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Some features of the nonlinear trajectories of a dua1 multiparticle theory are examined
and the development of the theory is discussed.

Within the past year and a half a dual multiparti-
cle theory with nonlinear trajectories has been de-
veloped' ' in a manner which closely parallels the
development of the generalized Veneziano mod-
el.' " The theory includes the Veneziano model as
a limiting case. The following work has been done
since the four-point function was originally pro-
posed': (1) explicit construction of N-point tree
graphs, ' (2) verification that Veneziano tree graphs
are obtained in the limit of linear trajectories, "
(8) investigation of conjectured rules for loop dia-
grams' analogous to the rules of Kikkawa, Sakita,
and Virasoro, ' (4) factorization' of the tree graphs
analogous to the work of Fubini and Veneziano, '

(5) reformulation of the tree graphs in terms of an
operator formalism' analogous to that of Fubini,
Gordon, and Veneziano, " (6) discovery of Ward-
like identities, ' and ( I) application' of the Adler
self-consistency condition" analogous to the appli-
cations of Lovelace' and of Ademollo, Veneziano,
and Weinberg. " Three of these advances [(4)-(6)]
are quite new.

In this note we wi11 first answer some questions
which have been raised concerning the four-point
Born term, 84. We will then review the rules for
constructing the N-point Born term 8„, emphasiz-
ing the simple, symmetric way in which duality is
incorporated, arid finally, we will comment on the
present state of the theory.

The model arose in an attempt to find the most
general meromorphic, dual Born term and to

thereby avoid specialization to the Veneziano mod-
el. We have not proved that this is the most gen-
eral possible model. However, no more-general
meromorphic, dual Born terms have yet been pro-
posed. ' The four-point function of the model is
given by

where

G(o) = II(1-oq'), (2)
2=0

q is a parameter, 0&q& 1, 0 = as+ b, and 7 = at+5.
The poles of B4 occur at 0, 7 = q ~, j=0, 1, 2, ...,
with polynomial residues of order j and the trajec-
tory function is

n(t) = -(In~)/(Inq).

As ~s~-~ for fixed t, B, has the Regge behavior
B,(s, t)- (-as)"t'~. If the coefficients a and b are
chosen so that the q dependence of ~ near q =1 is
of the form

i = 1+(1-q)r'(t) + (1 —q)'i" (t) + ~ ~ ~,

then

llm Q(t) =7 = Qv „a~1 (4)

Thus, we can have trajectories which are linear or
experimentally indistinguishable from linear tra-
jectories.

We now consider two questions which have been
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raised concerning the logarithmic trajectory func-
tions:

(a) Traj ectories of the form (8) have a left-hand
cut I.n general, trajectories are not complex be-
low threshold. " The exception to the rule occurs
when two or more trajectories intersect. This is
in fact what happens in our model. If we denote the
integer-spaced" daughter-trajectory functions of
the model by n„(t) = e(t) —n, we see that 1/a„= 0
for all n at 7 =at+b=O and t=~. These are just the
branch points of o,„. Thus, the branch points occur
when the leading trajectory and all of the daughters
collide at the point at infinity (I/j =0) in the j plane.
In the linear limit, Eq. (4}, the branch point at
t = h/a-moves off towards t = -~, where it anni-
hilates the other branch point, leaving a linear tra-
jectory. Of course the analyticity properties of n
had to be physically acceptable since the resultant
B~ does possess the necessary analytic properties
to be a physically allowable Born term.

(b) The real Part of o(t) rises as t- -~. Since
as lsl -~, B, is Regge-behaved for any finite t,
this rise of o. on the left leads to a unitarity viola-
tion for t sufficiently large and negative. Thus, as
lsl -~ for fixed z = cos8„we have"

IB (s, t)l exp[-(lnq) '(Inalsl)»I~us(I -z)l]

which gets large because lnq is negative. This
means that B,(s, t) cannot be a satisfactory approx-
imation to the complete unitarized amplitude in the
fixed-angle region. However, since fixed z with
s- ~ involves large momentum transfer, there is
no physical reason to expect that the Born term
should be a good approximation in this region. In
a unitarized theory with B4 as its Born term,
higher-order diagrams should be important in the
large-momentum-transfer region and should
change the effective n(t) for large negative t.

Since Eq. (5) holds for z near -1, B4(s, t) also in-
creases as s-~ for fixed u. This bad behavior
was mentioned in the original paper' on 84 and was
elaborated upon by Capra. ' Since the origin of the
bad fixed-u behavior is the same as that of the bad
fixed-z behavior, any higher-order effect which
damps out one will damp out the other. Physically
we expect higher-order corrections to the fixed-u
behavior of B,(s, t} to be important because B4 can
be written as a sum of either s- or t-channel reso-
nance contributions while u-channel exchange con-
tributions are not contained in B4. Thus, B4(s, t)
only describes peripheral processes for fixed t or
fixed s and is not expected to give a good represen-
tation of the full scattering amplitude at fixed u and
large s. A completely crossing-symmetric Born
term, B4(s, t)+B,(s, u)+B,(t, u), has u-channel ex-

change contributions only in B4(s,u)+B,(t, u). Only
these terms can be expected to give a phenomeno-
logically acceptable representation of the scatter-
ing amplitude for l s l

-~ with u fixed. It is a spe-
cial property of the Veneziano limit that B4(s, t) also
remains bounded in this limit. However, even in
the Veneziano case, trouble can occur for fixed u
when satellites or lower-lying trajectories are
introduced.

We thus see that B4(s, t) is a physically accept-
able Born term since it violates unitarity only in
that region where one expects higher-order cor-
rections to be important. There remains the prob-
lem of constructing a consistent unitary dual theory
with B4 as a Born term. Consequently, we have
embarked on a program which is analogous to that
advocated for the Veneziano model by IQkkawa,
Sakita, and Virasoro. This is of course a large
undertaking which is only at its early stages of
development. Some reason for optimism can be
found in the fact that the development of the nonlin-
ear theory has so closely paralleled the develop-
ment of the generalized Veneziano model. ' "

The essential first step in the above-mentioned
program is the construction of the N-point Born
term B„with spin-zero external lines. We will
now review the reasoning which led to its construc-
tion. For this purpose we first note that the infi-
nite-product representation (1) of B4(s, t) can be
expanded' in the following double power series in
0 ands:

G(o7 }
" (r"

4( j )
G( )G( ) f q f t (6)

where f„=(1—q} ~ ~ (1 —q") for n & I and f, = l.
Equation (6) converges for lo l

& 1, l v l
& 1. If we set

7 = 0 in Eq. (6}, we obtain the expansion

+n

G(a) ~f.
Without the q" factor in Eq. (6), the n and m sums
would have decoupled, and by Eq. (I) we would have
obtained [G(a)G(r)] ', which is just the product of
the denominator factors of Eq. (1}. The residues
of the poles in 0 would then have had poles in 7, in
contrast with Eq. (6) where the residues of the
poles in 0 are polynomials in 7.. Thus, the coupling
factor q"" in Eq. (6) prevents simultaneous poles in
0 and v, but allows poles in either o or 7 alone.
We thus call q" a simultaneous-pole eliminator or
"duality factor." With the above guide we can write
down almost immediately the generalization of Eq.
(6) to the N-point function B„corresponding to a
given set of Feynman diagrams such as all the
planar tree graphs.

The positions of poles in B„are determined as
follows: If p; is the momentum of the particle as-
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sociated with an internal line L; of one of the dia-
grams of the given set, then B„must possess poles
in the variable p at values determined from

o&=a;p +b;=q ~, j=0, 1, 2, ... (8)

w'here a; and 5; are constants and q is the same
parameter that appears in B4. This guarantees that
the mass spectrum associated with B„is consistent
with that deduced from B4. +e first construct a
function with all the above' poles by forming the
product

BslingE' 1 IIG(.,), (9)

where G(o) is defined by Eq. (2). The product (9)
is taken over all lines L; which carry distinct mo-
mentum p;.. B'„g is not a satisfactory candidate for
B„because it contains simultaneous poles in all the
variables p . If we insert the expansion (7) for
1/G into Eq. (9), we obtain a multiple power series
in the variables g,.:

Bsirg 1 2 ~ ~ g . ]0
, n =0

We want to construct a function B„which has no
simultaneous poles in any pair of dual variables
p; and p,.

2 (p and p& are dual variables if there
is no Feynman diagram in the given set of tree
graphs which contains both lines L; and I;) Using.
the analogy with Eq. (6) for B„we can construct
such a function B„by the following simple rule:

Rule: For each pair of dual variables p and p,.
'

introduce a "pole-eliminating" factor q"& "& under
the multiple sum in Eq. (10).

Using Eqs. (6) and (7), it is easy to verify' that
insertion of these q"'"& factors into Eq. (10) gives
a B„which has the pole and residue structure of
the totality of Feynman diagrams of the given set.

In order for the resulting dual Born term B~ to
form the basis for construction of a dual multipar-
ticle theory, B„must possess the basic factoriza-
tion property. " The proof of factorization for B„
has recently been carri. ed out by Yu, Baker, and
Coon. ' Although their work on factorization is in

principle analogous to that of Fubini and Venezia-
no' on the Veneziano N-point function, it is in de-
tail completely different, as are the results. The
degeneracy of the pole in B~ at o; =q ~ is found' to
be -6'. The number 6 enters through the use of
O(4, 2) scalar products in the factorization. Since
the poles are spaced exponentially, the degeneracy
grows only as some power of the mass. Thus,
even though the degeneracy in the nonlinear theory
is greater than the degeneracy of the Veneziano
model, the exponential mass spectrum compen-
sates for the increased degeneracy so that the re-
sulting asymptotic density of states is less than in
the Veneziano model.

From the factorized amplitude, we obtain the N-
point Born term with two external lines having ar-
bitrary spin. Using this we have obtained expres-
sions for the Ã-point planar loop diagrams. How-
ever, we have not yet been able to evaluate the in-
tegrands in the general case, because we have not
yet found a convenient technique to facilitate evalu-
ation of the traces which define these integrands.

As in the Veneziano model, the structure of the
theory is more clearly understood by introducing
an operator formalism. This formalism' differs
fundamentally from that used in the linear theory. "
In our case, the totality of spin states is generated
by a single set of noncommuting creation opera-
tors" acting on a vacuum state. The commutation
relations of these operators with their adjoints dif-
fer from the usual harmonic-oscillator commuta-
tion relations. Because the analysis of this opera-
tor structure has not been. fully carried out, the
development of the nonlinear theory has not yet
proceeded as far as the development. of the Vene-
ziano model. When more detailed properties of the
nonlinear theory are understood, we will have a
better idea of whether the nonlinear B~ can form
the basis for a complete dual theory, if indeed such
a theory can be constructed at all. At present we
are unaware of any physical or aesthetic reason for
preferring either the linear or the nonlinear
theory.
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4@2 2f)t({)) (+fat +m
y ( t) Q 4lf 2' 0 /sin~~ (s)

Thus, for large s in the neighborhood of the positive,
real axis andu fixed, V4(s, t) behaves as a power of s
which becomes appreciable if n(0) is too small or n and
m are too large. For example, with negligible external
masses (M=O), if we set u = 0, n =m = 1, and &(0) =0,
Y -s as s-~ near the real axis.

This is in contrast with the infinite set of commuting
creation operators of Ref. 11.
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With certain assumptions on the coupling of two currents to particles of increasing spin,
it is shown that the Van Hove model results in Bjorken scaling and Regge asymptotic be-
havior. The fields corresponding to these particles are related to the products appearing
in the operator-product expansion near the light cone.

The Bjorken scaling limit' for deep-inelastic electron scattering, or more generally for the scattering
of any current in the appropriate kinematic region, may be accounted for by the behavior of products of
currents close to each other's light cone. ' ' This scaling limit can be made consistent with Regge asymp-
totic' behavior; such a behavior may be suggested by the data on inelastic electron scattering. In this
note we shall point out how these results may be achieved in the context of the Van Hove model. ' It may
likewise shed some light on the nature of the bilocal operators appearing on the right side of the operator-
product expansions. ' It should be emphasized that none of the results will be derived; t;hey will all be in-
serted into the model from the start. Our purpose is to show the consistency of these assumptions within
a dynamical scheme, and as mentioned previously, to discuss their connection with the operator-product
expansion.

For brevity we shall consider the scattering of a current by a spinless particle and study only the even-
charge-conjugation amplitude analogous to g)', of electroproduction. Let q, and p, (q, and P,) be the four-
momenta of the incoming (outgoing) current and particle; the amplitude under discussion is

T&„——(2m)'(4P. ', (,')'" f e ' ',*d x ((, l [J&(x), J„(0)]',I).)

with

=P„P„A(v,t, Q', t)) + ~ ~ ~,

p= ', (p, +p,), Q= ', (q, +-q, ), (p')"'v=-P Q, t=(p, p,)', an«=q, '-q, '.

The conjectured Bjorken scaling limit for the A amplitude is

itm A(vu, t, Q, ()) =F(((),t).
2 2

V,Q ~~; Q /2V=(d


