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We use wave functions calculated by using a new separable potential to which has been added
a Coulomb potential to give an impulse-approximation treatment of p-p final-state interac-
tions, which we compare with n-n and n-p final-state interactions. Our treatment involves
the choice of a potential which gives exact analytic solutions to the Schrodinger equation, so
that no approximations are made which might destroy the completeness and orthogonality of
the wave functions used. We carry out computations for y+ d m-+p+p with our model, and
conclude that no Coulomb effects should be noticeable when a bremsstrahlung beam is used as
the y source.

INTRODUCTION

Separable potentials have been used by many au-
thors' to give a description of low-energy nucleon-
nucleon scattering, and Harrington' has pointed out
that the addition of a Coulomb potential (which is
not separable) to a separable potential in configu-
ration space gives rise to an equation which is sep-
arable. Harrington has used the usual Yamaguchi'
potential as an example, and has shown how the in-
tegrals which then occur can be evaluated by a per-
turbation expansion. We point out that by choosing
a different potential, which depends on confluent
hypergeometric functions, we can carry out all in-
tegrations exphcitly, and give answers in closed
form. Moreover, the scattering amplitude calcu-
lated by this method turns out to be the lowest-
order term in Harrington's perturbation expansion.
A disadvantage is that our potential contains an ex-
plicit charge dependence.

In Sec. II of this paper, we apply the wave func-
tions obtained from our potential to a calculation

of the effect of the p-p final-state interactions in
y+d- w +P+p, and compare this with y+d- z'
+n+n.

I. SOLUTION OF THE.SCHRODINGER EQUATION

If the Schr5dinger equation for the p-p system is

—+ P(r)+ dsr V(r )V(r)$(r') =—P(r),
(1.1)

where a=Me' in natural units of c=5=1, it can be
solved explicitly in a manner similar to that used
to solve the Schrodinger equation for a pure sepa-
rable potential. We shall write down here such re-
sults as are essential to the main purpose of this
paper. Fuller derivations may be found in Harring-
ton's paper.

Equation (1.1) can be written in spherical coordi-
nates, and the wave functions of definite orbital an-
gular momentum, l, calculated. For nonmero l
the solution is given by the regular Coulomb wave
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function

( )
[N&(K}] (-)'M„,+»~ (-2ikr)

-2ikr
=~'F, (kr)/kr,

where

(1.2)

x F 1
a a
2P'2P' 2P

(1.13)

I'(l+ 1+K)I'(l+ 1 —K)e"
[(2l 1).l'

K = -la/2k~

(1.3)

(1.4)

and E, ( kr) is the regular Coulomb wave function as
defined by Hull and Breit. ' (The function M„„,~,
is a Whittaker function defined in Ref. 2.) For
l = 0 we omit the angular momentum index, and set

In the limit a- 0, V(r) of course reduces to V„(r).
Because of the simplicity of the form of v(p), we
shall use this potential for all the calculations in
this paper. This gives rise to a great simplifi-
cation, in that all our calculations can be carried
out exactly.

By the use of Harrington's methods, the integra-
tion in (1.9) can be done, and A evaluated as

so that

((n)= (-,) f r'&r ' ((r)

(1.5)

(1.6)

v(k)
4 v(1 —[(n + P)/(P - ik)] '[I + C(k)]] '

where a is given by

w Mgm = P(n + P)2,

(1.14}

(1.15)

Here

5(p- k) 4KMv(p)4'' P'-k'-ie ' (1.7)

and

v(p) =
(
—

( J r'V» '. V(r) (1.8)

In this case, it is found that the scattering solution
is given by

and

C(k) = . , 2kp —
p 1+—-1n~—1 a ia (ia

(p+ik)' k 2k ( 2k

+(p'+k*) ———.|('I 1+—
(

a a', & a l
P P'

& 2P&.

1+ al fal(
2P& (.2P&

(1.16)

V„(r)= g( ,'v)'"e-'"/r, - (1.10)

one may calculate that

v(k)
4v[I —4wM JP"dP'v(P')'/(P" —k'-ie)] '

(1.9)

In the case that the potential is the usual Yama-
guchi potential, given by

The configuration-space wave function has not
been calculated before, and can be done as follows.
We must evaluate the right-hand side of E(I. (1.6).
The first part, involving the 5 function, is trivial,
and the second part involves the integral

[N(r)]'~' [N(r)]'"M„„(-2irp)
(p -k i&)(p +-p) -2irp

(1.17)

where

v„(p)=goN(K)(p+ip) '""' (p ip) ' "'- ia/2p. - (1..18)

v(p) = g&N(K )(P'+p') 'r
whose configuration-space form is

(1.12)

and the integrations may be performed analytically
in the perturbation expansion used by Harrington.
It is important to note that the zero-order term in
this expansion is equivalent to setting equal to one
the factor [ (p+ip)/(p -ip)]'"'~, which varies by
about 5% over the entire range of integration. We
may therefore look upon this zero-order approxi-
mation as the exact solution for the potential. r(1 —i}W,.»,(-2ipr)

J--'"'2irP(P -k'-i )(e'PP+'). (1.20)

Since for r & 0, the Wfunction decays exponentially

Using the explicit expression (1.3) for N(r), and
the formula for Whittaker functions

-I'(1+7)1'(1—r)M, „,( 2irp)e"'-
= I (1 —r)W„„( 2irp) —I'(I-+v)W „„,(2irp),

(1.19)

we may rewrite the integral (1.17) as
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—I'(1 —&' )W„,„,(2rP)], (1.21)

where « = -ia/2k and tr
' = -a/2P.

Defining

iV(«) = .„, -=C,(a/k), (1.22)

by comparison with p.65 of Ref. 3, or from Har-
rington's paper, it is found that the phase shift is
given by

4ikP(n + P)'Co(a/k)
(P+ik)'((P-ik)'- (n +P)'[1+C(k)]]

'

(1.23)

Since we have shown that the approximation we are
using comes from a Schrodinger equation with a
real potential, 5 as given by (1.23) must be real,
as can be checked by using the standard proper-
ties of the p function as given in Ref. 4.

From (2.21) an effective-range expansion can be
derived, in which the scattering length and effec-
tive range are given, respectively, by'

-2(u. + p)*
p[p'- (n+ p)'(1-2X+ r)] '

2p'+(a+ p)'(1- r)
p(a+ p)'

Here X and Fare given by

(1.24)

in the upper-half p plane, we may close the contour
there and evaluate the integral from the residues
of the two poles inside this contour. Doing this,
we obtain

/v l '" Z, (kr) 2v'Mgx
~~2 ) 4vkr r P'+ k'

X [F(l K}1V gy2( 2irk}

rise to analytic formulas for the energy spectrum
in the final state.

(ii} Since our wave functions are exact solutions
of a Schr5dinger equation, they have two important
properties: They are a complete orthogonal set of
functions, and they give rise to real p-p phase
shifts. Phil. lips has taken care of the reality of
phase shifts, in his calculations, but not the com-
pleteness of wave functions. The result of using
an incomplete or nonorthogonal set of wave func-
tions which give correct phase shifts is to give
correctly the general shape of the energy spectrum
of the final state, but the integrated spectrum can
be in error. We show in Egs. (2.15) the conse-
quence of completeness, which gives an approxi-
mate formula for the integrated spectrum.

At the end of this section we give the results of
some' computations for the final-state interaction
in y+d-m +p+p, and compare this mth y+d-w'
+n+n.

A. Derivation of Formulas

In a reaction of the form

A + d B+N~+N2, (2.1)

where d, N„N, are, respectively, a deuteron, a
nucleon, and another nucleon, and in which it is
believed that the fundamental reaction occurring is

A+N, -&+&» (2,2}

one uses the impulse approximation. The formula-
tion that is used in this article we'll be found in Ref.
3. We do all our calculations in the rest frame of
the deuteron. We define our kinematics in Fig. 1.
Let

Z = three-momentum transfer = -', ( P„—Ps),

(2.3)
so that

«O'I 1+—
I

a a', ( a&
P 2P'

P + P =2k,
j. 2

and let

P~ —PN =2p.

(2.4)

(2 5)

II. APPLICATION TO p-p FINAL-STATE
INTERACTIONS

Then the differential cross section to a state in
which the total spin of the N, -N, system is s' will

Since we have deduced wave functions for the
p-p system, we now apply these to a study of p-p
final-state interactions and compare these with
n-n Snal-state interactions. The problem has been
treated before by Phillips' in considerable detail,
and the numerical calculations based on our for-
mulas agree with his. We carry out these calcula-
tions for two reasons.

(i) The wave functions we have calculated give

N,

FIG. 1. Kinematics for the reactjon A +d 8 + N&+ N2.
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be
I

=
[ T )

'
( S, ,( p, Z) [

' x (kinematical factors),

(2.6)

do' 2m' pQ—
dqdc

=
Z0 Q

s 2 2

(2.11)

(2.12)

in which

»e r(p, X)= f 2'r 2;.(p, r)P, (r)e"'"', (2 7)

where

2. ,(p, e)= /paris. (», Z)l' (2.13)

p+d~ lT +P+P p (2.8)

Schilling' has given a treatment of this reaction, in
which the problems of the Coulomb interaction
were neglected. (Our treatment will show that the
neglect was quite justifiable. ) In this specific case,
Eq. (2.6) may be replaced by

T is the T matrix for A+Ny B+N2 and the kine-
matic factors are slowly varying functions of p.

In order to avoid vagueness, we shall concentrate
our attention on the reaction

2"(» e)= f »'2» pe. (» e) (2.14)

I,(p, ~)=1+(-)'S(-,'~),
where

(2.15)

where W is that value of p corresponding to the
minimum value of Q, detected.

Most authors make the approximation that W is
essentially infinite and Q/E= 1, so that one may
use the completeness formula

do" 1 (2v)' 4p
dQ&d Q 2s+1 M E Qo

2(»)= pe('r e' r' I», (r) I', (2.16)

/(s'M'/ T I sM& f' /S, ,(p, ~) /',

(2.9)

in which s', M' are spin parameters of the final
two-nucleon system, and s, M are spin parameters
of the initial deuteron.

One normally sums over a certain range of val-
ues Q„and over the solid angle dQ~, since in gen-
eral the final protons are unobserved. Thus we
finally need

(2.10)

The T-matrix element is assumed largely constant
over the ranges of these integrations, so that we
are led (after change of variables) to the equations

where (1)~ is the deuteron wave function.
We can calculate analytically the quantities

S, (p, b, ) where the final state consists of two pro-
tons or two neutrons. We use the wave functions
(2.5) for the s wave, and pure Coulomb wave func-
tions for higher angular momentum, and the deu-
teron wave function

[Vp(V +p)l'" e "" e"-
P-p. r (2.17)

which can be derived as a separable-potential wave
function.

For simplicity, we have chosen an average value
of P for all two-nucleon systems of P=260 MeV,
and we have chosen a value of n for each case
which reproduces the correct scattering lengths.
These values are given in Table I.

B. Analytic Formulas for the. n-n System

(2.18)

which gives the transition to a triplet final state,

1 [PP(P +P)] " 1
Sp(p» &)—

u (p —n)' p' +(p+ ~)'+u' (p+ ~)'+ p' 2p&

(2.19)
where

In this section s' takes on the values "t" for triplet and "s"for singlet. We use a separable potential for
the n-n system. The results are

[pP(u + P)]'" 1 1 1 + l,

/2 rp-p (p —e) +p, (p —e) +2' (p+Z)'rp, (pee)'r»')'

~I [~+ (p+ ] p+ (p- &)][(~+p) - ~][ p+ ~]
~

),[~+~(P- n) [P+f(P+&)][(v +P)+f&][2P f&])'- (2.20)
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TABLE I. Values of separable-potential parameters used in computations
(experimental data from Ref. 7).

Units

fm

fm

a 0{th)

r()(th)

ao(exp)

r, (exp)

GeV

GeV P

GeV 0. +P

-0.0028

0.260

0.2572

-7.79

2.23

-7.786 + 0.008

2.840+ 0.009

-0.0101

0.260

0.2499

—. 18.41

2.40

-18.42 + 1.53

n-p (singlet)

-0.007 92

0.260

0.25208

-23.78

2.37

-23.714+ 0.0013

2.704+ 0.087

n-p (triplet)

0.0464

0.260

0.3064

5.42

1.85

5.425 + 0.004

1.749 + 0.008

and the phase shift, e", is given by the separable potential and has the analytic form

(2.21)

Elementary integration techniques now give

pP(p+P) 2 2 2 q —1 $+ll
2wp'b, '(P —p)' t'- 1 q' —l q —( ' q+1 $ —1)

2 q+1 «+111 1 t'+1~1 1 q+l
q+h q lt--» h h »q-q-l

pP(p+P) 2 2 2 q —l $+l 2 q+l )+1
2wp'n'(p —p, )' $' —l q' —1 q —g q+1 $ —1 q+)' q —1 g-1

+ —ln1 + —ln +2 Re[(e" - 1)A(P, 4)]
&)+1 1 g+1

q q l-
0 +4 sin2$ Q p g 2-l q+l

(2.22)

(2.23)

where in these expressions

jP + LP + p
2p~

p2++2+ p2

2pb,

C. p-p Final State

The initial state is still a deuteron, so we define

Z, (p, Z)= Jt d'rP,*(r)e' '
g~(r),

in which

(2.24)

y, ,(r) = [y(p, r)+ (-)' y(-p, r)] /W2 (2.25)

f(p, r) = g (2l+1)P,(cos8)e"'g, (r) .

p, (r) is the separable-potential wave function in the presence of a Coulomb potential as defined in Eqs.
(i.2) and (1.21), p ~ r =Pr cos8, and o, is the Coulomb phase shift as defined in Ref. Z.

We do the necessary integrations in the Appendix, and find that
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-[(a+ip)'+~'] "Ge'+(p -~)'1'""'-[J8'+ (p+ s)'] "'"'))
]I/2

&.(p, &) =
2

" " ' s '"""1'(1+~)([(u +ip)' +&']"([u'+(p -&)'l~""' +[u' +(p +&)']~""']

(2.26)

where

g-2&~o
[(e-+ip)'+d'l "([a'+(p d)'-]~""'+[a'+(p+s)*l"'"'])+ ~(p, ~) ~,2ph )

(2.2V)

j. fr Q2

&(P, g)= 1, 1 [P(P;P, s) —Q(P, ; iP-, n) —Q(P;P, —n)+P(P. ; —iP, —6)

e(@-p, ~)+e(~; iu, -~)+e(ep, ~) e(~-; v,-~)l (2.26)

z = -ia/p,

a= e'M (e is the charge of the proton),

(2.29)

(2.30)

i[a -i(a+@)] n -i(s+)t)l (2.81)

We may also calculate the integrals

dQ~ Z, . p, b, '=—Z, P, h (2.32)

by-elementary methods, to obtain

&(u «)=, "~~ I&l' I&l'I(. ~- —,( I, ( ~) -((,~) } I«:I'I . ~- —„„("„,) -(„,~) }

I«(«-5) («+&) («-&) «(««h) &«-&) («+» }~

(2.33)

and

z (p, ««)=
' '

Il««l' le~I'I + —' (
"

) -
( ') }« los' + —'

I

""
)

- (" "1
}

I «(rl- $) (0«1) (rl-1) «(«I«f) (9:-1& (tl«1) })

+4Re ~ ~ ~~ E $ —1 "—$+1 "—Gq-1 ' —g+

2 I B(p, b, ) Psin'5
pF +2

where

a = e-'"""r(1+~)(2ps, )-'-",

&= [(v +ip)'+ &'1"

G = [(e p)"~']" .

(2.85)

(2.36)

(2.87}

These formulasiare not particularly illuminating
to look at, but have the advantage of relative ease
of computation for numerical purposes. They de-
pend, of course, on the validity of the model po-'

tential, but by choice of a and P the scattering
length and effective range can always be fitted.
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The fundamental requirements of reality of phase
shift and orthogonality and completeness of wave
functions have also been satisfied. Thus, due to
the well-known insensitivity of low-energy scat-
tering to much more than effective range and scat-
tering length, we can place quite a large degree of
reliance on these calculations.

D. Results of Computations

%e have done calculations for

y+d- m +n+n

(2.33)
k

I 2 5 4 5 6 7 8 9 IO II l2

at an incident y energy of 3.4 GeV, and momentum
transfer

t= (pz —P„)'=-0.03 GeV'. (2.39)

This means that the number b, =
~
Z ( is given by

t = ,'(-t+ t'/4tif—„')'~'

= 0.0869'7 GeV.

(2.40)

(2.41)

In Fig. 2, which gives the energy spectrum of the
final pion if the n-n or P-p systems are in singlet

FIG. 3. Energy spectrum of the pion from photoproduc-
tion on deuterium in the case where the final two nucleons
are in a triplet state. The solid line is y+ d x+ + n+ n,
and the dashed line is y+ d n' +p+p. The incident y
energy is 3.4 GeV, and the momentum transfer squared,
t, is -0.03 GeV~. The vertical scale is in arbitrary units,
each of which is 1/5.5 of the arbitrary units in Fig. 2.

states, we observe the same qualitative features
as Phillips, ' that the Coulomb interaction reduces
the peak of high energies, but causes a small
amount of enhancement of lower energies.

In Fig. 3, which gives the energy spectrum of the
final pion if the n-n or p-p systems are in triplet
states and there is no final-state interaction, we
see that the Coulomb interaction tends to displace
the spectrum without changing its shape.

In Fig. 4 we show the integrated spectra for the
two singlet cases. Notice that at low final pion
energy, the value of the integrated spectrum be-
comes very close to the value given by complete-
ness arguments. The slight difference is accounted
for by lanematical factors omitted to give Eq.

l.4

l.2

I.O

0.8

0.6

EMAX E (MSV)

0 I 2 3 4 5 6 7 8

FIG. 2. Energy spectrum for the final pion from photo-
production on deuterium in the case where the two final
nucleons are in a singlet state. The solid line is y+ d

n++ g+m, the dashed'line is y+ d x"+p+p. The in-
cident y energy is 3.4 GeV, and the momentum transfer
squared, t, is -0.03 GeV2. The vertical scale is in arbi-
trary units, each of which equals 5.5.of the arbitrary
units in Fig. 3.

OA

0. E„„-E (MeV)

0 I 2 3 4 5 6 ? 8 9

FIG. 4. Integrated spectrum in the case of singlet nu-
cleon final states. The horizontal scale represents the
upper limit of integration, while the lower limit occurs
when E =Emi„. The solid horizontal line is the value of
the total integrated spectrum as predicted by coxpplete-
ness arguments in Eq. (2.15).
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(2.15), rather than the approximation that W is in-
finite. When these kinematical factors are omitted,
the difference between the completeness prediction
and the value calculated is an order of magnitude
less than that in Fig. 4. Equation (2.15) gives, in
fact, only an upper bound on the integrated spec-
trum. During the process of developing this for-
malism, it was found by the author that approxima-
tions in which completeness and orthogonality of
the wave functions are not guaranteed can quite
easily violate this bound, and it is for this reason
that such stress has been laid on this point.

At present, experiments done with bremsstrah-
lung beams cannot detect the difference between
P-P and other two-nucleon final states. However,
with improved techniques, a y beam with sharply
defined energy may be developed. With such a
beam the effects calculated may be measurable.

CONCLUSIONS

The separable-potential description has been
found to give a manageable treatment of p-p final-
state interactions in the impulse approximation, in
which all fundamental requirements of complete-
ness and orthogonality of the wave functions and
reality of P-p phase shifts are retained.

We have found that with the present resolutions
available from bremsstrahlung photon beams, no
effects will be noticed, since the energy range in
which P-P final-state interactions differ from n-p
and n-n final-state interactions is only of the order
of a few Mev. Furthermore, the closure approxi-
mation (2.15) has been shown to be quite good, al-
though it is possible that the slight discrepancy
noticed '(see Fig. 4) might be measurable in ex-
periments with good statistics.

APPENDIX: EVALUATION OF INTEGRALS REQUIRED IN SEC. II

We wish to evaluate the integral given in Eq. (2.24). Now

»J»(p, r)= (2»») '"g (2l+1)P»(cos8)e»»»1»»(r)
-l=0

(A1)

2v)-saba ~ (21+1)P,(cos8) e», » i» F»(pr) +e~[wa/4p+2ieo] (~' —1)

We wish to evaluate

x ([I'(1—»»)W„„(-2iPr) + I'(I + a/2P)W „,&,&,(2Pv )]) . (A2)
I

dx + p&re e x:-I p&h&n (A3)

First we treat the part of the integral coming from the first part of Eq. (A2). We write

e» ~' =Q(21+1)i'C»(b) .C(r)j, (br), (A4)

where we have used the notation of Brink and Satchler' for the spherical harmonics C, . Using the orthog-
onality of spherical harmonics, the first part may be written as

Z= — r md» (2i+1)P (A -P)e-"»
7r

+, e r
To evaluate t we need to compute the integrals

I» = Jt'rdr ' j»(Ar)e ~

using the fact that

F, Pr) = [N» (»»)] (2Pr)'F(l+ 1 —»», 2l + 2, 2iPr)e'~-
p~ l

(A5)

(AS)

(A7)

j»(&r) = (2&r)'F(i+1, 2l+2, -2iAr)e'~",I'(l +1)
(AS)

where F(a, l», z) is the confluent hypergeometric function as defined by Landau and Lifshitz. ' Equations
(A7) and (AS) may be obtained from Refs. 4 and 2. Making the substitutions (A7) and (AS), the integrals
can be evaluated by the methods of Landau and Lifshitz to give
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), =VX, (~)1'()+)))~ . )
[a'+(P+a)'] ', )l )+1+&;)+),2)+2,:, ), )::

t'a+i(P - A))". . . 4PA ' 4PA
(o'-i I+A ) n'+ p+& ' ' 'n'+ p+A'

Substituting the explicit values for &,(K) arid exp(jo, ) ss given in Elle. (1.2) Rnd Ref. 2, we find that

l ))))gm F(l +1 + K)F(l+ 1) Q +i(P A}
[ 2 p]4=4)IZ 2l+1 P) t) p e (2l- )

.
( )

~ + p+n

x 2 2 Q )+1+&, )+i, 2)+2,n'+ P+b, ' 2 t f)~2+ p+g 2

We can sum Eq. (A10) if we know the sum

g (2l+ 1)z' E(i+1+K, l+ 1, 2l+2, e}P,(cosa)) ., 1 (l+ 1+K)1'(l+ 1)
r 2l+2

From Landau and Lifshitz, p. 503, and Eq. {AS), we know that

dte'" ('t}(t) ' -'"t""= { } { )e'""Z(i+1+ l+1 2l+2 e)

{A9)

(A10)

(A11)

Substituting the left-hand side of (A12) into (A11), we find that (A11) is equal to
~rw ~4

40

z ~""' exp ,'t 1-——t"gj,'(-,'it)( i)'P-, (cos )a()2l+1)dt,
'0

I+ W gt 0

and using the Rayleigh expansion, Eg. (A4), (A11) elluals

gg+z)
z '

exp tgg+K) 1 +cos(d 1 i K . gg+g), ~ g 1 +cos&
(A13)

Now substitute

x=4' Alb'+(f+t )']

cosm=p 6, ,
Rnd llse. tile resultlllg fol'111 of EQ, (A12} Rlld subs'tltllte lllto. Ec[. (A10) to find. that

Z= (2/v)'"e '"""r(1+K)[(a+ip)'—ri,']"[Q'+ (p —Z)']~""' .
This completes the integration coming from the first part of Eq. (A

To evaluate the other integrals coming from the second part of Eq. (A2), we must consider

(A14)

(A16)

(A16)

which is equal to

(AlV)

Now the separate integrals containing e'~ and e '~" do not converge, but their difference does. Consider
then

I(a, e)= f drr "'s+' '+'w „,„,{RiPr),

which does converge for ~-&0, but not for ~=0; If we calculate this, and theri take

lim[I(t), e) I( t)., e)], --
(A16)

we obtain R value fol' (A1V). We pl'oceed 'to do this.
First substitute

W „„,(2ipr) = e ""(2ipr)U(1+ K, 2, 2ipr), (A19)

as given in the chapter on the confluent hypergeometric function in Ref. 4, which also gives the integral
representation
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r(a)U(a, b, z)= e "(1+t)' ' 't' ~dt,
0 (A20)

which is valid for Rez & 0. Since we are using z =2ipr, we shall let p have a small negative imaginary part,
which is set equal to zero at the end of the calculation. We shall not write this in explicitly. Hence

I(A, e)= dt ]t drr '"e+ ' )'e '~"(2iPr) 2'(PKt(1 ~ t) Kt K

J, r(1+K)

dt/
'

/ {[a-t(t], -p)]+2ipt}~"'.r(1+K)

Let u = t/(1+ t); then the integral can be transformed to

I(A )
P ( ) [ (g )]/|+K) d K(1 )gl- )K1 ( P)

(A21)

which may be recognized from the chapter on hypergeometric functions in Ref. 4 as a hypergeometric func-
tion: explicitly,

I(A, e) =2iP r(I+e)r e . „,) a iA-+p
I'(1+e —K)

[a —i(a —0)]a" F 1+c, 1+c, 1+a+a, ).' a —t(A —P)
(A22)

This integral is continuous at Imp= 0, so we now let Imp= 0. The divergence as c- 0 is plain. We now
separate Eq. 22 into convergent and divergent parts at e = 0, using the equation

(1 e)'K(a, ic, c)-=K(a, i, c, ),
which is also obtainable from Ref. 4. Thus

(A23)

, r(e)r(i+e) ~ r(I+e+n)r(e+n) a -i(A+p) ~"

r(I+e+K} ~ r(l+6+K+n)n! 2ip- (A24}

The part which diverges at e = 0 is the first part in the curly brackets, which is independent of h. Hence
l(b, , e} l(A, e) dep-ends on the second part in the curly brackets only, which we call I'(A, e), and when e- 0,
I'(A, 0) is finite, and is given by

I' A, 0 = a -i(A+p) ~ r(l+n) (a-t(A+p)]"
2ip -~ r(2+K+n) ], -2ip

1 a-i(acp) ((1 1 1 a-((ac)))
I'(2+K) 2iP -( ' ' ' -2iP

Define the function Q(a; p, 4) by

( (a; (1, a)=i[a —((ac@)][((ca)(cp)]~K( 1, 1, 1+a', a —i(b, +p))

so that

I'(t, 0)=y(a; p, t )/r(I+K).
This now completes the steps necessary to evaluate E(I. (A3). Collecting all together,

I(p, &, a) -(2/v)'"z '~'r(I+ K)[(a+tp)'+&']"[a'+(p -&)'] '""'
e-2&~o(e-&)[(] 1) e«K/2

[4(a;P, A) e(a;P, -&}--4(a'-tP &)+4( ' t). -A)].
42m 2pA r(1+K)

(A25)

(A26)

(A2V)



APPLICATION OF A SEPARABLE-POTENTIAL MODEL. . . 140k

*Work supported by the U. S.Atomic Energy Commis-
sion.

)Present address: School ef Science, University of
Waikato, Hamilton, New Zealand.

~Y. Yamaguchi, Phys. Rev. 95, 1628 (1954); A. N.
Mitra a~ J. H. Naqvi, Nucl. Phys. 25, 307 (1961); J. H.
Naqvi, Phys. Rev. 58, 289 (1964); D. Harrington, ibid.
139, B691 (1965).

2M. M. Hull and G. Breit, in Handbuch der Physik, ed-
ited by S. Flugge (Springer, Berlin, 1959), Vol. 41/I.

N. F. Mott and H. S. W. Massey, Theory of Atomic
Collisions (Oxford Univ. Press, Oxford, England, 1965),
3rcl ed.

M. Abramowitz and Irene Stegun in Handbook of Math-
ematical Eunctions, edited by M. Abramowitz and I. A.
Stegun (U. S. G. P. O., Washington, D. C., 1964).

SR. J.N. Phillips, Nucl. Phys. 53, 650 (1964).
6K. Schilling, Nucl. Phys. B7, 498 (1968).
~Richard Wilson, Comments Nucl. Parbcle Phys. 2,

141 (1968).
D. M. Brink and R. J. Satchler, Angular Momentum

(Oxford Univ. Press, Oxford, England, 1962).
9L. D. Landau and E. Lifshitz, Quantum Mechanics:

Nonrelativistic Theory (Addison Wesley, Reading, Mass. ,
1958).

PHYSICAL REVIEW D VOLUME 4, NUMBER 5 1 SEPTEMBER 1971

Phenomenology of K —2fI Decays
M. C. Basmussen and L. David Roper

Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
(Received 3 November 1970; revised manuscript received 16 May 1971)

The theoretical expressions for experimentally determined quantities in K 2~ decays
and leptonic kaon decays are used to determine solutions for various theoretical parameters.
Two solutions are found: one for which the ~n.i (= 2 dominance rule is valid, and another
for which it is not. Both solutions yield e =—g+ —=goo, Even precise measurements of fIejpp

may not allow one to distinguish between the two solutions.

I. INTRODUCTION

With the recent measurement' of the phase angle
of the ratio of Kl, -s'so to ICs -sos' decay, Pea, it
has become of interest to recalculate the phenome-
nological parameters of K - 2m decays previously
calculated by Roper. In the calculation of Ref. 2 no
approximations were made concerning the relative
sizes of the

~
d. I~ = s, —,', and —,

' decay amplitudes. We
have expanded the previous calculations by includ-
ing the b8 = +hQ amplitudes of leptonic kaon decays,
which various authors' have used to find an approx-
imate value for Rem. Since it is impossible at this
time to ascertain which of the available numerical
values to use for the phase-shift difference 6, —5,
between I= 2 and I= 0 s-wave scattering for w-w in-
teractions, the results are given with both
Walker's value and Marateck's' value for 5, —60 as
inputs.

We begin with Roper's' formulation of K- 2m de-
cays. By means of the experimental values of var-
ious quantities we are able to derive values of the
ratio b, of the complex ~aI~ = —', reduced matrix ele-
ment to the [n.I~ = s reduced matrix element, the
ratio b, of the complex ~b, I~ = s reduced matrix ele-
ment to the ~aI~ = s reduced matrix element, the
complex K' I7& mixing parameter ~, the complex
ratio z of the dS = -b,Q amplitude to the hS =+4@

amplitude in leptonic kaon decays, and the m-m

phase-shift difference 5, —5,.
The above values were found by using the four

solutions found by Roper' as inputs in a least-
squares fit to the data by means of the exact equa-
tions. The four solutions reduced to two solutions,
one of which satisfies the ~d I~ = 2 dominance rule
and the other of which does not.

By assuming very precise values for p~ we show
that even great precision may not allow one to dis-
tinguish between the two solutions obtained here.

II. THEORY

We write the isotopic-spin amplitudes as

(0, 0[A[ED) =pc, (0, 0iAiKo) =pa,

(2, O[x[X') =p„(2,0la[Z') =p,*,
(2, &[&[&')=P„(2,-&[&[& ) =P,*,

where

P, =b,/&2,

P, = (b, + b,)/&2,

p, =(-:)"'(b.—lb.).


