.

A more interesting possibility is the following":
As it stands, the form (4.8) may be considered as
a superposition of poles and branch points which
only coincide near t='0 if higher-order terms are
neglected. In the place of more elaborate con-
structions, we give again a very simple example.
Consider the function

F(t, X) -In[a- a,(t)].
From Eg. (4.3}, we find that

E"(t,X= a~(t)}=1/2ip(t),

(4.6)

(4.V)

P(t, ~)+/[~- a.,(t)]P.—a„(t)Q't2
[X-a, (t)][X=a, (t)]

with

(4 9)

which violates the continuity theorem" if a~(t)
= a~ (t}and if there are no shielding cuts. In order
to see the difficulty, we note that in our example
the limit A. - a~(t} and the continuation F—E" can
be interchanged. So we find from Eg. (4.V)

F(t, X= a (t))= -1/2ip(t),

which is in contradiction with Eg. (4.6).
As an indication of the way a shielding cut works,

we consider an oversimplified case. We give an
explicit function which has a logarithmic singularity
of the type (4.1) in sheet I, but which is bounded at
the sameyoint in sheet II. We write

g(t, ~}= ([t,(~) —tj'~2 + (t, —t)'~'j In[~- a,(t}],

with

t,(i) =X+ t, —a~(t), or a, (t) = t —t, + a~(t),

so that

t,(X= a~(t)) = t,.
Then

g{t,~ -a,(t))- 2(t, —t)' ~'I [~- a,(t)],

a„(t)= 1~(at+ 5't')'~'+ ~ ~ ~,

a~, (t) = 1+(at}'~'+ ~ ~ ~,
(4.10)

and P(t, &}= bt+ '. This expression coincides
with Eg. (4.8) for ~bt~«1. We know that Regge-pole
trajectories generally have a branch point at the
two-particle threshold t = to, and we assume that
a»(t) has one, but that it may be approximated
near t=0 by the expression in Eq. (4.10}. Then
there is no difficulty with t-channel unitarity.
Branch-point trajectories like a,(t) in Eg. (4.9)
generaQy are associated with inelastic thresholds
in the t channel and remain regular at t = t, . We
see that our Ansatz (3.1) for F(t, A) can be consid-
ered as the limiting case of a pole-cut relationship
where poles and branch-point trajectories coin-
cide near t=0, and where the Regge poles acquire
the necessary thresholds in the I; channel.

The pole-cut relations described above have an
important additional feature. " With an appropriate
choice of functions, like in our example, one
branch of the pole surface a(t} can be removed from
the physical sheet of the A. plane for t & 0. It re-
mains in a secondary sheet with respect to the



1492 REINHARD OEHME

branch points a,&2(t) and has no direct physical
consequence if t&0.

Another possibility for making the Ansatz (3.1)
compatible with t-channel unitarity would be the
introduction of shielding cuts. One may also try
to introduce singular surface with a t-dependent
character. Here we do not consider these possi-
bilities.

V. AN EXPLICIT EXAMPLE

In this section we want to explore an explicit
example for the case of an amplitude with constant
asymptotic cross sections. We denote these asymp-
totic cross sections by o and v, and we know that
the leading terms for the forward amplitudes are
given by""

terms in Eq. (3.15), not only for t = 0 but also for
fixed values of t & 0. Hence we can calculate the
asymptotic elastic cross section in terms of the
function (5.4). We write

where

g''(s)=, f dt(E (s, t)P
8

32m 4 , p x
a m'

II, 0

(5 6)

(5.7)

The cross section o by itself is, up to factors,
the charge-exchange (e.g., rr p-rr'n) or regenera-
tion (Ksp Krp) cross section. It follows from Eqs.
(2.6}and (5.1) that this cross section has the lower
bound"

F (s, 0)---s(lns) +is (5.1) ()( )
(o-o)2

m'a (5.8)

E+(sr 0} ts
F j (5.2)

with F,=F~ E. For the continued partial-wave
amplitudes we consider expressions of the form
(3.1). In particular, we make for p ($) the special
Ansatz

In addition, we have the upper bound

o~-'(s) &4 max(o; o).

Hence the limit of the ratio"

n'ao~ &

((r —o)'

(5.8)

(5.10}

for 0&)&1-y
o -0'

P (5)= 8„xI
for 1 -y & t' &1. (5.3)

for s ~ varies between

4rr'a max(o, o)
(o -o}2 (5.11)

We do not need to specify p,($) for the moment.
From the Ansatz (5.3) we obtain the important
function

1-y for 0& $ ~1-y
p (x) o o-

for 1-y&$&1,

(5.4)

We can express 8 in terms of the weight function

p (t):

)2(f a*~(*(s.(
R=— d ' ', 5 12

0 ( 1 5 2

(f d(f ~*a(*)/*
)

and for our special case (5.4) this becomes

which determines the dispersive part of the ampli-
tude. It is seen to satisfy the condition R(y) =—.(In -y) (5.13)

P-('} =0,
0

(5.5)

which has been discussed in Sec. III. A priori, the
parameter y can be 'varied between y = 0 and y = 1,
but in the boundary cases the weight functions (5.3)
and (5.4) become generalized functions.

We have shown in Sec. GI that the high-enexgy
limit of E (s, t) is dominated by the real s lns

with R(0) =1 and R(1)=~. We see that y=0 corre-
sponds to a maximal violation of the Pomeranchuk
theorem, and that there is a finite value y, „&1 so
that R(y,„)equals the upper bound in (5.11).

The simplicity of our Ansatz (5.3) makes it pos-
sible to give explicit expressions for F (t, X) and

for E (s, t). For the partial-wave amplitude we

find

E (t, X)« —
~

[(X-1)' —at(1 —y}']' ' ——[(X- 1}'—atg '—2 2&2 1 2

8w at t,y(1 —y} y - 1-y (5.14)
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Except for the extreme boundary case y = 0, we have only square-root branch points in the complex A, plane.
Hence there is no formal difficulty with the continued unitarity condition, even if we wanted to continue the
expression (5.14) as it is to d-t, . By construction, E is well behaved at t=02 where it has a simple pole
at A, =l, and for X=1, it is regular at i=0 because of (5.5).

The high-energy limit of the amplitude in the s channel is obtained from Eq. (3.15). It is given by

E (s, ]))--—s(lns)
o' —o'

[z,((1 —y)v at -Ia)a-,a(4 atltl-a)] +— caa (at at -laa))
I

16m y4-at lns y g-y

+ is
6

[J'2(2('-at Ins) —J'2((l -y)v'-at lns)].
16m yg-at 1ns

(5.15)

The physical properties of the differential cross section can be obtained from this expression. But it is
more transparent to look at the mathematical limits y 0 and y 1. In particular, for y -0 we have

a (t, t) —[[(1.-1)' —at] I -(1'—'I)]- [(1-I)*-at] 'I'j
Sm at (5.16)

( )
2

(
)a-a2a, ~t, a-a2 a, ~t

(W)) (5.1'I)

where we have used T = -at(lns)'. The characteristic form of the leading real term in Eq. (5.1V) is actually
a general consequence of the fact that R(0}=1 corresponding to a maximal violation of the Pomeranchuk
theorem. " This can be easily seen from Eqs. (5.1) and (5.12), which, for R=l, imply

(5.18)

and hence

(5.19)

So we see that this result is independent of our special Ansatz (5.3).
We know that the limit y -1 is unphysical in the sense that y & y, „&1 with R(y, „)& ~ as long as ~o &r

~
is-

nonzero. Nevertheless the limit is of interest as a boundary case of the model. For y 1-~, we find

o-o 1 1
" 1/2

a (t, 1) —[(2—I)' —at/ —(1—I) ——(1—IF —at +—(1—I)) .
Sw at E'

(5.20)

(5.21)

In this relation the limits X -1 and e -0 are not interchangeable. For the high-energy limit, we obtain

( )
2

( )
0'-v2

d (~) tl2(v 7')
I

. o -0' 2cl2(WT')

where we have taken the limit ~-0.
The most interesting part of this limiting case is the feature that the dominating real part has no zeros

on the real axis as a function of 2] v =4-at Ins. '8 This is in contrast to the opposite boundary case y=0,
where we have rapid oscillations as seen in Eq. (5.1V). For 0- y& 1, our model provides an example for
the transition between the two extreme cases.

By using the general formulas of Sec. III, we can write down further examples which illuminate specific
aspects of the problem and which comply with s- and t-channel constraints.

Note added in Proof. Recent Serpukhov experi-
ments (up to about 60 GeV/c) show a decrease of
o„,(K p) -&r„2(K'p} corresponding to a power law.
It remains to be seen whether this is the actual
asymptotic behavior. On the other hand, these
same experiments indicate that the sum of the
cross sections increases with increasing energy.
If this increase is asymptotic and faster than

-lns, it follows from our discussions in Sec. II
that complex trajectories are required for the
positive-signature amplitude. Explicit examples
for such amplitudes can be constructed in direct
analogy to the considerations of this section. For
further details, see the paper quoted in Ref. 13.
Limiting cases of amplitudes with rising cross
section have been considered in Sec. III.
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VI. CONCLUSIONS

We have seen that leading Regge trajectories
a(t) with square-root branch points at f = 0 are
generally expected to be present in amplitudes
which require faster-than-logarithmic shrinkage
of the diffraction peak. ' The more detailed con-
ditions have been summarized in Sec. III. Note
that we are talking here about shrinkage which is
required by unitarity because of the growth of the
amplitude. It is not an extra feature as in the case
of ordinary Regge poles. In our arguments, we
use s- and t-channel properties of the amplitudes,
and we assume that the relevant singularities in
the complex angular momentum plane are nones-
sential. But isolated essential singularities and
natural boundaries are also considerably restricted
by the analytic properties of E(t, X) as a function of
two complex variables. In certain cases they can
be excluded, but in this paper we have not dis-
cussed these problems. "

We note that trajectories of the form a(t) = a(0)
+const& f + O(t} can, of course, also be present
in cases where they are not required by general
principles. "

Continued partial-wave amplitudes with complex
singular surfaces of the type (1.1) are most natural-
ly related to representations of scattering ampli-
tudes in terms of superpositions of Bessel functions
of the argument gv'-at Ins, 0 & $ &1. In this sense,
the picture of high-energy scattering involving
these complex trajectories is actually rather
intuitive from the point of view of the s channel.
It is possible to relate it to quasiclassical pictures.

Using a rather general Ansutz for the partial-
wave amplitude near (4 X}= (0, 1), we have evaluated
the high-energy limits of the amplitude in terms of
Bessel-function representations. These represen-
tations are very useful for the construction of

specific models.
The character of the singular surfaces (1.1) of

E,(t, X) is dependent upon the specific asymptotic
properties of the amplitude E(s, t}, in particular
for t=0. Although this high-energy limit is physi-
cal for t &0, the general notions of dispersion
theory require also that we take into account the
t-channel properties of the amplitude, in particular,
the unitarity constraints. To do this requires some
analytic continuation, and it is most simply done by
using the continued partial-wave amplitudes. We
have shown that, unless we want to introduce very
special shielding cuts, or singular surfaces with
t-dependent character, the actual character of the
trajectories (1.1}should be either such that they
are by themselves compatible with t-channel uni-
tarity, or that they represent the degenerate limit
of a pole-cut relationship. In a pole-cut relation-
ship of this type, the Regge poles and branch points
are of the form (1.1) near t=O, but they are dif-
ferent near the threshold t= to, where the poles de-
velop a branch point and the branch-point tra-
jectories are weak and do not disturb unitarity.

Incorporating the constraints mentioned above,
we have constructed a one-parameter family of
explicit examples for amplitudes with complex
trajectories (1.2). We have chosen the particular
case of constant asymptotic total cross sections
o and rr, with o eo, but the same approach can be
used in order to construct models for amplitudes
with rising cross sections. In the complex angular
momentum plane, the model amplitudes have
square-root branch points which are compatible
with t-channel unitarity requirements. In the s
channel, they consist of a few Bessel functions.
Some important limiting cases for amplitudes with
increasing cross sections have been presented in
Sec. III.
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