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The eikonal approximation for graphs representing the exchange of an arbitrary connected
amplitude l times in the vertex function is developed for a ft]

3 theory and quantum electro-
dynamics when the bvo external particles are on the mass shell and the momentum transfer
is large and spacelike. The simplest case of elementary-particle exchange is calculated.
Summing over l, we obtain
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where p is a photon mass introduced to eliminate infrared divergence problems.

I. INTRODUCTION

The off-mass-shell vertex function at high energy
transfer was studied originally by Sudakov, ' who
considered radiative corrections in quantum elec-
trodynamics (QED) by calculating the asymptotic
behavior of Feynman integrals. More recent cal-
culations for both on and off the mass shell were
done by Jackiw' using an infinite-momentum tech-
nique similar to Weinberg's. ' The vertex function,
obtained in QED for crossed-ladder radiative cor-
rections by Jackiw, is given by4

I'"= gN y"ggexp, ln
]6@2 p

2

This result was conjectured from low-order cal-
culations.

Recently the eikonal approximation has aroused
much interest as a useful tool in calculating high-
energy elastic scattering amplitudes. Abarbanel
and Itzykson' have clearly demonstrated for QED
that in the high-energy limit the eikonal method
gives the correct behavior of those graphs consid-
ered. (The exact high-energy behavior was calcu-
lated for QED by Cheng and Wu' in their extensive
work. ) Later much work was done in applying the
eikonal approximation in Q' theory' as well as

QED' to obtain high-energy amplitudes.
It is natural, therefore, to apply the eikonal

method to the graphs of the vertex function. '"
In the asymptotic region there are two distinct
types of contributions to the Feynman integral for
a vertex graph; eikonal contributions and noneikon-
al contributions. An eikonal contribution corre-
sponds to a region of integration where the large
momentum of the incoming particle is carried es-
sentially unchanged by a line of propagators to the
vertex and another line of propagators carries the
large momentum from the vertex to the outgoing
particle. In such a region we can picture the in-
coming particle as moving through the interaction
region, emitting only soft virtual particles, until
it reaches the vertex which is a hard interaction.
At this poi, nt, large momentum is carried away,
and then the particle continues through the inter-
action region, absorbing soft virtual particles, and
finally emerging as the outgoing particle.

The distinguishing mark of a noneikonal contribu-
tion is that there are hard interactions at places
other than the vertex. That is, either a propagator
carries both the large incoming momentum and the
large outgoing momentum or large momentum is
split between two propagators.

Figure 1 illustrates the two types of contributions
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(a)

Heavy lines carry large momentum

FIG. 1. A graph of the vertex function in Q~ theory
showing the regions of integration that contribute to the
asymptotic behavior. (a) and (b) represent eikonal re-
gions; (c) and (d) represent noneikonal regions.

to the asymptotic behavior. In this graph there are
two eikonal regions of integrations [Figs. 1(a) and
1(b)] and two noneikonal regions of integration
[Figs. 1(c) and 1(d)] contributing to the asymptotic
value. "

The eikonal approximation may fail to give the
correct asymptotic behavior for two reasons -one
serious and one minor. The serious failing of the
eikonal approximation occurs when noneikonal re-
gions contribute asymptotically. "

The second problem concerns counting and has
two aspects. First, in the perturbation expansion
of the S matrix, topologically different graphs may
have different relative weights; e.g., the two-rung
cross ladder has a factor —,

' and the straight ladder
has a factor 1. [Fig. 2(a)] The eikonal technique,
in giving the amplitude for the appropriate sum of
graphs, assigns to each graph the same weight.
Consequently, this is one error. Secondly, the
crossed graphs may have eikonal regions other
than those considered. For example, Fig. 1(b)
shows a possible routing of the large momentum

which is ignored by a naive application of the eikon-
al method, since the eikonal routing for the crossed
graph corresponding to the two-rung straight-lad-
der graph is shown in Fig. 1(a). This is another
error. However, since this extra region is in fact
an eikonal region, it can be calculated by the eikon-
al method. In the eikonal approximation for the
fifth-order graphs shown in Fig. 2(a) the crossed
ladder has two regions [Figs. 1(a) and 1(b)] in
which it contributes and we can represent the sum
of the eikonal regions as in Fig. 2(b). The graphs
of Figs.. 1(a) and 1(b) are topologically the same so
that they have the same contribution. Thus the
first pair of graphs in Fig. 2(b) and the second pair
have the same value. Therefore we obtain the na-
ive eikonal results in fifth order. The error from
the symmetry factor in the crossed graph and the
error from neglecting the other eikonal region in
the crossed graph have canceled. We conjecture
that this cancellation occurs in all higher orders
also; we have, however, not yet shown this con-
jecture.

Bearing in mind that the eikonal approximation
fails in a P' theory" and is valid in QED" for the
vertex function. , we proceed to compute the eikonal
approximation to the vertex graphs representing
the exchange of the arbitrary connected amplitude
D / times in a boson Q' theory and QED. We con-
sider the eikonal region where all the momenta of
D are small, i.e., the large momenta flow along
world lines 1 and 2 shown in Fig. 3 for a P' theory
and Fig. 4 for @ED.

In Sec. II we consider the boson case. We first
find the eikonal approximation to the exact wave
function of a spinless boson particle in an external
potential v, rp(x, P, ; v). Then by introducing auxil-
iary external potentials v and v', we may write the
eikonal approximation to the vertex graphs consid-
ered when (p, +-,'q)'=(p, —mq)'= m' and -q'» m' as

I

2

(a)

r
+ 2

(b)

PEG. 2. (a) shows the straight and crossed two-rung ladder graphs in Q theory. (b) shows the eikonal regions of
these two graphs contributing to the high-energy behavior.
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FIG. 3. Fg {q ) in a $3 theory.
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Using the brick-wall frame, these integrals can be evaluated to obtain finally

n+m & 0

co 2'

(Q'=-q'&o).

In Sec. III we consider the QED case. The eikonal approximation to the exact wave function for a fermion
in an external vector pot'ential v" (x) is obtained by relating it to the wave function for a spinless boson
found in Sec. .II. The computation of the vertex function for the exchange of the amplitude D"&" s~(k„...,q )
l times is then carried out as in Sec. II. We obtain

)'"'"'" (t) )=es r "u —i" n dir e &"- &(g ) )
2 1 ~" dk]

"(n, , -- ' (2v}' tX]

"1
x Q ( do', , e"&""&(rl ) D"'""~' ''''s (k ." k 'q " q )

0
1.& '' s tw

Finally in Sec. IV we explicitly calculate for both Q' theory and QED the case of elementary-particle-
exchange graphs. These results,
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are then compared with the exact low-order calculations cited previously in this section.

II. THE BOSON CASE

First we consider the wave function y(x) for a spinless particle of mass m in an external potential v(x).
y, (x,p, ;v) satisfies the differential equation

a'+ m' - v(x) y, (x p, ;v) = 0,
8 8

8x Bxp

vrhere the boundary condition is given by (I(),- e'~~'" as t- -~ and p,
' = m'. We can make the eikonal approx-

imation by the method used by Johnson. " We assume that in the region v(x) e0,

(p, (x,p„v) = e'~~'"(p(x, p, ;v),

where P is a slowly varying function of x and y(x)- I as t- -~. The eikonal approximation is made by
dropping CI compared to p, 8/sx in the differential equation for p(x). (In momentum space, this approxi-
mation becomes (p, ~

qz) &
) qz ( for every j, where qz is the momentum carried away by the jth interaction

with the external potential v. ) We thus have
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—.p -——v(x) q
""'" (x p, .v)=0.

The solution of the above differential equation is facilitated by using the coordinate system defined by

i rx"-x'"+ ' and x')'. p =0.fp

In this "proper-time" system,

1 8
v= —p x and p —=m-

m ' 8x 87

Thus Eq. (1) becomes

2 8
—. m ——v(x) q)""'"~(x)=0,
Z 87

where

q)
eikonal (x) 1

Solving for q) ""'""(x),we obtain for q)
""'"~(x) = e'~&' q)""'""(x),

I
0 PPOq)""'""(xp 'v)=e'i'"exp ( dov x"+2m) ~ m

(2)

The eikonal wave function for a state that becomes the free-particle state e'~~'as t-+~ can be found by
a similar analysis or directly from Eq. (2) by applying the time-reversal operator:

—Z PP glq)""'"'((x p 'v) = eiiV "exp doiv x"+
2m m

We may now construct the contribution to the vertex graphs shown in Fig. 3 from the eikonal region of
the exact expressions where the initial particle carries large momentum and continues essentially undeflec-
ted by each interaction along world line 1 until it reaches the vertex, which is a "hard" interaction; i.e.,
the emitted meson carries away large momentum. The remaining large momentum then continues essen-
tially undeflected along world line 2 until it is carried away by the final particle.

By introducing auxiliary external potentials" v and v' and using the results derived above, Eqs. (2) and

(3), we may write the eikonal approximation to the vertex graphs shown in Fig. 3 when (p, + —,'q)' = (p, ——,'q)'
=m and -q»m .

-~(2~)'))'(p -(' )r""-"(q')-jd xX 0 " "(xP —-', 0;v'")8""'(-&').')rP "'""(&,) +-'q t).
o=o '=0

(4)

Here, q)",
"'"

(x,p, +-,'q;v) is the wave function of a particle in an external potential v(x) that represented a
free particle of momentum p, + —,'q before the scattering (i.e., t- -~). This wave function represents world
line 1 and is given explicitly in the eikonal approximation by Eq. (2). Similarly, 9),""'""(x,P, ——,'q;v') is the
wave function of a particle in an external potential v'(x) that will represent a free particle of momentum

P, ——,'q after the scattering (i.e., t-+~). This wave function represents world line 2 and is given explicitly
in the eikonal approximation by Eq. (3). The emission of a meson of momentum q at the vertex gives a
factor (-ig)e "'. Finally, K, is an operator containing the amplitude D that is exchanged between world
lines 1 and 2,

)) ) d4k 0 m t'd4q

Because of the symmetry in (k„..., k„) and (q„..., q ) in the eikonal approximation, we could not expect
the eikonal approximation to be valid for any individual Feynman graph, since it is not symmetric, and so
we are considering the sum of the Feynman graphs with the upper n legs of D attached in all possible ways
to world line 1 and the m lower legs of D attached in all possible ways to world line 2.'~

The eikonal approximation for the vertex graphs corresponding to the connected amplitude D exchanged
l times with the nl upper legs and the m l lower legs connected in all possible ways to world lines 1 and 2,
respectively, is
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-((pw)'p "-"(p')p'(p, -p, )= Jp'xx, p,""'"" (xp, —-', p;u')e ' *(-ip)p "'""(xp,+lp;u)

where

z = —(z)'.1

E(luations (2), (8), and (5) are substituted into E(l. (6), and the functional derivatives are evaluated. We
then let v=v'=0, to obtain

sa

n+)n n O d4y p +&q
(& )'&i'"'""(p')p'(p, -p.)=pf &'* """'"—„n n,

p
)'. xg p, + ' *,) Ioo

x Q ) do~, „exp iq, x+ ' ' o,' D(k». ..pk»q». ..pq
y=j 0 ('2 7f) m

We choose to evaluate the integral in the brick-mall frame:

q"=(0,0, Q, o), P,"=(0,0,P', P').
Since (p, ——,'q)n= (p, + —,'q)' = m', p'=0 and (p4)'= pp4n+~4Qo. Because Q'» s4', p4= —,'Q+ mn/Q. Thus to

order 1/Q,

,

m' m2
Pj. 27 2@ '

2q 9~ 2 ~+i

PE Sl
P'a-~&= a@+

2@
'n++ 2@~ ~

q, =(0,0, -1,1), g =(0,0, 1,1).
Within the eikonal approximation we keep only the terms of order Q in the expression for P, +-,'q and

p, ——,'q given in E(l. (8) and substitute these expressions for p, + —,'q and p, —oq into E(l. (7). We make the
change of variables

Of p0$ 'at f Of y Qg Og2m 2m

We then notice that D(k» ...,io„;q„...,q„) must have an over-all 5 function in it, so Q,",k, +Qp, q~ = 0, and
therefore the x dependence of the expression in s(luare brackets in (7) drops out. We can then perform the
x~ integration to get (2v)454(p, —p, ). We thus obtain, for the Q' theory, the general form of the eikonal
approximation for the vertex graphs on the mass shell and -q'» ns' representing the exchange of the am-
plitude D / times,

n+m n 0 4
I",'"'"~(q')=g —, — Q dc(. . .', e"'" "4 Q de~, , e"»"p D(k». ,k„;q»...,q )..

f=l

IH. THE FERMION CASE

We now wish to construct the eikonal approximation to the vertex function in a fermion-vector-boson
theory, i.e., (n)ED with a massive photon. First we must find the wave function for a fermion in an exter-
nal vector potential v"(x). Let +(g,p;, A., ;v") represent the wave function of a fermion in an external vec-
tor potential, where the fermion was a free particle of momentum p, and spin X, before the scattering (i.e.,
f- -~). We write 4, as the sum of its perturbation series in 4)"(x):

4, (X,P„A.„4)")= Q4', „(X,P„X,;V") .

We can relate 4,„(x,p, ,X, ;n") to q),„(x,P, ;n) in the eikonal approximation. We write 4f„'"'" in momentum

space using E(l. (2):



EIKONAL APPROXIMATION TO THE VERTEX FUNCTION. . .

Z
n n ! 0 4 n

«l'!-"((,(, « l«;») =
~

—„,II ««'«"*'"
2, '»(«, ) (2»)'»' ( (, -l«+-pa}Si f~y f =j.

Since S~(p)= (p+m)n~(P) and P, +-,'q=kQ(},

n n~"-(p —,"Q& ~ v~)= —— II /, + .'e -g-d, +m y,n/

d' -i n.u '", -* "(„)(2.)» ( ~» p..,}",('~«)
3=1 f= 1

The eikonal approximation allows us to drop the P~, )(((~ + m terms relative to —,'Qq ~ y=-,'Q(y'- y') terms.
Thus

n~."'""(P,—.'Qn, ~„'")=—
„,IIt-.*(I+y'y')y'y. ,)II 2„", , „~"((q,) (2v)'~' u--,'e +gq. .., (-.'Qn ).

f=1

t

In the limit Q ~ the Dirac e(luation becomes y'y'uz, (—,'Q)I }=u), , (~Qq ). Therefore the largest terms as
Q-~ involve the scattering by Dirac matrices which do not vanish in the y'y' subspace. " This projection
is 1 for y'y' and yoy' and 0 for yoy" and y'y'. Thus, in effect, , we may replace each vertex by (q )„, . So
ave can write

'n n«."-"((.—.e. „.")=(2.) —'..., (-.~«)n „(,".
,
' (. )., "«., ) «( w» g.,)-tl! ( (-) J 271' qg ''g

Thus, summing the perturbation series,
0 !

«(qq»z, ; )= ,'»««„( gq
'

)«'xp IJ'-, d»» ~ «(»+», «) .

Similarly, the wave function 4'n"'" (x,pz, g;v") of a fermion that will be a free particle of momentum

pq = ~Qq+ and spin g after the scattering (i.e., f-+~) is written

(10)

'1(fr'"'""(~,aQg+, )y, v~)=Nx (kQq, )e'io"+'exp -i de,'q, v(x+(r,'q, )

Now the operator K, for the vertex graphs shown in Fig. 4 for @ED is given by

d kf 5 d4

(R»)' »»(«) n (2»)' ««'( )) (12)

The analysis of the eikonal contribution to the vertex function in QED on the mass shell and -q'» m'
representing the exchange of the amplitude D ~" "~' &"'" ~(k„..., }),„;q„..., q ) I times is now exactly the
same as in the scalar case. We obtain"

&""'""(«')=»» ««» —«n( «"'"-"(q ) )
d'kf

xy xg I! (2 +)4 Ixg

d'qgxgl d~; -', &"' "'(~) D"--~' "- -(~ ... n q ... q), , ( o ' m'

IV. AN EXPLICIT CALCULATION

Explicit calculations ean now be done for the particularly simple case of elementary-particle-exchange
graphs in (j)' and QED.

In the scalar ease,

D(k„q,) =ig'(2w)46'(I(, —q, )(k,' —m'+i g) '.
In @ED,

D "&8&(k„q,) = ie'(2v)'5'(I(:, —-q, )g js&(k,' —g'+is) ',
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where p. is the photon mass.
Using these expressions in the vertex functions (9) and (13), respectively,

2

IioED (q )=ellk y Q
I

[2'Ee I(q p, )]

where

I(q, m )= dc dc' ae'k'"- e '"'"i+ (0' —mn+jg) '.
0 (2w)'

We can perform the 0 q integration inr by contour integration and then perform the 0 and 0' integrations:

2 2p) I 2+~2
The eikonal approximation gives us the limits on the integrations remaining since it requires I(P, + —,'q) ~ &I

- l~'I and IU, -lq) +I.-I&'I.
These limits are Q &

I k, l
~ ma/Q and Q I k, l

~ k'. The remaining integrations can now be performed to ob-
tain

Thus

2 2 l
eikonai n 1 8 aI iaeaim(q )-R'Ii 22 kqn& a (14)

P cikonal 2 — P ~ 8 2
I'iOED (q ) 8'sk y zk

))
kin

16m p.
(15)

Assuming that it is meaningful to sum over /, we obtain the vertex functions representing the sum of all-
elementary exchange graphs in the limit -q'= Q'» f"„a) on the mass shell:

l=O

I'i eikonai(qa) g I'I egg& yi s& (1V)
l=O

In the @ED case the results obtained in the eikonal approximation [(15) and (IV)] agree with the exact low-

order calculations mentioned previously and also satisfy the general form obtained by Mack. '
In the Q' theory the eikonal result (14) does not give the correct high-energy behavior of the elementary-

particle-exchange graphs. An analysis of the exact high-energy behavior of particle exchange graphs in

fifth order (i= 2) shows that this failure is due to the existence at high energy of "noneikonal" regions of
integration in the crossed graph
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