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A semiquantitative test of peripherality in nucleon-nucleon scattering (up to 425 M8V lab
kinetic energy) is carried out, using meson-nucleon coupling constants obtained from experi-
ments other than nucleon-nucleon scattering. The model used is a pole model, plus a 27f-
exchange contribution, with geometric unitarization. The results show that a series of ex-
changes of increasingly larger masses gives an increasingly better description of the middle
Taketani region (0.7 F & r —2 F). The series of exchanges considered is m exchange, 7( + 2~
exchange, and m+ 27i+p +co exchange. The exchange of 7t+ 2m+p + ~+ e(715) is also con-
sidered, and an estimate is derived for the coupling constant gz&~', assuming a width of
r, =370 MeV.

I. INTRODUCTION

%'e propose to test the concept of peripherality-
in nucleon-nucleon elastic scattering in a semi-
quantitative fashion, using the present knowledge
of meson-nucleon coupling constants obtained from
experiments other than N-N elastic scattering.
To do this, we take for our model of the N-&
elastic scattering amplitude a sum of one-boson-
exchange pole terms plus a 2w-exchange term
With the meson-nucleon coupling constants deter-
mined from experiment, we have a "zero-param-
eter" model.

We follow in the spirit of the Taketani approach
to N-N scatteringl where the nuclear force is
divided up into three regions, an inner region (say

0&x & O.V F), a middle region (say O. V F «y & 2 F),
and an outer region (2 F&x&m). We define dis-
tances through an impa, ct-parameter relationship
discussed in Sec. III, because experiments do not
directly define distance in the usual sense, and
because distances do not naturally come out of a
pole model such as we use here. The one-pion-
exchange (OPE) mechanism has been shown to
dominate in the outer region. ' In this paper we
wish to see if the exchange of increasingly larger
masses- results in an increasingly better descrip-
tion of the middle Taketani region, the middle
Taketani region being defined through the impact-
parameter relationship of Sec. ID. This is what
%'e mean by a test of perlpherallty. The series of
exchanges considered is m exchange, m+2m ex-
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change, 7r+2m+p+(d exchange, and m+2m+ p+a+ e

exchange. The numerical results are summarized
in See. VI. The treatment of the wide p and e is
described in Appendix B.

II. QUALITATIVE TEST OF PERIPHERALITY

a~~. -149'
g„„p —0.53, fp/gp

g gNw 5s fw/gv

(2 1)

The value of g»„' is taken from Ref. 7, an analy-
sis of forward m'P elastic scattering. The vector-
meson Pauli to Dirac coupling constant ratios,
fz/g~ and f /g, are derived under the assumption
that the p and e saturate the isovector and iso-
scalar electromagnetic nucleon form factors, re-
spectively, at zero momentum transfer. The same
assumption applied to the e'e colliding beam re-
sults reported by Ting' yields g« ' —0.53+ 0.04
and g« ' =4.69+,",,. The exchange of an q(549)
is omitted because with a coupling constant of
g»„' & 0.002, ' its contribution is negligible. The
masses used (from Ref. 10) are

m, = averaged pion mass = 137 MeV/c',

M = averaged nucleon mass =939 MeV/c',

m~ = f65 MeV/c', width F~ =11V MeV,

m = I83 MeV/c'.

(2.2)

The treatment of the wide p is given in Appendix B.
The 2m-exchange contribution is. described in de-

tail in paper I. It is derived by approximating the
Ng- sv amplitude by a sum of Ã(938) and n(1236)
pole terms, and then using u-channel (NN-NN
channel) unitarity and crossing to determine the

Consider as successive approximations to the
N-N elastic scattering amplitude a sum of terms
representing the exchange of

(1)

(2) v+2m,

(3) v+ 2m+ p+ &e.

Note that these three approximations are numbered
in order of increasingly larger mass of the ex-
changed system. The single-meson-exchange
terms are pole terms, and their partial-wave pro-
jections are displayed in Appendix A. The 2m-

exchange contribution is taken from a previous
paper' by one of the authors. This paper is here-
after referred to as paper I. The same geometric
unitarization scheme is used here as in paper I,
and is explained in Appendix A.

The values we use for the coupling constants,
taken from experiment, are

contribution to the u discontinuity of the NN -NN
amplitude due to 2g exchange. Then a dispersion
relation for the NN-NN amplitude is written,
employing a cutoff u, in the momentum-transfer
variable u. For the 27) -exchange contribution in
this paper we use values of m, and M as in (2.2)
above, plus

M~=1236 MeV/c', width I'~=120 MeV,

u, = (3.5m, )'. (2 3)

(2.4)

where L is the orbital angular momentum, p is
the c.m. momentum of either nucleon, and z is
the impact parameter, we ean say roughly that
higher partial waves or lower energies correspond
to bigger impact parameters. So each one of the

'
successive approximations 1, 2, 3 shows improve-
ment as the impact parameter considered is in-
creased.

There is also an over-all trend of improvement
in fit when we add exchanges of higher-mass sys-
tems, i.e., as we progress from approximation
1 to approximation 2 and from 2 to 3, although
this is more easily seeri after we introduce a
quantity representing goodness of fit.

III. QUANTITATIVE TEST OF PERIPHERALITY

We determine X' from a MacGregor-Arndt-
Wright second-derivative error matrix. " For
small deviations from the experimentally deter-
mined phase shifts, this X' is the same as would
result from using the actual N-N data. While this
is not true when X' is large, we are going to as-
sume that the actual goodness-of-fit is monotoni-
cally related to the value of X' obtained from the
second-derivative error matrix.

Assigning the masses and coupling constants as
in Eqs. (2.1)-(2.3), we plot in Fig. 2 X'/(datum) as
a function of l,„, for the same cases 1-4 as in
Fig. 1, where l - is the lowest partial wave fit.
For example, when l~;„=2, we fit D, I", G, and
II waves, as mell as the coupling parameters e,

The three successive approximations described
in the first paragraph of this section yield the
nuclear-bar phase parameter curves labeled 1, 2,
and 3 in Fig. 1. (Curve 4 represents the exchange
of w+2v+p+&u+an e of mass '715 MeV/c' and width
370 MeV, with the coupling constant g», ' searched
for the best fit. This curve will be discussed in
Sec. V.)

In Fig. 1, note the general trend toward im-
proved fit for curve 1, one-pion exchange, as we

go to lower energies in a single partial wave, and
also as we go to higher partial waves. The same
holds for curves 2 and 3. Since classically
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r~;„(minimum impact porameter)
,5F I.O F I.5 F

I I

2.0 F

through e,. (Each c~ is treated as an L=J partial-
wave parameter. ) The higher partial waves (l ~ 6)
were treated in the partial-wave analysis" of the
data as coming solely from OPE. The lower par-
tial-wave parameters, those lower .than the value
of l j„on the graph, are allowed to search to
whatever value minimizes y'. In no case do we
attempt to fit S waves or the coupling parameter
e„since the geometric unitarization scheme is
inadequate to describe these, and also since these
parameters are so sensitive to the short-range
forces not given by the model. When l,.„=1, e,
is excluded from the fit, and is freed to search.
We fit data from 1292 PP+nP data points and seven
energies: 25, 50, 95, 142, 210, 330, and 425 MeV.

Since the experimental error on g» ' is so large
(in Sec. II we derived g»„'= 4.68',",', from Ref. 8),
we plot in Fig. 2 the results for g„~~'= 4, 5, 6.
Only for l j„=1 is there any noticeable variation
in y' j(datum), and here the lowest value of g» '
is favored.

Extending the classical impact-parameter rela-

tion Eq. (2.4) to

[I(f+ i)]"'a- =p~, (3.l)

where l is the orbital angular momentum quantum
number, we get

r j„=minimum impact parameter

=[I...(f...+ l)1"'sh

=0.44[i;„(l,„+l)]'i' F, (3.2)

which is shown on the top scale of Fig. 2." (We
have used the fact that the highest-energy fit is
425 MeV. ) So scanning from left to right in Fig. 2

corresponds to looking at increasingly large im-
pact parameters.

Note the obvious improvement now, as we pro-
gress from approximation 1 to approximation 2,
and from 2 to 3, as well as the improvement for
each one of the 3 approximations as the minimum
impact parameter is increased. The points labeled
4 represent the exchange of w + 2v +p + e + an z
(mass = 715 Me V/c', width = 370 MeV) with the
coupling constant g„«' searched fpr a best fit.
The significance of these points will be discussed
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FIG. 2. Goodness-of-fit for four different models of
N-N scattering: x exchange, x+27' exchange, ~+2m +p
+co exchange, and m'+2x+p +co+a exchange; calculated
for a fit to the 5~l «l ~j„partial waves, using the second-
derivative matrix of Ref. 12 (based on 1292 PP +nP data
points at 25, 50, 95, 3.42, 210, 330, and 425 MeV). The
2'-exchange contribution is taken from paper I. The pa-
rameters used are as in Eqs. (2.1)—(2.3) of this paper,
with m~ =715 MeV/c and X~ =370 MeV. Values are
shown for g~N~ =4, 5, and 6, although only forlmjn =1
is there any perceptible difference. The coupling con-
stantg&N~ is searched to minimize y for each value of
l ~jg and for each value of g&»

I.5

~3.5,4.Omar

3.0,3.5,4.0m~-
II

2

jL~;„( lowest partial wave fit)

FIG. 3. Goodness-of-fit for the approximation of the
N-N amplitude by a ~+2~ exchange model, vrith 2~ cut-
offs u~ 2 (defined in paper I) of 3.0m~, 3.5m~, and 4.0m~, -

as indicated. The other parameters are as found in Eqs.
(2.1)—(2.3) of this paper. X2 is determined from a fit to
the 5 —l l ~jg partial vraves, using the second-derivative
matrix of Ref. 12. A comparison of Fig. 3 with Fig. 2 in-
dicates the degree of sensitivity of the model to variations
in the 2m cutoff parameter.
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in Sec. V.
The values of It'/(datum) shown for I . = 1 corre-

spond to the curves 1 to 4 shomn in Fig. 1.

IV. SENSITIVITY TO 2m-EXCHANGE
MODEL USED

The discussion in paper I of the 2m-exchange
contribution concludes that a cutoff in the momen-
tum transfer of between (3m, )' and (4m, )' is a
reasonable one to choose. In Fig. 3, me shorn the
y~/(datum) resulting from approximation 2, w+ 2v

exchanged, ,for three different choices of cutoff:

u, =(3.0m, )', (3.5m„)', and (4.0m, )'. A compari-
son of this plot with that of Fig. 2 w'ill show that
the conclusions drawn from Fig. 2 still hold. There
is no great sensitivity to the value of the momen-
tum-transfer cutoff in this range, as far as a test
of peripherality is concerned.

V. e-EXCHANGE CONTRIBUTION

We cannot reasonably leave out the e(715)-ex-
change contribution, while including the higher
mass p(765) and v(783). But without a. good experi-
mental determination of the strength of the cou-
pling of the e, or even of its mass or midth, me

can only say what values are consistent with the
notion of peripherality. If we take the values m,
= 715 MeV/c' (from Ref. 10) and I', = 3VO MeV (see
Ref. 14), then we can say what values of g», ' will
optimize the fit to the data. (See Fig. 4 for a. plot
of the results. ) The treatment of the wide e is
given in Appendix B.

We represent the N-N scattering amplitude as
the exchange of m+2m+ p+ ~+ a, mith the e parmn-
eters as above and the other parameters as in
Eqs. (2.1)-(2.3}(with g» '= 5); then we search
on g„« . The value that gives the best fit for /m, „
=1 (P waves and higher fit} is g», '=3.2. The re-
sulting phase shifts are plotted as curve 4 in Fig. 1.
The resulting X /(datum) is the point in Fig. 2

labeled 4 and at I,„=I, i.e., It'/(datum) = V.8.
This is the lowest value we can get (for this model)
for X'/(datum), fitting P waves and higher, leaving
the c coupling constant g», ' free to search, and
fixing the other parameters as described. Re-
leasing those parameters and letting them search
would of course give a lower It'/(datum), but this
would represent a less stringent test of peripheral-
ity.

The values of g», ', namely (g», '} . , which
minimize It'/(datum) for a fit to the 5 & I & I par-
tial maves, are shown in Fig. 4. The error bars
represent the change in g», which mould increase
II' by 1. We note that (g», '), „depends systemati-
cally on the value of g» ', which is not well deter-
mined experimentally. A plot of (g~N, ') &„vs

~NN~ 6+ 1 ~ (5.1)

It appears then that inclusion of the 27'-exchange
contribution does not eliminate the need for an

.5F
rfhlh(minimum impact parameter)

I.O F l.5 F
I I

X QNNtal 6
$ QNNas2

= 5
gNN 4

2.0F

(QNNC )'mlh
0

QNNOI 6

QNN~' =5

QNNog =4
Q

g NNcs

g NNtal 4
o

g NIKE 6
QNNel

QNN40

QNN4 '=4, 5,6
as indicated

I I

2 3

JL~;h (minimum partial wave fit)

I

4

FIG. 4. Values of gN&~ which minimize X for a fit to
the 5~l «&~;„partial waves, for a given&m;„and a given
gN» . The model is that of x+2m+ p + tu + e exchange,
with parameters taken from Eqs. (2.1)-(2.3). The error
bars represent the increment in (g&N~ )m&„which in-
creases X2 by 1.

g»„' for a m+2'+ p+ &u+ e-exchange model (the
other coupling constants held fixed), with D waves
and higher fitted to the data, in fact yields Fig. 5.
The change in g», ' which changes X' by 1 is in-
dicated by the. error bars.

We do not regard any of the considerations of
this section as other than a crude determination of
g„«', because of the crudities of the model, and
because of the many contributionp to the N-N scat-
tering amplitude other than e exchange, some of
which (like 3v exchange} are not even considered.
Nevertheless, should one want an estimate of g», ',
the value for I,.„=2 (Table I) is the most likely
candidate: For l~,.„=1, our geometric unitariza-
tion scheme begins to break down, and peripheral-
ity (representation of the nuclear force by the
sum of a few exchanges) also begins to break down;
while for /~;„= 3 or 4, the phase parameters are
insensitive to intermediate-range processes, and
yield little information on g», ' (see Sec. VI). For
g„„'=5+ 1 (see Sec. II), we then estimate (from
Table I) that
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I I I I
I

I I TABLE I. Optimal values of gNN~, for l min =2I-

I

2
gNN ~

4
5
6

2
gNNe

5.5+ 0.22
6.3 + 0.22
7.1+0.22

( g~g&') mtn

0

rIII

5-5

isoscalar scalar meson-exchange contribution in
fitting the N-N data.

VI. NUMERICAL SUMMARY

A summary of the numerical results of this
paper, for the various approximations to the N-N
scattering amplitude, is given in Table II. Note
that (g», ');„is the value which minimizes g',
the other parameters fixed as given. The error .

in (g», ');„is the increment in g», ' which in-
creases y' by 1. For our model, X' is linear in

[g», ' —(g», '),„]', so that Table II can be used
to calculate X' for any value of g», '.

VII. CONCLUSION

FIG. 5. The value of gNN~ which minimizes X, as a
function of gNN~, for a fit to the 5~l ~ 2 partial waves.
The error bars represent the increment in gNN, which
increases g by 1. The model used is that of n +2m +p + co

+ e exchange.
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APPENDIX A: PARTIAL-WAVE PROJECTIONS
OF THE ONE-BOSON-EXCHANGE

CONTRIBUTIONS TO N-N SCATTERING

We list the one-boson-exchange partial-wave
projections. In the following P is the c.m. mo-
mentum of either nucleon, and is given by

p' = aM T&,b, (A1)

where M is the nucleon mass and T&,b is the lab
kinetic energy of the incident nucleon,

systems. The data examined are from Ref. 12 and
include 1292 PP + np data points from the seven en-
ergies 25, 50, 95, 142, 210, 330, and 425 Mev.

It was already known that for very large impact
parameters the OPE mechanism is a good repre-
sentation of N-N elastic scattering; now the evi-
dence suggests that for an intermediate range of
impact parameter, the representation of the N-N
elastic scattering amplitude by the sum of a few
one-meson-exchange terms (v+ p+ &o+e) plus a 2v-
exchange term is a reasonable model. There ap-
pears to be a "convergence" of the series of ex-
changes, as can be seen in Fig. 2. A better dy-
namical model than a pole model is needed, of
course, for the smaller. impact parameters.

For a model of nucleon-nucleon elastic scatter-
ing consisting of a sum of a one-meson-exchange
pole terms plus a 2m-exchange term, using meson-
nucleon coupling constants from experiments other
than nucleon-nucleon elastic scattering, the fit to
the data shows a consistent improvement as one
proceeds from smaller to larger impact parame-
ters and from smaller to larger exchanged mass

x = I+ma/2p',

where m is the meson mass, and

a = [p (Z/+ M)]',

where E=(p'+M')"*. The amplitudes f0~, f„
fi ~ „fi ~„, and f~., ~„repre esntpartial-
wave projections of (S-l)/2i:

(A2)

(A3)

fo =(J, L=J, S=0~(S —1)/2i~Z, L=Z, S=0),

f, =(g, L =z, s = I i (s - I)/2i i z, L =z, s = I),
f~=g, =(&,L=& I, S = 1

~ (S —I)/» ~

—&, L =J' —1, S = 1),

(A4a)

(A4b)

(A4c)



TE S T OF P E RIP HE RALI TY FOR N-1V SCATTE RING 1349

TABLE II. Goodness of fit for various approximations to the N-N scattering amplitude.

Exchanges' 2
gNN w

u 'f2
C

2
~NN p

2
~NN id

2
@NNe ~mill ~ mjn

y2/datum"
2 3 4c

7t +2x+p +co
+ searched E

14.9

14.9

14.9

14.9

3.0m„
3.5m,
4.0m„

3.5m „

0.53

0.53

4.0
5.0
6.0

4.0

5.0

6.0

2.11+0.024
5.51+0.22

-0.46+ 0.72
-9.05+ 3.5

3.21 + 0.024
6.33+0.22

-0.03+ 0.72
-8.68 + 3.5

4.31+ 0.024
7.15+ 0.22
0.40 + 0.72

-8.30 + 3.5

160.0

82.5
86.8

137.0

13.5
22.1
35.5

7.77

9.72

15.7

9.21
V. 73
V.74

4.66
4.78
4.92

4.16

4.12

4.08

2.04

1.50
1.42
1.44

1.25
1.24
1.23

1.25

1.24

1.23

1.01

0.98
0.98
0.99

0.97
0.97
0.97

0.9V

0.97

0.97

~We have used f&/g& ——3.7 and fgg~=-0. 13 throughout, where applicable, as well as mv =137 MeV/ct, M = 939 MeV/ct,
mp 765 MeV/c m~ 783 MeV/c, m~ = 715 MeV/c, I

p
=117 MeV, and I', =370 MeV.

is calculated from the MacGregor-Amdt-Wright second-derivative error matrix. It represents an energy-inde-
pendent fit to 1292pp+np data points from seven energies: 25, 50, 95, 142, 210, 330, and 425 MeV.

'The phase parameters which we fit are those for which 5 «l l ~jg.

f~ ~ „=(J, L =J+ I, S = 1 I (S —1)/2i I J, L =J+ 1~ S = I) ~

fq', ~, (J L J1S lI('S 1)/2iI J L J+1 S 1)

(A4d)

(A4e)

where S is the scattering matrix. The symbols J, L, and S stand for the total angular momentum, the

orbital angular momentum, and the spin, respectively.
In the geometric unitarization scheme we use, the nuclear-bar phase parameters (in deg) are given by

5(J', L =J, S = 0) = (180/s)f, ,

5(J, L =J, S = I) = (180/s)f, ,

5(J, I, =J—1, S = 1)= (180/s)f~ ~

5(Z, I, =J'+ 1, S = 1) = (180/s)f
eg = (180/s)f g

The one-boson-exchange contributions to the f's follow.

(A5a)

(A5b)

(A5c)

(A5d)

(A5e)

A. Pseudoscalar (J=O ) Born Term

The Z=O Born term is defined by the interaction Lagrangian

~ '=( )"'gk~ 44
'

where P+ is the pseudoscalar field and g is the meson-nucleon coupling constant. Then

f.' =g'(u/4&)I (x. —1)Q, (x.) —5, .l,
f, = g '( p/4E)'[(xc + 1)Q~ (xc) —Q~„(xc) —Q~, (xc)],
f.=.-,=-g- (f /~)(2J+ 1)tQ, (..) —Q, ,(..)],

(A8)

(AVa)

(AVb)

(A7c)
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fi= ~.2
= -g '( ff/4E)(2J+ 1)[Qg.2(xQ) —Qg (x.)],

h-i, z.2
= g'-(p/4E)[l J(J+1)]'"/(2J+1)][Qg.,(x.)+Qg, (xo) -2Qg(xo)].

B. Scalar (J=O+) Born Term

The J=O' Born term is defined by the interaction Lagrangian

th) (4+) lf2 ~qy(s)

where (It) is the scalar field and g is the meson-nucleon coupling constant. Then

fQ =g Q[ p/(8Ea)][(1+ aQ —2axQ)Qz(xQ) + 2a6z Q],

p 1+0 +2QXf i =g'
4E 2

'Qg(x. ) —Qg+, (xQ) —Qg, (x.),

(A7d)

(A7e)

(A8)

(A9b)

(A9c)

g ag ~ I 2 Q, (x ) [21(ax, —I) ~ 2ax, —1]Q (x,) —2aa,},P 1 —Sag+ 2J(1 —a')

P a[J(J 1)]'"
g —l,g+2 g 4E (2J 1)2 [QJ'-2(x0) Qg+2( 0)l

(A9d)

(A9e)

C. Vector(J=1 ) Born Term

The J=1 Born term is defined by the interaction Lagrangian

& '=(4 )"'f[gy 0'"'+(f/4M) .([),4"'-[) 4."')]0, (A10)

where o» ——Qi(y~y, —y, y&), Qiv) is the vector field, and g End f are the meson-nucleon coupling constants
for Dirac and Pauli coupling, respectively. Then

f', = -g' — 8+ Q, (x„)—2- [(x, —1)Q, (x,}—6„]
2 2

, [(x, —1)(1~ a+a'+ax, )Q (x,) —(I a'+ax, )5, ——', 55,]},1-a'
1+2 —4 xf, =-g'(—)I2Q „(x,)+2Q, (x,)+ Q (x ) ~ 2 —[Q „(x,) ~ Q, (x,) —(x, 1)Q (x,)]

2Q

(A11a)

2

, [2(6 x, ~ 2ax, +a'x, ~ ax, ')Q (x,) —(I+4a+a' ~ 2ax)[Q „(x)+Q,(x)]~ —, a5

(Al lb)f,=-g'
( ) I

—[2g(1 —a') (I ~ a)']Q, (x,) ~ 2(22+ I+fax )Q (x,)

f 4J+ 1+4Ja —a
( )

8Jax,
J-1 0 1 g

J' 0+,[[(1+a')xQ+ 2J(xQ —l)(l —a ) + Ga]Qg, (xQ)

[41 'x(x—I) +2(111—,I) ,(x, —I) —I —6a —a']Q (x,) —(2 ')6,]},
i z „=-g —[2(J+ 1)(1—a') —(1+a)']Qg „(x,)+ 2[3J+2+ (J + 1)ax,]Qg (x,) — at)z,

f 4(J + 1)(1+a) 8(J+ 1)ax«, 8a

, [x,(1+a') —2(J + 1)(1 —a') (xQ —1) + 6a]Qg „(x,)(f/g)'

(A11c)

—[I+6a+5' ~ 25(6) ~ 2)(x —I)+4(Z 1)a'x (x, —1)]Q (x )+[14a+4a'(x, —1)]il,+-, a 5

(A11d)
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, .,...=g*(~) ', , 2(~ &)(.-&)(),(.) ~ (& ~ )(().- (.)-() ~ (.))

+ (1+6a —a'+ 2a'xo)[Q~, (x,) —Qz „(xo)]—2a 6z,]' (Al le)

The pole projections have been given for isotopic-spin-zero meson exchange. For isotopic-spin-one me-
son exchange, replace P in the interaction Lagrangian by 7 (t), and g bye, .7.,g', where 7, and 7, are 2x2
isotopic-spin matrices operating on nucleons a and b, respectively. Derivations of these pole projections
may be found in a paper by Bryan and Amdt, "as well as in other sources cited therein.

APPENDIX B:,WIDE-MESON EXCHANGE

Consider a wide meson which decays into two

pions, as is the case for the p and the e. To ex-
press the exchange between two nucleons of this
wide meson of mass m and width I", we try the fol-
lowing modification of the propagator for the
"zero-width" pole term: '

The same choice of propagator, the form given
in (Bl), when applied to vv elastic scattering leads
to the S-matrix element

$ lf lI

=[m~ —t+imI'f(t)]/[m —t —imI'f(t)] (B6)
or

t —4m '
m'-t m'-4m '

[m' —t] ' - [m' —t mirf(t)-]-', (Bl) corresponding to
where f(t) = [(t —4m, ')/(m' —4m, ')]"', and t is the
square of the four-momentum of the exchanged me-
son. This form of the propagator has a cut in the
t plane from the 2g threshold to ~, plus poles on
the second sheet, resulting in the identities

lim g'" =0
t ~4m~2 l

lim g«
t m2 i 2

(as)

(B9)

[m' —t —iml f(t)] '= dm"P(m")[m" —t] '
4m„2

and

f dm"P(m") = 1
24m

(as)

where

mrf(m")
7r (m" —m')'+m'r'f'(m") '

[m' —t] ' = dm"6(m" -m')[m" —t] ' (85)
4m 2

we see that the modification of the propagator pre-
scribed by (Bl) is equivalent to the replacement of
a 5-function mass distribution for the exchanged
meson by the Breit-Wigner-type mass distribution
of Eq. (B4). To an excellent approximation, the
peak occurs at rn" =m2, and the full width at half-
maximum is I', for the mass distribution weight
function 2m'P(m").

Note that f(t) wa. s chosen so that P(t), the t discon-
tinuity of the propagator on the right-hand side of
(Bl), goes to zero at the two-pion threshold
t=4m, '. Comparing Eq. (B2) to

as we should expect for the actual nn phase shift.
Furthermore, from Eqs. (B2)-(B4), r corresponds
to the width for decay of the wide meson into z+ w.

Thus the form on the right-hand side of (Bl) seems
plausible.

We note that for meson-exchange poles well away
from the physical region (i.e., not near the nega-
tive t axis, for N Nelastic scatt-ering), the partial-
wave projections of pole terms are not sensitive to
the form in which the width is incorporated into
the pole term. In fact, there is little sensitivity to
the value of the width itself. (In low-energy N-N
elastic scattering, increasing the width is very
similar to shifting downward the mass of a zero-
width exchanged meson. ) We have assumed a
width F~ —,'m, and that the partial-wave projections
are evaluated in the physical region. With these
considerations in mind, we use the modification
(Bl) for the propagator to describe the N-N scat-
tering amplitude, only for convenience we use a
two-pole approximation suggested by Gersten":

=A,/(m, '- t)+W, /(m, '- t),

(B10)
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where

2 2m, —A

rn '-rn '
1 2

2 2
A -m2

2 2 2
j. 2

(B1 1)

(1) ~m, 'm, ' = (m'+ 2m„i")A',

(B12) and (2}

(B12)

m m, '+ m, '=m'+ 2m „I"+A'(1+ I"/4m „),
(B13)

and m„m„and A are determined by requiring
that the approximation (B10)be exact for (1) t =0,
(2) the slope in t as t-0, and (3) t=-m', all with-

in the physical region for N-N scattering. We get
and (B15)

m, =994 MeV/c', A+ =0.640g»»z'.

For the e exchange, with m, = 715 MeV/c' and

F, = 370 MeV, we take

m, = 508 MeV/c', A,g' = 0.275g„„,'

We thus approximate the exchange of a wide me-
son with coupling to the nucleon of g' by a sum of

two zero-width mesons of masses m, and m2 and

couplings A,g and AQ, respectively. For the p
exchange, with m

~
= 765 MeV/c' and I'z = 117 MeV,

we take

m, =612 MeV/c', A,g =0.360g»»z'

(B12), (B13}, and (3) and (B16}

(m'+ 4m, ')"' —2m,
(m /4m, )+ 2m, —(m'+ 4m, ')"'

(B14)

where I"=mI'/(m' —4m, ')'~'. Equations (Bl1)-
(B14) can easily be solved to yield A„A„m„and

m, = 1180 MeV/c', A+ = 0 725g»»,

The two-pole approximation to the wide-meson
propagator given in Eq. (B10), due to Gersten, is
surprisingly accurate over the range of t corre-
sponding to N-N elastic scattering from 0 to 425
MeV. The maximum discrepancy introduced is
1.4%%uo for e exchange and 0.35% for p exchange.
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