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Constructing potentials from the phase shifts at a given energy yields an infinity of equiv-
alent solutions. The deviations of these solutions from each other can, however, be ana-
lyzed according to a priori limitations on the derivatives and other features of 'acceptable"
potentials. A sketch of this analysis is given together with a numerical comparison of usual
potential forms with the equivalent potentials obtained through Newton's method. The ob-
served deviation gives an appraisal of the deviations from each other of all the equivalent
potentials with similar bounds on the derivatives. The deviation is small when there are
many phase shifts available, all of them definitely smaller than x/2. For a static potential
these conditions can be met for high energies.

We study the elastic scattering of a particle obey-
ing the Schrodinger equation with a spherically
symmetric potential, at an energy E=R'k'/2m, m
being the reduced mass and k being the linear mo-
mentum. The "inverse problem" deals with the
construction of the potential from the phase shifts.
We therefore assume that the phase shifts have
already been derived from the cross section —not
a trivial assumption. ' Once the phase shifts are
known, many theoretical papers give us formal
ways of obtaining the potential.

The seemingly simplest method is to use the
JWKB formula for the phase shift, which yields 6,
as a Riemann-Liouville transform of a function as-
sociated with the potential and therefore reduces
this step of the inverse problem to solving an Abel
integral equation. This situation has been encoun-
tered a long time ago in other inverse problems,
going from the Wiechert-Herglotz-Bateman method
in seismology' to well-known results in spectro-
metric measurements. ' In quantum mechanics it
has been used by several authors. ' However, some
steps of the method are questionable as regards
the problem studied in the present paper. Actually,
the interest of such a method does not really re-
side in solving the inverse problem, but in reduc-
ing the computing time for obtaining a potential
which fits the phase shifts; it does not give any in-
formation on how far from this potential may be

other potentials fitting the same set of phase shifts.
In short, it extracts from the phase shifts very
much biased information. So does the computer'
when, working by trial and error, it fits the phase
shifts by matching three parameters in a Woods-
Saxon potential.

However, the main interest of solving the inverse
problem by inverse methods (viz. , by methods
which are not trial and error ones), is to obtain an
evaluation of the amount of information contained
in the scattering amplitude. Now we know, from
the formal methods of Regge, ' Newton, ' Sabatier, '
and Loeffel, ' that an infinity of potentials corres-
ponds to a given set of phase shifts. The "Regge-
Loeffel" methods' are not suitable for computation,
nor is the Martin- Targonski method, ' which is of
physical interest because it deals with generalized
Yukawa potentials.

On the other hand, the so-called" Newton-Saba-
tier methods are easy to handle on a computer, but
one has first to answer the following fundamental
question: Let us take for granted that the "physical
properties" of the potential can be mathematically
expressed through bounds on the derivatives. Then,
if a potential is constructed from its phase shifts
by one of the above methods, how different can the
result be from the original potential?

There are two complementary ways of answering
this question. The first is to define for the problem
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f(r, r') =Q ,cu(r)u, (r'),
0

where the coefficients c, are bounded. Let
A, sin(r —2la+ 5,) be the asymptotic behavior of the
regular wave functions. We know' that the coeffi-
cient c, can be obtained from the phase shifts by
solving the equation

tanb, =+M I a, (1+tanb, tan 5, ), (2)

where M,' is equal to [(l'+ 2)' —(l+ —,')'] ' for odd
(l —l') and 0 for even (l —l'), and substituting the
values of a, in the formulas

b, =a, (cosb, ) ',

A, = cosb, ——,'nb, /(2l+1) -QMI b, , sin(6, , —6, ),

c, =b, (A, ) '.
(4)

(6)

a mathematical frame, set a convenient metric on
the space of acceptable potentials, study the con-
tinuity of the various steps involved in an inverse
method, and finally enclose all the possible map-
pings of a set of phase-shifts into the class of po-
tentials in a closed set whose diameter is to be
evaluated when different physical parameters (in-
cluding energy) afford additional constraints. This
is the object of a forthcoming paper by one of the
authors. ""

The second way is to use the partial information
already available on the reliability of the simplest
of the above methods and to check it on a computer
under the conditions which have Proved to be of in-
terest in the mathematical analysis. This study is
the object of the present paper. .

We use the simplest of the quoted methods, ' the
one in which the "input function" f(r, r') is expanded
in the physical wave functions

V(r}= 2r -' [r—'K(r, r)].dr

Let us now sketch the available information ob-
tained from the mathematical analysis of this meth-
od. For very weak assumptions on the 5, asymp-
totic behavior, ' it is known that the c, 's, thanks to
the "o. specification, " go to a constant as l goes to
infinity, plus O(l '). Now it has been shown by
Sabatier" "that f(r, r') can then be written as fol-
lows:

f(r, r') = f,(r, r') =2rr' E(k, t)tdt, (14)
0

where

w = [(r r')'+ 4rr't—'P t', (I~)

(16)E(k, t) =yt '+E,(k, t};

y is equal to the potential moment j pV(p)dp,
times a. numerical constant. E,(k, t) is a function
of t, integrable on [0, 1]. Now it can be shown"
that, for any potential of a very large class 8, in-
cluding for instance the potentials whose seeond-
order derivative does not diverge more rapidly
than x ' at the origin, and goes to zero faster than
r ' as r goes to ~, the function f(r, r') can be put
in the form

choosing e in such a way that the potential de-
creases faster than x ' ' ' for large ~. o. is there-
fore given from the phase shifts by a secondary
calculation. ' In the following we call this the n
specification. Formulas (6), (3), (4), and (5)
therefore yield the c,'s from the 6, 's. The poten-
tial is then obtained from f(r, r') through the inte-
gral equation

r
K(r, r') =f(r, r') K—(r, p)f(p, r')p 'dp (»)

0

and the formula

Using matrix notations, ' we write the solution of
(2) in the form f(r, r') =2rr' F(k, t)tdt,

0
(17)

a=(1+R) '(o,v+ M

'tangle),

where

~ = M-'tan~ M tan~,

2 r(l+-,') '
v2i ™2i= (4l+1) r(l+1)

(6)

(7)

(8)

(9)

S,(u, k) =k 'F, (k, ulk) (18)

and a function S(u, k) equal to S,(u, k) + yu '. It is
easy to see that

where F(k, t) is given by (16), F,(k, t) being inte-
grable from 0 to ~. The comparison of fo(r, r) and

f(r, r) is interesting. Let us introduce the function

2 r(l+-,') '
V2g+y = ( l+ )

V2l+1

(10)
r 'f, (r, r) = sin(2ur)S(u, k)du,

0

whereas f(r, r) is given by

(19)

and e is the unit vector. The specification of the
method, called%, in the following, is achieved by

r 'f(r, r) = sin(2ur)S(u, k)du.
0

(2o)

In addition, it can be shown" that, for any static
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FIG. 1.. Reliability as a function of energy. Vz-r3 52=-14e ~" & (solid line). E =10 MeV (crosses), 50 MeV
(dots), 150 MeV (open circles).

potential in h, S(u, k) is uniformly bounded by u '
times a function of k decreasing faster than k ' as
k goes to infinity. We refer to this as the damping
effect of the energy. With these results it is easy
to characterize the method %p.

First, let us notice that since f(r, r') necessarily
has the form (14), and since its general form for a
potential of h is (17), SR, is characterized by a
truncation of the Fourier spectrum of f(r, r). One

can say in an equivalent way, from a glance at Eq.
(19), that as regards the function [r-f(r, r)], the
scattering experiment is a linear filter of width k.
Now, except in the first-order approximation,
f (r, r) is not K(r, r), which would readily yield the
potential through (13). But there is a one-to-one
correspondence between f (r, r) and K(r, r), so that
one has the feeling that a close approximation to
f(r, r) yields a close approximationko K(r, r). This
can be proved, "provided there is no trouble in the
inversion of (1+R) and of (12), viz. , essentially,
provided one is far from any resonance. We are
then led to analyze the features of the approxima-

FIG. 3. Reliability for a perturbation in a central posi-
tion. Vl=-].4e "3 -2e " ~ & (solid line); @=50
MeV. Crosses —unperturbed Gaussian; dots —Gaussian
with perturbation.

tion of f(r, r) by f,(r, r). They readily follow from
(19) and from the damping effect. Comparing (19)
and (20), we see that if all the derivatives of f(r, r)
are bounded by numbers smaller than k, the even
ones being zero, f(r, r) reduces to f,(r, r). Since
bounds for the derivatives of f(r, r) can be more or
less easily related, through (12), to equivalent
quantities for K(r, r), it can be seen that the poten-
tials of g yielding the same set of phase shifts are
generally closer to the potential yielded by%p as
their derivatives are bounded by smaller numbers.
Moreover, the deviation of these potentials from
each other should become smaller as k gets larger
not only because of the increase of the filter band-
pass, but also because of the energy-damping ef-
fect, which simultaneously makes the linear ap-
proximation more valid. Thus, roughly speaking,
every result true for f(r, r) will be increasingly
true for K(r, r). Now taking into account the fact
that in a real problem only a limited number of
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FIG. 2. Reliability as a function of energy. Pl
=-14e (" 5~ (solid line). . E =200 MeV (open circles),
400 MeV (crosses), 1200 MeV (dots).

FIG. 4. Reliability for a perturbation in a surface posi-
tion. &1 ——-14e " 5& —2e f" ~ .4j (solid line); E =50
MeV. Crosses —unperturbed Gaussian; dots —Gaussian
with perturbation.
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FIG. 5. Reliability for a perturbation in a tail position.

Pl ———14e ("~3'~) -2e ~&" ) ' ~ (solid line); E =50 MeV.
Crosses —unperturbed Gaussian; dots —Gaussian with
perturbation.

FIG. 7. Reliabi, lity as a function of potential shape:
V&=-35/r for r~5, VI=0 for r&5; E =50 MeV (crosses),
400 MeV (dots).

phase shifts are known, we can determine the fea-
tures of the method R,:

(I) Out of the infinity of equivalent potentials in
the set 8, which certainly contains all the physi-
cally interesting potentials, 9R, selects the one for
which the sine Fourier spectrum of a function

f(r, r), having a one-to-one correspondence with

V(r), is restricted to the interval (0, k).
(2) If all the phase shifts are bounded away from

w/2, the properties of f(r, r) andK(r, x) are some-
what similar. For large energies, the damping ef-
fect makes the linear approximation f(r, r) = K(r, r)
even more valid. Therefore, especially at those
energies, the "distance" between equivalent poten-
tials can be characterized by the "distance" be-
tween the corresponding functions f (r, r)

(3) If, in the infinite set of equivalent potentials
in 8, physical constraints, by absolutely bounding
the derivatives of V(r), select a subset, this sub-
set either contains 3g, or else its distance to 3R,
becomes smaller and smaller as F increases or as

the bounds on the derivatives are taken smaller.
(4) The best conditions for application of %, are

therefoxe met when a large number of phase shifts
smatter than or around s/4 axe produced by the
Potexti al.

Now it is clear that these remarks can be put in
a precise form relating the bounds of various quan-
tities. It is clear also for any one knowing the
roughness of the bounds usually derived by analytic
methods that well-chosen computations can lead to
an equally good feeling for the result.

NUMERICAL COMPUTATIONS

The numerical calculations" were done on a
small computer (IBM 360-40), and yet, the deter-
mination of a potential from 16 phase shifts took
less than two minutes. A set of 28 phase shifts"
was computed by integrating the Schrodinger equa-
tion for various potentials and various energies
listed below, chosen in such a way as to give ex-
amples of the influence of the parameters involved.
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FIG. 6. Reliability as a function of potential shape:
square potential of depth 14 MeV, range 5 F; E =50 MeV
(crosses), 400 MeV (dots).

FIG. 8. Reliability as a function of potential shape:
Vl

—--14 for r~4, Vl = —14e 4 " ' for r&4; E =50
MeV (crosses), 400 MeV (dots).
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FIG. 9. Reliability as a function of potential shape:
p = —28 for x~2, V =-28e( ~)l&.25 for r&2 E=50 MeUI ) I
(crosses), 400 MeV (dots).

FIG. 11. Reliability as a function of potential shape:
V& ———28e " 3 5; E =50 MeV (crosses), 400 MeV (dots),3.5 ~

From every set of phase shifts, a potential is de-
rived through SK,. It is clear from the above anal-
ysis that the distance of this potential from the in-
put potential gives an appraisal of the range of the
set of equivalent potentials when physical con-
straints, such as bounds on the derivatives, are
imposed on the desired potential —these constraints
being exhibited in the input potential. It gives,
therefore, an appraisal of what would be the reli-
ability of any inverse method at fixed energy if the
physical potential were required to fulfill these
conditions.

For the sake of simplicity, typical cases of a
nucleon" in a potential are taken. The range of en-
ergy for which the method 3g, is reliable" is in
general too high to be physically interesting. How-

ever, convenient modifications of the units of length
and energy may reduce physically interesting cases
of colliding atoms to these cases." The following
analyses have been undertaken, in which all the
lengths are in F and all the energies in MeV. In
all the figures the solid line is for the input poten-
tial, referred to as V~, the various dotted lines for
the potentials obtained through 3g„atvarious en-

-v &k

90—

ergies.

RELIABILITY AS A FUNCTION OF THE ENERGY

The potential V = —14exp [-(x/3. 5)'] generates the
phase shifts. The potentials obtained through 3R,
are given, for various values of the energies: 10,
50, 150, in Fig. 1 and 200, 400, 1200 in Fig. 2.
The results are fairly good from 50 MeV up. They
are systematically &close the departure potential.
This feature is true also for other shapes, as seen
below. %'e do not propose any explanation. Notice
that for E ~50, the variations of the output poten-
tial with E are small, and not larger than the ones
obtained from optical-model analyses (at different
energies). This destroys arguments such as: K,
could not be used for experimental analyses be-
cause it yields, from phase shifts generated by a
static potential, an energy-dependent potential.

RELIABILITY FOR SMALL PERTURBATIONS
TO THE POTENTIAL

A perturbation to the Gaussian potential has been
introduced in a central position (Fig. 3), surface
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FIG. 10. Reliability as a function of potential shape:
VI ———80e "~;E =50 MeV (crosses), 400 MeV (dots).
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FIG. 12. Reliability as a function of potential shape:
Vl-—-14t1+e" 5 6];E=50 MeV (crosses), 400 MeV
(dots) .
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position (Fig. 4), and external position (Fig. 5) for
a "bad" value of E. It is reproduced qualitatively,
but not quantitatively.

RELIABILITY AS A FUNCTION OF THE SHAPE
OF THE POTENTIAL

Studies have been made, for E = 50 and E = 400
MeV, for square-well (Fig. 6), truncated Coulomb
(Fig. f), flat exponential (Figs. 8 and 9), exponen-
tial (Fig. 10), Gaussian (Fig. 11), and Woods-Saxon
(Fig. 12) potentials. They should be compared with

Figs. 1 and 2 for the Gaussian potential. Oscilla-
tions appear in the output potential whenever a de-

rivative in the input potential is too large, and are
larger if the energy is smaller. This agrees per-
fectly, of course, with the filter effect of Eq. (19).
Oscillations also appear in the tail, recalling the
asymptotic behavior of the Bessel function in (1).
The points below 0.5 F are in general not given;
there is in most cases, close to the origin„a di-
vergence -x ', due to (13). On the whole —except
for badly discontinuous potentials —the surface
range is fairly well reproduced; this agrees with
the remarks made by many experimentalists con-
cerning the sensitivity of scattering results to this
part of the potential. "
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