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The hypothesis that the D(1670) is the MacDowell partner of the A(1234) is presented.
This idea predicts a 637 xN resonance with mass 2530 MeV, and implies that for fixed,
nonzero u, the sign of the & p polarization should change with increasing s.

I. INTRODUCTION

The empirical observation that fermion Regge
trajectories are approximately linear functions of
W' =-u has been frequently made. ' The observation
is based on Chew-Frautschi plots, such as that for
the ~ trajectory shown in Fig. 1. In spite of the
fact that the spin assignment of the highest two
states is only tentative, the five resonances on this
plot provide the best evidence for the idea that fer-
mion Regge trajectories are even functions of W.

Still, it is important to remember that the empir-
ical approximation

Reu, (W) = 0 15+0-9W. '.
is only fitted to information obtained in the reso-
nance region, W & ~+ p, and it is not obvious that
it should be taken seriously in extrapolating, for
example, to W on the imaginary axis, the scatter-
ing region. There is really very little evidence
that (1.1) remains valid. The usual clue about the
behavior of a trajectory function in the scattering
region, a possible wrong-signature nonsense dip,
is absent in g p backward scattering. Errors in-
volved in determining an effective trajectory from
fitting the shrinkage of the differential cross sec-
tion are too large to provide any support for (1.1).

A related problem is the continuation of (1.1) to
large Won the negative real axis. The importance
of the extrapolation of the trajectory function to
negative W curs because of MacDowell symme-
try 'If (1.1) is a.pproximately valid for negative as
well as positive W, MacDowell symmetry predicts
the existence of an unobserved J = ~3- state degen-
erate with the ~ unless one of two things happens.
The first alternative is that the residue function

associated with the trajectory can develop a dynam-
ical zero precisely at the point where the real part
of o. passes through J=-,'.' The other is that the
residue contains a branch cut which removes the
unwanted portion of the trajectory function from
the physical region of the J plane. 4

A third, simple explanation of the absence of the
A's degenerate partner is just that the trajectory
is not an even function of W. There is, after all, a
relatively well-established J = —,

'- ~ resonance,
the D»(1670), available. ' What is the chance that
this state is the MacDowell parity partner of the
P»(1234) i Surprisingly enough, this possibility
does not necessarily conQict with the empirical
approximation (1.1) applied to the positive-parity
resonance region W &1.0 GeV. The possibility def-
initely warrants more serious consideration than it
has been heretofore allotted.

This paper discusses the analytic structure of
fermi:on Regge trajectories implied by unitarity
using a method which has been found useful in the
study of boson trajectories. "Within this frame-
work, it is found that the condition that the approx-
imation (1.1) be valid above the elastic threshold
is not the same as the condition that the trajectory
function be even iri W. An explicit parametrization
of the a trajectory which includes the D»(16'IO) and

which fits the masses and total widths of the 6 re-
currences is given. If the assignment of the D» as
the negative-parity MacDowell partner of the P33
is accepted, the reduced residue function of the
trajectory is found to obey a particularly simple
parametrization. The mass, total width, and elas-
tic width of the possible G» recurrence of the D33

are, of course, then found to be closely con~
strained. The asymptotic form of the scattering



REGGE TRA JEC TORY. . .

Rea io
I I I

s CHANNEL

7r

2

r+
-q

U CHANNEL

Pvg- i/2

P2

, X2

P2
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FIG. 1. Chew-Frautschi plot for the E~ trajectory.
The dashed line is the approximate form Reo,'=0.15
+0.90u which ignores the analytic structure of the tra-
jectory function, but which passes cleanly through the
experimental values of (mass)2 for the resonances. The
solid pair of lines gives the trajectory function
o. = (0.].3+0.95u)[1-u/(I + p) ] ' 3 which has both
a real and imaginary part above the elastic threshold.
The idea that fermion Regge trajectories are even
functions of W' =u~~ is supported by quasilinear fits to
Chew-Frautschi resonance plots, but a trajectory can
have a significant odd part and still be consistent with
the (mass)2 of the observed resonance.

fL = J'k l /2 (g W)

E u
[A(J s ~, u)+(W —M)B(j+ ~, u)j

+
3

[-A(J'+-,', u)+ (W+ M)B(t w 2, u}],

(2 2)

where g =g, and

A(L, u) =-,' dz P~(z)A(s(z), u), (2.3a)

(2.1)

where A,, and L, are u-channel helicity indices. For
each physical value of J theie are two u-channel
partial-wave amplitudes of definite parity, P
=(-l)~", given by

differential cross section and polarization are also
predicted by this assumption. For a fixed nonzero
value of u, the sign of the polarization is predicted
to change sign as s is increased. For example, at
I=-0.8 GeV', the period of the changeover is such
that the polarization changes sign when s is tripled.
In contrast to the case of conventional Regge pa-
rametrizations of g-p backward scattering, this
polarization prediction does not depend crucially
on the amount of absorption present. '

II. PHASE REPRESENTATION OF A

NONDEGENERATE FERMION TRAJECTORY

Consider the g-p scattering process with the ki-
nematic variables defined as depicted in Fig. 2.
The invariant matrix element is given in terms of
the spinor amplitudes'

B(L,u) =-,' ' de Pi(z)B(s(z), u) . (2.3b)

The MacDowell symmetry relation, '

fX+1/2(g W) fJ 1/2(g W) (2.4)

then follows immediately from (2.2) and the fact
that (2.3) implies A(L, u) and B(L,u) are even func-
tions of W. Since A(L, u) and B(L,u) have signa-
tured Froissart-Gribov continuations just like spin-
less amplitudes, the Regge singularities occurring
in f~"/' and f' '/' are related through (2.4). As-
sume that for some 9 &0, the leading J-plane sin-
gularity surface in the positive-signature continua-
tion of f~ '/'(J, W) is a nondegenerate pole trajec-
tory That is, in .the limit J-a,(W),

f ' '(~, W) Pg(W)I[J-&g(W)] y (2 5)



1446 DENNIS SI VERS

where the signature index is suppressed. Equation
(2.4) then implies

Qw

f~ "~'(J,W) -P, (W)/[ J- u, (W)],

where

(2.6)

u, (w) =u, (- w),

p, (w) = p, -( w-)

(2.Va)

(2.Vb)

If u, (W) contains the physically observed states of
positive parity such as the P» resonance, b, (1284),
and its recurrences, u, (W) will generate physical
states of negative parity unless P, (w) contains a
branch cut which prevents the continuation implied
by (2.7) being valid for physical W.' Even in the
absence of other J-plane singularities, certain
states predicted by (2.7) can always be removed by
dynamical zeros in the residue function. The fact
remains that by investigating the continuation of

u, (W) and p, (w) to negative, unphysical W, we ob-
tain information about the trajectory in the oppo-
site-parity amplitude. Conversely, once the exist-
ence of this continuation is assumed, information
about resonances on the opposite-parity trajectory
can be used to investigate the behavior of u, (W)
and P, (W) in the entire W plane.

In order to discuss the continuation of u, (W) to
negative g, we have to consider its analytic struc-
ture. The first thing is to recall that u, (W} does
not inherit the singularities at negative u (imagi-
nary W) of A(L, u} and B(L,u}." It is also conve-
nient to assume that no singularities are generated
on the imaginary axis from a collision with other
singularity surfaces. "" In this case, u, (W) is
analytic in the region shown in Fig. 3 and, using
(2.9), can be parametrized in terms of the disper-
sion relation, "

1 I'" Imu, (x) „1t'" Imu, (x)&
1 t

v „,„x-W v „,„x+W
(2.8)

where the subtractions necessary to make the inte-
grals converge have not been explicitly shown.

Of some interest in interpreting (2.8) are the
threshold expansions for u»(w) implied by u-chan-
nel elastic unitarity'4

Imu, (W) -C,[W- (M+ p,)]"'"'"'" (2.9a)

Imuz(w} -C2[W —(M + g)]"'&"+" + (2.9b)

where C, and C, are both positive. The expressions
(2.9) are important because, when inserted into
(2.8), they show that u, (W) cannot be a strictly
even function of g . Even if, in some strict nar-
row-resonance limit, the trajectory functions a,
and u, were degenerate, the constraints (2.9) im-

ply that elastic unitarity would break this degener-

-(M+@.)
I
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FIG. 3. The analytic structure of a fermion Regge
trajectory which does not collide with other singularity
surfaces. Unitarity requires that the imaginary part of
e be positive above the right-hand and below the left-
hand cut. The Schwartz reflection principle requires
n{R'g =0.*{%).

acy. Qf course, mere threshold expansions do not
indicate how big the breaking of the degeneracy
must be, and this is an important question. In the
case of the ~ trajectory, for example, can the
splitting between u, and u, be big enon@ so that

u, (W) passes through J= 2 at the position of the
D»(16VO) P One way to answer this question is to
confront a specific parametrization of the trajec-
tory function u, (W) with the .observed resonance
spectrum. A particularly simple par ametrization
of u, (W) is implied by recasting the dispersion re-
lation (2.8) in the form'"

u, (W) = (ao+ a,W+ a,W')

x exp — -' exp
W

""
5i(x)dx —W

""
62(x)dx

v ~ „x(x—W) v ~ „x(x+W)

where

(2.10}

6, ,(W) = arctan Imu, , 2(W+ ie)
Reo'~ 2 Q + jg

(2.11)

This parametrization is simple because the number
of subtractions in the integrals is determined by
the unitarity requirement

6, ,(w) C (0, v), W & M + p . (2.12)

Also, following an argument developed by Childers'
for boson trajectories, it can be shown that the
polynomial in (2.10) must be of second order. "
Empirically, it seems as if the phases defined by
(2.11) are approximately constant. ' "'" This sug-
gests that we can approximately take into account
the constraints of unitarity by writing
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a() 0 26~ e, = 0.036,

a, = 0.46 Gev'-', & =0.045,,

~ = 0.89 GeV-',

(2.14)

provide an excellent fit to the observed masses
and total widths of the resonances. The real part
of this trajectory is shown in Fig. 4 as is a simple
second-order polynomial of the type suggested by
Desal q

a,(W) -=(a, + a,W+ a,W')

x[1-W/(M+ii)] 'i[I+W/(M+ p)] '~ .

(2.is)
If the D33 resonance is accommodated on the L tra-
jectory, the parameters

so a large apparent deviation from (1.1) is possible
without distorting badly its validity for positive W.

III. THE REDUCED RESIDUE FUNCTION

AND NEGATIVE-PARITY RECURRENCES

If the hypothesis about the connection between
the a(1234) and the D(1670}is correct, quite a bit
of information about the reduced residue function
can be extracted. Following Berger and Fox, ' ' it
is convenient to normalize the reduced residue
function to the elastic widths of the positive-parity
4 resonances

~+~ l', elastic

Rea, (W) = —,'+ 0.6(W- 1.23)(W+ 1.67) . (2.15) (3.1a)

Rea- -(W) =-1.01+0.9W', (2.16)

10-

REAL J

Given the errors on the masses of the high-spin
recurrences, ' both of these forms give a good ap-
proximation to the observed spectrum.

The point is, even if you take very seriously the
spin assignments projected for the L recurrences,
the five resonances on the Chew-Frautschi plot do
not rule out a substantial deviation from the ap-.

proximation (1.1) at negative W. Observe that put-
ting the D»(1670) on a trajectory function which is
a linear function of W' of the canonical slope gives

Then the elastic widths of the negative-parity
states are given by

J', elastic

I' J+-'=-(&,-M)(4e, *)' " (&,~2) 4
', y,(-~,),

(s.ib)

so the y, (W) must change sign between W = Mz and
In this paper, it is assumed that y, (W}

is analytic at 5'=0. Figure 5 shows a plot of the
reduced residue evaluated at the position of the
resonances using (3.1a) and (3.1b). The value of
the residue function at W = 0 is also strongly con-
strained by the scattering data for do/du in the
backward direction, and this constraint is also
shown in Fig. 5. As can be seen, the experimental
elastic widths and the scattering data are consis-
tent with a linear polynomial in W,

»(W) =—so+ gP'~ (3.2)

-1.0
I

0.0
I

I.O
I

2.0 3.0
W (GeV)

FIG. 4. Ben& vs W for two trajectories which contain
the D33(1670) as the MacDowell partner of the K{1234).
The dashed line is Ren =1.5+0.8{W—1.23) (W+1.67)
which ignores the analytic structure of the trajectory
function. The solid line is n {W') = (-0.26+0.46W+0.89W2)
x [1—W/(M+@)] ' 3~ f1+W/(M+p)] ' 5 which fits both
the masses and total widths of the resonances. The lat-
ter function actually looks straighter in a Chew-Frautschi
plot, Ren vs W2, than does the even function of W',

n = {0.13+0.95M)[1—u/P4+p, )2] 0' 3~, plotted in Fig. 1.

where go is small, go&0.05, and g, =0.25 GeV '.
Also shown is a parametrization where the residue
is forced to be zero at the points where ~, = ~, as
suggested by exchange-degeneracy arguments con-
necting the L with the Ny trajectory. '0

If the trajectory function is assumed to be an
even function of 9', the absence of a negative-par-
ity state degenerate with the b, (1234) forces a com-
pletely different parametrization of the reduced
residue function. Either a zero must appear at W
=-1.23, or the residue function must contain a
branch cut. The fact that either of the possibilities
is difficult to reconcile with the magnitude of y, (0),
implied by the scattering data and the value ob-
tained at the resonance positions, has been dis-
cussed by Berger and Fox.

Once both the trajectory function and the residue
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(2.16) for the trajectory containing the D» gives a
possible G» state at

c =2.24 GeV,

I',(=F.
(3.5)

Again, the total width and elastic width are not pre-
dicted.

The next round of phase shifts could produce
evidence for a t"» resonance. Its properties would
aid in deciding between these three alternatives for
fermion Reggeization.

IV. ASYMPTOTIC BEHAVIOR OF do'/du AND P

FIG. 5. Plot of the reduced residue function, y~(%'),
determined from the experimental elastic widths and

(3.la) and (3.1b). The circle at S'=0 gives the range
of values consistent with the backward x p scattering
data. The linear fit y~ —=go+ gj R"passes through all the
experimental values if ~gp~ &0.05 and g& =0.20. The dashed
line includes two extra zeros at S' =0.82 and W = -1.05,
where e = 2. The concept that y& might be approximated
by a low-order polynomial of W is discussed by Berger
and Fox, Ref. 3.

function have been parametrized, we can consider
the consequences. In the next section, we will dis-
cuss the asymptotic behavior of do/du and the back-
ward polarization implied by (2.13}, (2.14), and '

(3.2). However, a very simple consequence of the
hypothesis is the prediction of the properties of a
G» resonance, the J =—,

' state on the trajectory

Mc =2.53 GeV,

0.3-0.4 GeV,

p„„„., —= 30 MeV.

(3.3)

Compare these values to those implied by other
alternatives. If the trajectory function is even in

W, but the residue contains a dynamic zero to re-
move the parity partner of the d, (1234), the 0»
should be degenerate with the I'». Its total width

and elastic width are unknown since they could de-
pend crucially on the details of the mechanism
which removed the D»(1234)

~c —= 1.98 GeV,

~ e1

(3.4)

If the Carlitz and Kisliriger mechanism has anything
to do with the I=-', particle spectrum, then the neg-
ative-parity states have no connection with the
positive-parity ones. Taking the extrapolation

"
&,(x) —6,(x) „1

7T Q+ p
. X

or, using the specific forms (2.13) and (2.14),

dn, (w) = a, + ao(e, —e,)/(i' + p)
W=0

(4.1)

=—0.46 GeV-' (4.2)

The real and imaginary parts are plotted in Fig. 6.
From the discussion in Sec. III, it is also evident
that a reasonable approximation to the reduced
residue function, y, (W), is given by (3.2). In terms
of the reduced residues of the invariant amplitudes
A andB,

y, (w) = y„'(w)+ (w-~) y,'(w}. (4.3}

To get the even and odd parts of y~ and y~, we can
write

y„' = a„(u}+Wa, (u),

y,'=I „(u)+Wf,(u).

The parametrization (3.2) then gives

(4.4a)

(4.4b}

If the assumption that the ~ Regge trajectory
interpolates between the L(1234) and the D»(1670)
is correct, there are also severe constraints on
the form of the trajectory and residue functions in
the scattering region (ImW). These constraints
can be used to predict the asymptotic form of the
differential cross section and the polarization.

For W imaginary, the two trajectories n, (w) and

na(w) are complex conjugates as can be seen from
(2.7). For small ImW, the imaginary part of the
two trajectories can be estimated from the repre-
sentation (2.10),

da, (W) o.,(W)
dW w=o
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a~ -Mb~+S' br-go,

ar-~sr+ S~=g

(4.5a)

(4.5b)

The residues of the complex-conjugate trajectory
are given by

The absence of such a dip is sometimes attributed
to the fact that at energies at which a search for it
has been made, t-channel exchanges can be impor-
tant at this value of u. Also, absorptive cuts could

'Y~='Y~ = as(u) Wa-r(u) ~

y,'=y,'*= f „(u)—Wf, (u) .
(4.6a)

0.01
p BACKVfARD ELASTIC

SCATTERING =. O.OI
The asymptotic behavior of the differential cross
section, assuming the dominance of the MacDomell
pair of trajectories n, (W) and o.,(W) and the resi-
due function (3.2), is

O.OI O.OI

—„(s,u) -
18 iA(s, u)+~B(s, u)i*,

(s, u) - O'(u)s'"s'"' 'dO'

dQ

(4.7)

O.OI o.ol

x[1 p s 2 8'Ixr (tl 2s mw(xg (tl) sin ~ (u)]

(4.8)

where the last factor, written explicitly, is the
modification that a pair of complex-conjugate tra-
jectories make to the usual fermion Regge signa-
ture factor (~ denotes signature)

ft(r, u) = 2 - 2r sin so.(u) . (4.9)

Since (4.9) has a double zero when n passes through
a wrong-signature value, the differential cross
section of an amplitude dominated by a single, real
trajectory is usually expected to have a dip at such
a point unless other factors in the residue specifi-
cally remove this dip." For m-p backward scatter-
ing, the first m ong-signature nonsense point is at
Reo. =- 2 . For the parametrization (2.13), (2.14),
this occurs at I=-1.55 GeV', and for the real tra-
jectory (1.1) at u =-1.8 GeV'. No dip is seen in the
differential cross section in this neighborhood. "

O.OI

O.OI

b
Al

O

O.OI

O.OI

O.OI

O.OI

O.OI

O.OI

ImN (GeV)

-- 2.0

--3.0

O.R -0.4

tj GOV/c

-I.O

---4 o J

FIG. 6. The real (lower curve) and imaginary (upper
curve) parts of the complex-conjugate trajectories
0!~(W) = Reo. (W) + i Imo. (W) and 0!2(W) =3eu(W)-i Imo. (W). The wrong-signature point Ben =- ~~

occurs at W' =+ 1 23i or I =-1.55. At this point
Imo. ~ 0.29.

FIG. V. Fit to the baclavard ~ P CiKerential cross
section using (4.8) and (4.10). The data are multiplied by
scale factors, as discussed by Berger and Fox, Ref. 8.
The factors determined are: Kormanyos et el. , 1.1;
Baker et c/. , 1.1;Anderson gf ul. , O. V. The absence of
a wrong-signature dip in (4.8) allows a better chance of
a fit than Begge parametrimations using a single real
d trajectory. The dip at u'= 0, shown in the plot,
assumes that y&(0) = 0.
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where s, =1 GeV,

tang(u) = (-u)'~' a, (u)/as(u),

sinh so.,(u)tano(u) =
coswa„(u)

'

(4.11a)

(4.11b)

The important thing to notice about (4.10) is that,
for fixed u, as one goes to higher s, the sign of the
polarization changes. The condition that the sine
function goes through a half period between s
ands . is

(4.12)

fill in the dip to some extent. " For the paramet-
rization, in terms of a pair of complex-conjugate
MacDowell-partner trajectories, no such dip is
predicted unless aI is very small, smaller than is
consistent with (2.13) and (2.14). As can be seen
in Fig. 6, the imaginary part of the complex-con-
jugate trajectories, u„ is about equal to 0.3 in the
region of the wrong-signature value of n„.

If the value of the reduced residue function van-
ishes exactly at W = 0, g, = 0 in (3.2),"then the co-
efficient G'(u) in (4.8) will be proportional to u,

(4.10a)

In this case, the data should show a dip at this
point. Figure 7 shows a fit to backward data using
the parameters implied by our hypothesis. The
data are consistent with (4.10) and the absence of
the wrong-signature dip.

The relative phases of the two amplitudes as de-
termined by this parametrization can be seen by
(4.5) and (4.6). The prediction for the polarization
was first given by Qribov':

sin'wn„(u) '~'.
I'= 1—,", , sin[2wa, ln(s/s, )+2y+ 0],Cosh maI(u)

(4.10b)

For the parametrization (2.13) and (2.14), u, -—0.5
for u =--1.0 GeV' so the sign of the polarization in
this region of u shouM change every time s is tri-
pled, say from 5 to 1-5 QeV .

The prediction about the behavior of the polariza-
tion with increasing s is strikingly different from
that of the models discussed by Berger and Fox,'
where there is little or no energy dependence.
The prediction (4.10) is not sensitive to absorptive
corrections in the sense that a small, energy-in-
dependent change in the pha, se of the spin-flip or
non-spin-flip amplitudes would not change things
drastically. The relative phase of the amplitudes
should still change with energy in order to produce
a polarization which changes sign.

V. CONCLUSIONS AND SUMMARY

There is insufficient evidence that the parity-
doublet trajectories implied by MacDowell symme-
try are closely degenerate. In particular, the pos-
sibility exists that the D»(1670) is the parity part-
ner of the 6(1234). The testable consequences of
this trajectory assignment include a prediction for
the mass, total width, and elastic width of a
G»(2530) recurrence. Assuming the dominance of
the complex-conjugate MacDowell-partner trajec-
tories, the asymptotic behavior of z-p backward
scattering is predicted without making absorptive
corrections. The outstanding feature of the back-
ward polarization, the change in sign of the polar-
ization at finite u as s is increased, is not sensi-
tive to absorptive effects and can be used to ap-
proximate the size of the odd portion of the trajec-
tory function.
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