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Amplitudes made up only of direct-channel resonance contributions are constructed in
accordance with a simple model to fit the high-energy data for the reactions ~ p gn and
x p ~ n. A good fit is obtained for the differential cross section, total cross section,
and the (sparse) polarization data at high energy for ~ p gn. For the charge-exchange
reaction, the fits to the total cross section, the polarization, and the forward peak of the
differential cross section are satisfactory; a simple extension of the model is shown to
account in a rough way for the secondary peak in the differential cross section and its dis-
appearance with increasing energy.

INTRODUCTION

Recently there has been much discussion of the
way in mhich the peripheral behavior of two-body
scattering is related to direct-channel resonances.
Schmid' has shown, using a partial-wave analysis,
that a Regge amplitude for mN charge-exchange
scattering at high energy exhibits typical reso-
nance phase behavior, i.e., generates loops in the
Argand diagram for the low partial maves at low
momentum (1-2 GeV/c). Subsequently, Kugler'
examined the high-s partial-wave decomposition
of a Regge amplitude and concluded that resonance-
like phase behavior occurs in the highest contrib-
uting partial waves even at high energy. Harari"
has also discussed the possible role of resonances
in peripheral-scattering processes.

A number of papers have since been mritten
which propose specific direct-channel resonance
models for peripheral-scattering processes.
Shapiro' has proposed a Veneziano-type resonance
model. Dikmen" has used a combination of the
Pomeranchuk Regge trajectory and direct-channel
resonances to fit elastic pion-nucleon and kaon-
nucleon scattering data. Recently Crittenden e'. al.'
have fitted the backward w'p elastic differential
cross section up to 5 GeV/c using only direct-
channel resonance contributions. It is noted that
even before the importance of direct-channel res-
onances was stressed in the framework of duality,
Hoff' and Dikmen' had pointed out that for m p
elastic scattering the features of the forward peak
up to beam momenta of 2.5 GeV/c ' and of the
backward peak up to 5 GeV/c "can be adequately
accounted for using direct-channel resonances.
The approach outlined in the present paper differs
from those given in the above references; a com-
parison of these models with the present paper

will be made following the presentation of the
model.

Here we wish to examine whether an amplitude
built up entir el' from ordinary direct-channel
resonance contributions can account directly for
the behavior of inelastic two-body reactions not
only near threshold, but at high energies as mell.
We consider two-body scattering with a 0 meson
and a —,"baryon in both the initial and final states.
It will be shown, using simple and plausible phys-
ical assumptions, how an amplitude constructed
using direct-channel resonances alone can de-
scribe many features of inelastic peripheral reac-
tions at all energies.

DESCRIPTION OF THE AMPLITUDE

Our object is to construct, using direct-channel
resonances only, an amplitude which yields a for-
wa, rd peak having a width (in t) which is constant
with energy. This behavior is, in some approxi-
mation, a characteristic of all forward two-body
differential cross sections. To construct an am-
plitude with this behavior, me proceed by analogy
to a classical diffraction amplitude for momentum
k and diffraction radius 8; this amplitude is

A ~ Q (2l+ 1)P,(cos8). (1)
l=o

The important features of this amplitude for the
present discussion are that (a) all partial waves
from 0 to the highest value are present, (b) all the
partial waves have the same phase, (c) each par-
tial wave contributes equally, that is, each I',
enters with a weight ~l, and (d) the sum cuts off
at the partial wave I =kB. The t distribution re-
sulting from such an amplitude has a constant
width fxR '.

Now the spin-nonf lip and spin-flip amplitudes
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for the meson-baryon scattering process

M(0 )+B(-+) M'(0 )+B'(-'+),

e.g. , for mN charge exchange or wN —qN scattering,
are

It is seen from Eq. (6) and the expressions (2) and
(3) that for l such that E,«E, the nonflip partial-
wave amplitude is

f,~-l/E, l«E/n (7)

f'=g (l+1) T, +P( x), (2a)
whereas for the last wave in the sum,

f, 2z/r,"', I.=E/n.
dP, (x)g' = T', sin8

for J = l+ 2 (J is the total angular momentum) and

(2b)

f =g—l T, P, (x), (3a)

dP~, (x)
g = — T sine

dx (3b)

for J=l --,'. Here x=cos8, and f and g denote,
respectively, the spin-nonf lip and spin-flip am-
plitudes. Now we construct a peripheral ampli-
tude from a series of direct-channel resonances
satisfying either J=l+ 2 or J= l ——,'. In order to
satisfy the above property (a) of a diffraction am-
plitude, we require that every partial wave con-
tain a resonance (not just the even or odd partial
waves). Of course, each partial wave may con-
tain more than one resonance, and this situation
will be discussed below in connection with the fits
performed, but for the present discussion we con-
sider only one resonance in each partial wave.
One expects, because of angular momentum bar-
riers, no contribution from resonances in partial
waves l such that the resonance mass E, is much
greater than the c.m. energy E=v s; i.e., the
sums in Eqs. (2) and (3) are expected to cut off
when E, =E. Thus if we set, for high energy at
least,

E, al,

the sums will cut off at

I E/n= 2k/n,

in accordance with property (d) of a diffraction
amplitude, and we find by comparison with Eq. (1)
that the diffraction radius is 8=2/n. We have
used 0-=2E at high energy. Let all resonances
enter with the same phase, and assume a simple
Breit-Wigner line shape, so that

E j Z&ot'1 2Z 1
(6)

F)f is the square root of I', F&, where F, and F& are
the couplings to the initial- and final-state chan-
nels. Let each resonance contribute to the ampli-
tude even when E is far from E„so that Eq. (6) is
valid for all E, but let I",z (for which we have sup-
pressed a subscript l) be damped by an angular mo-
mentum barrier function for all l such that E & E,.

In order to make the contributions of the high-
est and lowest partial-waves as nearly equal as
possible, in accordance with the above property
(c) of a diffraction amplitude, we require

FL,
' E =EI., i.e., Fg E).

Having done this, we note that the contributing
partial waves do not all have the same phase, but
have a distribution in phase between w and —2n.

The total reaction cross section obtained from
the amplitude constructed above is

1k (E/
Z2 (10)

E =~l Ftot.
Pl

and approximating the sum by an integral (in per-
forming the integration, the effect of the angular
momentum barrier functions on the contributing
partial waves is ignored for simplicity) gives a
constant for the terms in brackets in Eq. (10).
This means that for the total cross section to fall
with s as s ", where for typical inelastic reac-
tions' n lies between 1.5 and 3, an additional de-
pendence of roughly E ' must be inserted into the
two bod-y width I',I of Eq. (6). This dependence
will be different for different final states, since
Morrison has noted" that reactions like wN -KY
and KN -mF generally fall off faster with energy
than mN -m¹and KN-K¹.

A few further points about such an amplitude are
of interest:

(1) Equations (2) and (3) specify the exact rela-
tive amounts of spin-flip and spin-nonf lip ampli-
tudes; in fact, the f and g amplitudes contribute
almost equally to the cross section at high energy
for both the J= l+ —,

' and the J= l —2 trajectories.
In order to obtain a different ratio of spin-flip to
spin-nonflip amplitude, it is then necessary to in-
voke interference between at least two direct-chan-
nel trajectories or even between a J= l+ -,' and a
J = l ——, trajectory (if both exist). This is a diffi-
'culty which does not arise in a Regge fit, where
the spin-flip and -nonf lip amplitudes a,re param-
etrized separately.

where W,'=l+1, W, =l; 0; and 0& are the initial-
and final-state c.m. momenta; and A, is the Breit-
Wigner amplitude (6). Taking
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I I
''''

I

P = 4 GeV/c
a = 0.2, P =0.4

I

P = l5GeV/c
a =0.2, P=0.4

d 0
dt

(2) prominent dips will occur at fixed t values
in the spin-flip and -nonf lip differential cross sec-
tions separately if, in Eq. (11), P'/4«a'. In this
case the partial waves near the last (Lth) wave

dominate the amplitude, and the first zero of PL,
occurs at a scattering cosine proportional to
I/L' = a'/f from the forward direction, a factmax

12 ~ 4noted by Dolen, Horn, and Schmid and by Harar~.
However, since f~ ~P ~ and gr, ~ I'~, the dips in

the spin-flip amplitude will be shifted with respect
to those in the spin-nonflip amplitude. Thus bar-
ring cancellation of one or the other amplitude as
in point (1) above, a smooth differential cross sec-
tion will result. This situation is illustrated clearly
in Fig. 1, where the spin-flip and -nonf lip differ-
ential cross sections at two incident momenta are
plotted separately for P =2+ and for P =0.37m.

(3) Barring cancellation of either the spin-flip
or -nonf lip term by interference of two or more
direct-channel trajectories, the final-state nu-

cleon polarization is in general nonzero.
(4) The diffractionlike peak resulting from the

pure-resonance amplitude constructed here can be
made to shrink or expand with energy by making
the resonance spacing become smaller or greater
with energy, but this will cause the dips noted in

point (2) to move as well. The amplitude given
here exhibits some residual shrinkage even for the
uniform resonance spacing given in Eq. (12) below.
This is because the cutoff value of L in the partial-

wave sum does not approach the value given by Eq.
(5) until the c.m. energy is large compared to
a oub t 1 GeV which means that the residual shrink-

20age persists up to beam momenta of about 15 or
GeV/c. This is apparent in Fig. 1.

(5) The amplitude constructed here is for the
scattering of a 0 meson and a —,

"baryon; if the
interacting particles have different spins, a differ-
ent amplitude must be examined. This point raises
the crucial question of whether such a direct-chan-
nel description ean account for the spin alignment
of the final-state particles in the case of arbitrary
spin s.

(6) A pure-resonance amplitude does not at first
+ 0sight seem applicable to channels such as K n -K P,

where there is no (obvious) resonance structure.
However, in exotic channels such as this one the
resonances, if they are present, might differ from
those in nonexotic channels by being broader or by
having smaller interaction radii (see Ref. 13).
These effects would make such exotic resonances
difficult to observe. It is interesting to note that
in his discussion of K'P elastic scattering, Dikmen
suggests that a contribution from Z* resonances is
required by his fits.

(7) We note also that for elastic processes, for
which the cross sections approach constant values
at high energy, the contribution of simple diffrac-
tion scattering must be added to that part assumed
to come from resonances.

Before proceeding to the fits, we display some
curves obtained using a simple amplitude like the
one constructed above. Figure 1 shows differen-
tial cross sections obtained using mN- mN kinemat-
ics for a direct-channel trajectory with J = l+ —,

' and

8, = 1.30+0.2l GeV, I',"'= (0.10 GeV) + Pl,
(12)

I

-2.0 -1.5 —I.O -0.5

P = 4 GeV/c
a =0.2, P=0.075

I

0 -20 -I 5 —I.O -05
I I ' I

P = l5 GeV/c
a = 0.2, 18 =0.075 (13)

where p =0.400 GeV =2a in Figs. 1(a) and 1(b), and
p=0.075 GeV=O 37o in F.igs. 1(c) and 1(d). For
each E the angular momentum barrier factors in
rjf are approximated by the function"

(u/u, )""
1+(n/u )'"' '

d 0
dt

—2.0 —I.5 -1.0 -0,5
t(GeV )

0 -2.0 -I.5 —I.O -0.5 0
t(GeV )

FIG. 1. Differential cross sections using xN xV
kinematics for the example discussed in the text;
n and P are in GeV. The spin-flip and spin-nonflip
contributions, and their sum (upper curve) are plotted
separately.

where k is the c.m. momentum and k, is the c.m.
momentum at the resonance mass. The barrier
factor (13) produces a very sharp cutoff at the par-
tial wave I such that E~ =E, but in the computer
calculations the sums were carried past this value.
The starting values of the resonance mass (1.3 GeV)
and width (100 MeV) are reasonable ones for vN
scattering; the resonance spacing +=0.2 GeV is
chosen to give a differential cross-section width of
about 0.75 GeV' in t, which is typical for two-body
reactions. At low energies this parametrization of
the resonance masses and widths is of course not
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METHOD USED IN THE FITS

The high-energy data for the reactions m P- gn
and w P- m'n are fitted using simple amplitudes
constructed as described above. Before proceed-
ing to the particulars of the fits, we note the basic
method by which the fits will be performed: The
data will be described in both cases using trajec-
tories of direct-channel resonances satisfying

E, =E +~l, -ptOt p got+ pi (14)

where l is the meson-baryon orbital angular mo-
mentum. The total angular momentum J of a tra-
jectory will be assumed to satisfy either J= E+ —,

' or
J= l ——, [equivalently, the parity is given by
P =(-) "~']; the amplitudes for each typ, e of tra-
jectory are given by Eqs. (2) and (3). Each reso-
nance is described by the simple Breit-%'igner line
shape given in Eq (6). T. he choice of this line
shape is of course arbitrary; it is used because of
the simplicity of the results it yields, as described
above. The initial- to final-state coupling I'« is
assumed, at a given energy, to be the same for all
resonances and is assumed to have the energy de-
pendence

(15)

The total width I", ' of each resonance is taken as
constant.

The reactions m P- gn and w-P- m'n are both
characterized by the dominance of the spin-flip
amplitude over the spin-nonf lip amplitude over the
entire range of energies at which they have been
measured. Since a single direct-channel trajec-
tory yields almost equal amounts of spin-flip and
-nonf lip contributions, it is then necessary to as-
sume that most of the spin-nonf lip contribution is
cancelled through the interference of two or more
direct-channel trajectories. In fitting both reac-
tions the simplest possibility will be assumed:
that two trajectories with similar energy spectra
contribute coherently to each reaction. It mill fur-
ther be assumed that one of the two contributing
trajectories satisfies J=/+-,' and that the other sat-
isfies J=E —&, and that both trajectories have iden-
tical mass and width spectra, as given by Eq. (14).
Since a J= l+ —,

' trajectory has the spin-flip and
-nonf lip amplitudes entering with the game sign,
whereas a J= l - —,

' trajectory has the spin-flip and

meant to be an exact description of the baryon spec-
trum; we will return to this point in the discussion
of the fits below. The incident-momentum values
used. in the example of Fig. 1 were chosen to show
how pronounced the peripheral peak is even at mod-
erately low momentum (4 GeV/c), and to demon-
strate the asymptotic t behavior at 15 GeV/c.

-nonf lip amplitudes entering with opposite signs
[see Eqs. (2) and (3)], it will simply be assumed
that the two trajectories (with J= l+ ~) contribute
with comparable strengths but opposite signs to the
amplitude for each reaction. One could also per-
form fits by varying both the amounts and the rel-
ative phase of the two trajectories, but for sim-
plicity the relative phase of the. two amplitudes was
fixed at 180'. The procedure adopted yields in a
simple way the dominance of the spin-flip over the
spin-nonf lip amplitude.

THE. REACTION m P- gn

Reference 14 contains a list of experimental pa-
pers on this reaction. First the differential cross-
section data from this reaction were fitted; the
data are those measured by Danburg'4 in the charge-
symmetric reaction at beam momenta between 1.1
and 2.4 GeV/c, and the data of Guisan et al."for
beam momenta between 3 and 18 GeV/c. It was
assumed, as explained above, that two direct-
channel trajectories with J=/+ ~ dominate the re-
action at high energy; these were taken to be de-
scribed by

E, =(1530 MeV)+nl, r,"'=(80 MeV)+pL (16)

The coupling between the initial and final states
was assumed to have the same energy dependence
for both trajectories, as given by Eq (15), .but the
strengths were allowed to differ by an over-all, fac-
tor. The two trajectories were assumed to con-
tribute to the over-all amplitude with opposite
signs. Note that the starting values in the trajec-
tory spectra of Eq. (16) are chosen to coincide with
the mass and width of the N(1530) S» resonance
just above threshold for this reaction. If one at-
tempts, using the Particle Data Group tables" to
correlate the assumed direct-channel trajectories
with the observed resonances which couple to both
the mN and qN channels, one might guess that the
first two members of a J= l+ —,

' trajectory are

N(-1530) I'"' = 50-160 MeV

r(v N - »iN) = 25-80 Me V;

J =-,":N(-1860), r"' =310-450 MeV,

r(wN-»iN)=30-45 MeV,

whereas the first member of a J= l--,' trajectory
might be

J = —":N(-1780), I'"' = 270-450 MeV,

r(vN- qN) = 50-80 MeV.

These assignments ignore the S» resonance
N(-1700) which decays into»iN; this is a slight dif-
ficulty. One could of course assume that some of
the prominent low-mass resonances do not lie on
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trajectories with F-, oc l, as is proposed here, or
one could assume that there are more than two
contributing trajectories. At any rate, the start-
ing values of resonance mass and width, given in
Eq. (16}, are reasonable ones for this problem.

A least-squares fitting procedure was employed
to fit the differential cross sections; the parameters
n and P in Eq. (16}, and the relative amounts of the
J= l+ —,

' and J= l —~ trajectories were varied. The
line shape given in Eq. (6), with the angular mo-
mentum barrier factor given in Eq. (12}were used.
Note that with this barrier function, the radius of
interaction for each resonance is p, = 1/k„where
k', is the final-state c.m. momentum at the reso-
nance mass. A more general form, as discussed
above, is

Thus the solution obtained is not unique because it
is the ratio r/a that determines how many partial
waves enter each amplitude. The fits performed
here yield a value of e obtained with t = 1, but r

can be changed by a factor close to 1 and essen-
tially the same results are obtained by multiplying
e by the same factor. It has been noted that if
P & 2a, prominent dips occur in the differential
cross section; furthermore in this case the ampli-
tude yields a differential cross section which has
a substantial high-t tail, since the highest partial
waves dominate the amplitude. These remarks can
be clarified by reference to Fig. 1. Since the dif-
ferential cross section for wN- qN is confined to
a forward peak, the best fits were obtained with

P ~ 2o.. The fits were not very sensitive to values
of P greater than 2n, so the results given here are
for P =2m. The least-squares procedure yielded
the best fit when o. = 200 MeV (+10%) is the reso-
nance spacing. The differential cross sections can
be adequately described by having the relative con-
tributions of the J = l+ —,

' trajectories anywhere be-
tween a ratio of 1 and 2; for relative amounts be-
tween these limits the spin-flip contribution is much
larger than that of the spin-nonf lip amplitude. The
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FIG. 2. Differential cross section for ~ P qn,
yy, measured by Guisan et el. (Ref. 15) at six

incident beam momenta. The curves are from the fit
described in the text; each curve is normalized to have
the same area as the experimental points.

FIG. 3. Production cosine histograms for ~+n gp,
x+m "~, measured by Danburg (Ref. 14) in six c.m.

energy intervals, each of which is 100-MeV wide and
centered at the value given. The curves are from the fit
described in the text; each curve is normalized to have
the same area as the experimental histogram.
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polarization data for this reaction are used to de-
termine more exactly the amounts of the two as-
sumed direct-channel trajectories. The available
high-energy polarization data for this reaction are
from Drobnis et al. and Bonamy et al. ' Although
very few polarization data have been measured, it
appears that a small (-15%) polarization for j t}
& 0.3 GeV' persists up to P&b

——11 GeV/c. A. satis-
factory fit to the polarization data was obtained with

A =1.4A'- A

Here A is the amplitude for mN - qN, and A' is the
amplitude for the J=l+-,' trajectory, as given in
Eqs. (2) and (3). Finally the power of the c.m. en-
ergy with which the cross-channel coupling falls
off was determined by a fit to the high-energy data
to be about y = 0.7.

Summarizing, the results of the fit to mN - gN
are: m=200 MeV (+10%) is the resonance-mass
spacing, with the radius of interaction given by Eq.
(17) where y = 1, and P =400 MeV is the increase in

resonance width for 6l = l. The amounts of the as-
sumed J =1+-,' trajectories are given by Eq. (18),
and y =0.7 is the exponent in Eq. (15).

Figure 2 shows the differential cross sections
measured by Guisan et aE."at high energy, and

Fig. 3 shows those of Danburg" at lower energies.
The curves are from the fits described above; in

all cases the curves are normalized to the area of
the experimental points. In Fig. 2 it is seen that
the measured differential cross section shrinks
noticeably between 3 and 18 GeV/c. This narrow-
ing of the forward peak is well described by the
curves; this is the residual shrinkage discussed in

the above-stated property (4) of the amplitude used
here. The amplitude yields essentially no more
shrinkage at incident beam momenta above 20
GeV/c; measurements of the differential cross
section at higher momenta will therefore provide
a test of the simple form of resonance amplitude
used here. Figure 4 shows the polarization data
of Drobnis et al."a,nd Bonamy et al."along with

the results of the fit. Figure 5 is a plot of the to-
tal cross-section data of Bulos, et al. ,

"Danburg, '
and Guisan et al. " The curve is the result of the
fit; it is normalized to pass through the data point
at & =3.72 GeV/c. Note that the measured total
cross section is substantially underestimated at
low momentum.

THE REACTION m P- m n

The differential cross-section data of Sondereg-
ger et al. at beam momenta between 3 and 18
GeV/c were used to fit this reaction. The pres-
ence in the differential cross section of a secon-
dary peak which disappears with increasing en-

ergy is a feature which cannot be described in a
simple way by an amplitude of the type described
here. This is because the present amplitude has
an asymptotic fixed-t behavior. Nevertheless, the
shape of the forward peak in the differential cross
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FIG. 4. Polarization in the reaction x p gm. (a)-(c)
from Drobnis et al. , Ref. 17; (d}-(e}from Bonamy et ul. ,
Ref. 18. The curves are from the fit described in the
text.



DIRE C T-CHANNE I DE SCRIP TION. ..

section changes little from 3 to 18 Gev/c, and we

first restrict the fit to the data in the forward peak.
The mass and width spectra of the two assumed

trajectories were assumed to have the high-energy
behavior

Eg-—(1200 MeV)+a/, r,"' =(100 MeV)+Pl.

The fits were, as in the case of q production, best
for P» 2a, and P=2+ was used. Because the for-
ward peak is narrower for the charge-exchange re-
action than for mN - gN, a closer resonance spac-
ing (-150 MeV) is obtained for this reaction when

r =1 in Eq. (17). In order to show that both the q
production and the charge-exchange reactions
could proceed via similar direct-channel trajec-
tories, we have arbitrarily selected + =200 Mev
as was obtained for mN- g¹The best fit was then
obtained with r = 1.33 (+lo%%uo).

At this point we indicate which low-mass reso-
nances might lie on the assumed dominant two tra-
jectories. We note the well-known fact that the mN

channel seems to couple more strongly to I= 2 res-
onances with J=/+ —,

' than to those with J= /- -,',
whereas I= 2 resonances with J= l —2 couple more
strongly to mN than those with J= /+ —,'. We will thus
note only a few I= 2 resonances with J= /+ —,

' and
some I= —,

' resonances with J= l —2 as candidates
for the two assumed dominant direct-channel tra-

P(GSV/c)

FIG. 5. Cross section for the reaction 7(V qN vs
beam momentum. The data points of Bulos et el. ,
(Bef. 19) span the momentum range from 704 to 12S4
MeV/c, those of Danburg (Bef. 14) lie in the interval
from 1.14 to 2.46 GeV/c, and those of Guisan et al.
(Bef. 15) cover the range from 2.91 to 18.2 GeV/c.
The curve is from the fit described in the text; it is
normalized to pass through the data point a',t 3.72 GeV/c.

jectories. For J= l+ —,
' one might choose

JP j.-
2

3+ ~=2

JP ~+ ~

2

no choice with mass & 1236 MeV;

~(1236), r"'=12O MeV,

r(wN -wN) = 120 MeV;

b,(-1954), I'"'= 300 MeV,

r(mN- wN)=50 MeV (Ref.21);

a(-1950), r"'= 140-220 MeV,

r(wN - wN) = 60-100 MeV;

J = ' no candidate ~

~(242O) r"'= 31O Me V,

r(mN- wN) = 35 MeV.

For J=l —2 one might take

JP 1+
2

.5+
2

N(-1470), r"'=2OO-4OO MeV,

r(mN - wN) = 120-240 Me V;

N(™152O), r"'= 1O5-15O MeV,

r(~N - ~N) = 5O-75 MeV;

N(™1688) r"' = 105-180 MeV,

r(wN - mN) = 65-110 MeV;

N(-2190), r"'= 300 MeV,

r(mN-mN) =105 MeV.

The above choices are somewhat arbitrary; if one
also assumes that the more weakly coupled I= 2
resonances with J= l+ —,

' and the I= 2 resonances
with J= / —2 lie on trajectories, then corrections
must be made to account for their presence. Note
that the Clebsch-Gordan coefficient for mN charge
exchange via I= —,

' is equal but opposite in sign to
that when the reRction goes in an I= 2 stRte, so
that an I= —,

' and an I= 2 trajectory with equal intrin-
sic phases would naturally contribute with opposite
sign to the amplitude for the charge-exchange re-
action. It is important to note that each trajectory
need not have both even- and odd-/ values; it is
sufficient to have one trajectory with only odd l and
another with even l. This means that direct-chan-
nel trRjectorles with 4/= 2 cRn contribute to in-
elastic reactions in the present model as long as
two such trajectories contribute, one with even l
and one with odd l.

The polarization data of Drobnis et a/. and
Bonamy et a/. "for this reaction were used to fix
the amounts of the J= ly 2 trajectories more pre-
cisely than the differential cross-section data can,
and the best fit was obtained for

A=1.2A -A, (20)

which is similar to the result for mN-qN given in
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IOOO IOOO

Eq. (18). The high-energy total cross-section data
for events in the forward peak of the differential
cross section were best described with an expo-
nent in Eq. (15) of y = 0.1.

Summarizing the results of the fits to the data in
the forward peak of the differential cross section
for w-P w'n, we have o.=200 MeV as the resonance-
mass spacing, with the radius of interaction spec-
ified by r = 1.33 (+10%) in Eq. (17), and P =400 MeV
as the increase in resonance width for hl =1. The
amounts of the assumed dominant J= l~ —,

' trajec-
tories are given by Eq. (20), and y =0.1 is the ex-
ponent in Eq. (15). It is emphasized that the reso-
nance spectrum implied by the values of a and P
in this fit and for g production are meant to de-
scribe the data at high energy. For this reason no
particular importance should be attached to the
fact that the "smooth" spectra obtained from the
fits to the high-energy data do not exactly match
the observed baryon spectrum at low energy.

The solid curve in Fig. 6 is the result of the
above fit to the forward peak of the differential
cross-section data of Sonderegger et al. '; it is
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The dashed curve will be discussed below. In Fig.
7 the polarization data are displayed along with
curves from the fit. Figure 8 shows the cross
section under the forward peak and the result of
the fit; the curve is normalized to pass through
the data point at 4.83 GeV/c.
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FIG. 6. Differential cross sections for & p x n

measured by Sonderegger et el. (Ref. 20) at six beam
momenta. The curves are from the fits 8escribed in
the text.

FIG. 7. Polarization in the reaction ~ p x n. (a)-(c)
from Drobnis et al. , Ref. 17; (d)-(e) from Bonamy et al. ,
Ref 18. The curves are from the fit described in the
text.
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FIG. 8. Cross section for data in the forward peak
of the differential cross section in &"p &On vs beam
momentum. The data are from Sonderegger et al.
(Ref. 20). The curve is from the -fit described in the
text, normalized to pass through the data point at
P =4.83 GeV/c.

It is evident that the fit described above accounts
satisfactorily' for the data. in the forward peak of
the mN charge-exchange differential cross section.
As noted above, a fixed-t amplitude like the one
given here cannot yield in a simple way the disap-
pearance of the secondary peak in the differential
cross section relative to the forward peak. (Note,
however, that the shrinkage of the measured for-
ward peak between 3 and 18 GeV/c is followed well
by the residual shrinkage of the simple resonance
amplitude used here, just as was noted above for
the case of q production. ) One way to describe the
secondary peak is to assume that it is due to the
dominantly spin-flip resultant of two or more in-
terfering trajectories. Because the secondary peak
is so far from the forward direction (at f- IGe-V'),
the resonances on the assumed additional trajec-
tories either must be spaced much more widely
than those giving the forward peak, or else r in
Eq. (17) is smaller than 1 if the spacing is like
that obtained above for the forward peak. The mN

coupling to these trajectories then must fall off
faster with energy than the coupling to the trajec-
tories giving the forward peak, in order to account
for the disapyearance of the secondary peak rela-
tive to the forward one. There may be other ways
of accounting for the behavior of the secondary
peak in a suitably refined pure-resonance model,
and the procedure suggested here is mentioned
only as one possibility.

%Ye will nevertheless show that a rough descrip-
tion of the secondary differential cross-section
peak can be achieved in the manner just outlined.

The dashed curves in Fig. 6 are the result of an
amplitude obtained by adding (with an over-all
phase of -90') to the amplitude (20) obtained for
the forward peak an amplitude given by

A'=A"-A' (21)

with E, = 1500+ 200/ MeV as the resonance-mass
spectrum, I',"' =300+ 400l MeV as the resonance-
width spectrum, and radius of interaction [see Eq.
(17)]= r = 0.6. The amount of amplitude (21) rel-
ative to amplitude (20) was determined separately
at each energy; this relativ amount fell off with
c.m. energy roughly as E ', implying y=-3.1 as
the exponent in Eq. (16) appropriate to amplitude
A'. It is seen that the addition of this correction
term improves the agreement between the curve
and the data down to cross-section values about
100 times smaller than those in the forward di-
rection. %e note that the addition of the correc-
tion amplitude A affects the polarization predic-
tions shown for the two lowest energies of Fig. 7,
but because of the tentative nature of the correc-
tion term A', no detailed redetermination of am-
plitudes (20) and (21) was performed.

DISCUSSION OF RESULTS

It is useful to evaluate the results obtained above
and to state what are felt to be the essential as
well as the nonessential features of the proposed
amplitude.

It has been seen that a simple resonance ampli-
tude, even though constructed with a large number
of simplifying assumptions, can satisfactorily ac-
count for the main features of two reactions at high
energy. In particular, such an amplitude yields
roughly the correct polarization observed for the
two reactions at high energy.

The essential properties of the amplitude exam-
ined here are (a) that resonances are responsible
for inelastic two-body reactions, (b) that the high-
est-spin resonance contributing to a reaction sat-
isfies J a: Ms, all higher-spin resonances being
damped by angular momentum barrier factors, (c)
that the lower partial waves at a given energy are
contributed by the high-energy tails of the lower-
mass resonances, and (d) that. in general two or
more direct-channel trajectories contribute to any
reaction.

Other features of the amplitude, such as the sim-
ple Breit-signer line shape and the angular mo-
mentum barrier function used [see Eqs. (6) and
(13)], are quite arbitrary. It is of great impor-
tance to know the correct resonance line shape if
the tails of the low-energy resonances are expected
to yield the low partial waves at high energy. The

,hoice of the two-body orbital angular momentum
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l as the parameter to use in describing the reso-
nance mass and width spectra is also arbitrary;
the resonance angular momentum J could just as
well be used. Also, Eq. (14) need not describe the
baryon spectrum exactly, but may only give the
average mass and width increase with l. Because
of the several arbitrary features just mentioned,
and because of the simplifying assumptions used
in performing the fits to the data, the results ex-
hibited here can be considered to be only illustra-
tive of the fits that can be obtained. Furthermore,
the presence of more than one resonance in many
partial waves in mN scattering indicates that the
amplitudes obtained in the fits above should be cor-
rected to account for the presence of more weakly-
coupled trajectories other than the assumed dom-
inant two trajectories. In this connection we note
also that backward peaks can be generated by tra-
jectories of direct-channel resonances interfering
with the proper phase. (See Crittenden et al. ' for
a resonance fit to backward m'P elastic scattering
up to Pub = 5 GeV/c using a model different from
that proposed here. }

It seems quite important to correlate the reso-
nance spectrum observed at low energy with the
scheme proposed here; this was attempted above
in connection with the fits to the data for mN- gN
and w-P- m'n. It has already been noted in this re-
gard that trajectories with LJ=2 can be accommo-
dated if two trajectories contribute, one with odd
l and one with even l. This enables a correlation
with the trajectories that seem to have AJ=2.
Another important point is that the proposed spec-
trum is of the form E, ~l instead of the usual form
(in terms of Regge theory) E,'cc l. It is interesting
to note that it would be difficult to distinguish, at
low energy, the observed squared-mass spacing
from the linear-mass spacing required by the fits
to the high-energy data (n =Am/El= 200 MeV}.
This is because, at m = 2 GeV, Am' = 2m Any

~ 0.8 GeV', which is approximately the observed
squared-mass spacing. One could even assume a
mass spectrum that satisfies E, ~l GeV' at low

energy and E,=0.2l GeV at high energy; a simple
example is Z, = (L+ ~+ P)'~' GeV. The proposed
resonance-width spectrum is also consistent with
the observed low-spin resonances. Examination
of the Particle Data Group listings' of baryon re-
sonances shows that resonance widths generally
increase with increasing mass (and spin). The
broadest resonances listed in the tables have widths

up to 450 MeV. It is not implausible to assume
that there are baryon resonances broader -than 450
MeV; they would not be easily observed simply
because of their- broadness, especially if their
spacing is less than their widths.

Finally, we compare briefly the amplitude given

here with other models for two-body scattering.
It is interesting to note that this amplitude has just
the partial-wave phase behavior of a Regge ampli-
tude, as obtained by Kugler. ' That is, we have
partial waves with nonresonant behavior [Eq. (7)]
for l«v s and resonant behavior [imaginary am-
plitude, as given by Eq. (8)] for I -Ms. Kugler
also finds the widths of the resonances in the high-
est partial waves to be proportional to v s, as is
postulated here. The agreement between the simple
model given here and the partial-wave behavior of
a Regge amplitude is perhaps a coincidence;
Collins, Johnson, and Squires, "and Chiu and
Kotadski" have questioned the resonance interpre-
tation of the Argand-diagram loops generated by a
Regge amplitude. There is a more important dif-
ference between the simple amplitude constructed
above and a Regge amplitude: A Regge amplitude
has the asymptotic behavior s ~'& whereas the
present amplitude is constructed to give, for large
s, a constant-width (nonshrinking) t distribution;
it can only be compared with a Regge amplitude in
the special case a(t)=constant for t&0. This is
not an accident; Mandula and Slansky'4 have shown
that an amplitude constructed from one trajectory
of direct-channel resonances, as is proposed here,
cannot exhibit Regge asymptotic behavior.

The difference between the above property (c) of
the present amplitude and the Veneziano model is
important; in the Veneziano model the lower par-
tial waves are assumed to come from daughter
states at the same mass. The apparent absence of
the required great number of daughter states is a
difficulty of the Veneziano model. "

The above-mentioned articles by Hoff and Dik-
men" correlating structure in the m-P elastic dif-
ferential cross section with direct-channel reso-
nances employed only a finite number of resonances
and were applied only up to moderate energies. In
the more recent work of Dikmen ' in describing
elastic scattering, resonance contributions are in-
cluded only up to p&b = 6 GeV/c; furthermore these
resonances are assumed to lie on trajectories with

8,'o= l. In the present paper we have investigated
the general conditions under which resonances
might account for peripheral inelastic meson-bar-
yon scattering at all energies.

The work of Crittenden et al. ' in describing m'p

backward elastic scattering using resonance con-
tributions embodies a very different approach from
the one described here. A number of assumptions
differ from those in this paper; the crucial differ-
ence between the two methods is that Crittenden
et al. use a resonance line shape which is made to
disappear at energies more than one full width away
from the resonance mass, whereas here a continu-
ous line shape is assumed.
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