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We show that despite the apparent essential singularities in Veneziano nr partial waves
with I=0 and I=2, these partial waves can be approximated to any desired accuracy over
a substantial region about threshold by functions which do satisfy dispersion relations of the
usual form, although the number of subtractions required increases without limit as the
desired accuracy tends toward exactness. Two subtractions are shown to be sufficient to
approximate the S waves within 10% up to E ., = 700 MeV. A dispersive method is pro-
posed for unitarizing the Veneziano amplitudes up to 1 GeV or more.

Many of the theoretical analyses of 77 elastic
scattering which have been carried out over the
last decade have been based on dispersion relations
for the partial-wave amplitudes. However, it has
recently been strongly argued that Veneziano 7w
partial waves with /=0 and 2 contain essential sin-
gularities at infinity,! and thus do not satisfy dis-
persion relations with any finite number of subtrac-
tions. In this work we. shall demonstrate that de-
spite the apparent essential singularities for I=0
and 2, Veneziano 7w partial waves can be approxi-
mated to any desired accuracy over a substantial
region about threshold by functions which do satisfy
dispersion relations, although the number of sub-
tractions required to achieve a given accuracy in-
creases without limit for /=0 and 2 as the desired
accuracy tends toward exactness. We will also
show that the Veneziano S waves can be approxi-
mated within 10% below 700 MeV by functions which
satisfy twice-subtracted dispersion relations, so
that certain calculations in the literature® are vi-
able up to this energy even if physical S waves con-
tain essential singularities like those in the Vene-
ziano S waves. Finally, we will propose a disper-
sive method for unitarizing Veneziano 77 ampli-
tudes which should be reliable up to 1 GeV or
more.

Consider the following Veneziano representation
for n7 elastic scattering amplitudes?®:

A°=3F(t,u) - 3[F(s, t)+ F(s,u)], (1a)
A'=F(s,u) - F(s, 1), (1p)
A% =—-F(t,u), (1c)

where the superscript on A’ denotes s-channel iso-
spin. We shall restrict our discussion to the lead-
ing term of the Veneziano series, so that

(1 - ax)T - ofy)
(1 - alx) -a(y) ’

where B is a real constant, and a(£)=a+b&, where

F(x,y)=p (2)

4

a and b are real constants. We shall use units
whereinm, =7%= c=1 (except where MeV is explic-
itly stated), and we shall sometimes use the vari-
able v=|q,, [=3(s —4). As a final remark on
notation, we shall denote s-channel partial -wave
projections of the Veneziano amplitudes (1a)—(1c)
by VI,

Let us consider the series representation®

(=17 (1 - a(x) - a(y))
F(x,v)=
()= 2 )

(o m=]

where Ty (£) is the Kth order Pochhammer poly-
nomial:

Te(E)=&(E+1) - [E+(K =1)]=T(K+£)/T(£). (4)

The series (3) converges when Re[a(x) + a(y)]
>0.* If we replace x in Eq. (3) by s and y by ¢ or «,
then the resulting series for F(s, {) or F(s,u) con-
verges for Res > ~2a/b= - (1.0 GeV)?,® provided
that |cosé,|<1. If we replace %.in Eq. (3) by # and
y by u, then the resulting series for F(¢,u) con-
verges for Res<(2a/b +4)= (1.1 GeV)2.®

Partial -wave projections of the series (3) for
F(s, t) and F(s,u) are nontrivial, because the argu-
ments of the Pochhammer polynomials T depend
on cosf,. However, in the series for F(t,u), the
argument of Ty is independent of cos6,, and the
series (3) together with Eq. (1c) leads immediately
to

Va)z(u)=l_)l_3; > (=1¥ T, (1 - 2a+4bv) Q, <1+K-a> ,
K=1

T(K) 2by
(5)

where @, is the Legendre function of the second
kind. From the asymptotic behavior of @, and T,
it is straightforward to establish that the series
(5) converges if Res<[(I+2a)/b+4]=1.2(1+1)
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GeV2.”

Now let us approximate F(s, t), F(s,u), and F(f,u)
in Egs. (1a)—(1c) by the Nth partial sum of the
series (3) with appropriate substitutions for x and
9, and denote the resulting approximations to A’
by A%. The A%, are analytic and crossing-symmet -
ric by construction. If we denote the s-channel
partial-wave projections of A by A !, the do-
mains of convergence of the series (3) and (5) im-
ply that

lim A%(s)=V¥O(s) (6a)

N—» oo

if —2a/b<Res<[(l+2a)/b+4],
lim Ay (s)=Vhi(s) (6b)

N-»
if —2a/b<Res,
lim AP?(s)= V2(s) (6c)

N—>
if Res<[(l+2a)/b +4].

Within the above-stated domains of convergence
of the sequences {A?(s)}, the VI can be approx-
imated to any desired accuracy by the functions
AP with sufficiently large index N.

From inspection of Eq. (3), it is evident that the
singularities in A% are simply the poles corre-
sponding to the first N towers of resonances® in
the direct and crossed channels. Thus Im A{”
for v>0 simply consists of the d-function absorp-
tive parts corresponding to whatever resonances
exist in the (I)I channel within the first N towers
of resonances. To obtain the left cut of A, we
note that analyticity and crossing symmetry imply
that?®

b 2t
ImA”"(v):;];-f dV’P,<1+2
1]

)Z (20 +1)

1’
v+1
’

xImA“"”'(v’)P,,(

)
where
$28
ar=| % 1-3
i i
Thus ImA}(Vm for v< —~1 may be obtained® by substi-

tuting into the right-hand side of Eq. (7) the 6-func-
tion absorptive parts corresponding to the reso-
nances in the first N towers.?

Since N is the highest spin value which occurs in
the first N towers of resonances, it is evident from
Eq. (7) that N subtractions are necessary and suf-
ficient to guarantee convergence of the integral
over the left cut in a dispersion relation for A%,
From Eq. (3), it is clear that the asymptotic be-

[

havior of A"’ in all directions is such that the
contour integral at infinity in such a dispersion re-
lation can be dropped, so A,(v”' satisfies a disper -
sion relation of the usual form, albeit with N sub-
tractions.

For I>1, all VI and A#Y vanish at threshold
like v*,% so the first (I —1) derivatives coincide at
threshold. However, if I=0 and/or N>1, better
approximations can be obtained near threshold by
constructing the functions

(1
V= Z v d"V”” __f dv JImAy (V)

IN(V )

(8)
Intuitively, one would expect the domains of con-
vergence of the sequences {V/”} to be at least as
large as for the {A ¢’} but perhaps no larger.
To facilitate the remainder of our discussion of
the accuracy of the approximations

742§~ V},’" s (9)

let us define functions which represent the percent-
age discrepancies:

VI _ymr
I _
AVy I(V‘”I—+_V“") (10)

The accuracy of the approximation (9) depends on
the values of the Regge parameters a and b. For
the sake of definiteness, let us consider the Love-
lace values a=0.483, b=0.017.3 In Figs. 1(a) and
1(b), we display AV and AV#Y | respectively,
for 1=0, 1, and 2. Since V%7 behaves at thresh-
old like v/, AV vanishes at threshold like v¥*
if N>1, and behaves like 1° if N<1L'' The zeros in
N4 and AV at 762 MeV occur because V,\°'°
has the same € resonance pole as V©° and V§»?
has the same p pole as V®’!, The sharp rise in
AV above 900 MeV is due to a shrinking denomi-
nator in Eq. (10); the difference V! - V" is only
-0.06 at 1 GeV (assuming p=0.50, which corre-
sponds to I'(p)= 120 MeV). The behavior of the
AVOT and AVLY near 1 GeV suggests that the se-
quences{ ‘°”} for I=0 and 2 diverge at the same
energy as the sequences {A "}, namely at 1.08
GeV.”

The discrepancies displayed in Fig. 1 for I=2 are
especially interesting, because the V{}’? are deter-
mined by their left cuts, together with the thresh-
old constraints implied by the subtractions in Eq.
(8). Thus the information which determines V{2
is closely analogous to the information which is
fed into N/D equations when a single subtraction is
performed at threshold, the left cut of N is con-
structed by feeding p and € exchange into Eq. (7),
and D contains no poles. The fact that AV{®2=-0.4
at 750 MeV suggests that such a prescription is un-
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reliable in the p region. Although AV{®° and AV
vanish at 762 MeV, this is because V{0’ and V{12
are explicitly given the same poles as V(©° and
V@i respectively, at this energy. (Analogous con-
straints could be built into N/D equations by per-
forming two additional subtractions in N, or by in-
serting a pole with appropriate residue into D at
the point where the phase shift reaches 180°.)
Although AV{®? reaches 0.26 at 500 MeV, AV{»?
is less than 0.10 below 700 MeV, while AV{?° and
AV are less than 0.10 below 900 MeV.*? Thus
even if physical A * with =0 and 2 contain essen-
tial singularities like those in V¥ our present
work indicates that A ()2 can be well approximated
below 700 MeV by a solution to a twice-subtracted
dispersion relation, while A(®°and A‘V1 can be
well approximated below 900 MeV by solutions to
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FIG. 1. (a) Values of AV{?! for 1=0, 1, and 2.
() Values of AV{P? for 1=0, 1, and 2.
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twice -subtracted dispersion relations (provided
that the solutions are constrained to contain € and

p resonances with correct masses and widths).
Since AV#Y is less than 0.12 below 1 GeV for /=0
and 2, similar remarks hold for the D waves. Thus
the dispersive models with two subtractions pro-
posed earlier by the present author® are reliable
over the aforementioned ranges of energy even if
physical A ¢” with =0 and 2 contain essential sin-
gularities like those in V@ ?

To see how one might construct analytic, exactly
crossing-symmetric 77 amplitudes which have the
same resonance spectrum and essential singulari-
ties as the Veneziano amplitudes but which have
unitary partial waves for I <L (where L is finite
but arbitrary), let us consider the functions
AA M1 () defined by

AAGT= A Oy, (11)

The AA ¢ are real analytic functions with the same
crossing properties as A ¢’ and V%, Unitarity
implies that every AA ¢ has a right cut, and cross-
ing symmetry implies that each AA“” has a left
cut related to the right cuts of all the A4 "' py
Eq. (7) (with AA ® substituted everywhere for
A (l)I).

If one imposes unitarity on the A®” with I<L
for some finite L but sets Im(AA “¥)=0 for v>0
and all I > L, then Eq. (7) is valid for all v< -1.°
The resulting Im(AA *7) grow like v¥™! as y— —wo,
so every AA ¥ satisfies a dispersion relation with
L subtractions. If the subtraction constants are
chosen in a way consistent with crossing symmetry,
then the full amplitudes

Al(v, cos)=Y_ (21+1)[VH! + AA ©T]P,(cos6)
=0 (12)

are analytic, exactly crossing-symmetric, and ap-
proximately unitary over the range of energies
where (Red *)?« 1 for all I>L.

If the resonance spectrum of physical 77 ampli-
tudes agrees with that of the Veneziano amplitudes,
then resonance contributions to Im(AA ¢¥) vanish
in the sense of local averages. Then it is reason-
able to conjecture that amplitudes of the form (12)
with AA ® constructed in accordance with the dis-
persive method just outlined might be good approxi-
mations to Nature up to 1 GeV or more for small
values of L.

For the case L=1, only one of the subtraction
parameters remains independent when crossing
symmetry is imposed.® Thus the model implies a
relation between the S-wave scattering lengths a,
and a,. Upon solving the model®® with L=1 for dif-
ferent values of the independent subtraction para-
meter and different masses and widths of the € res-
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onance consistent with Chew-Low extrapolations of
7N-7nN data, one obtains the “universal curve” re-
lation between a, and a, of Morgan and Shaw.'* The
model possesses solutions for the S waves and P
wave which are in excellent agreement with experi-
ment at least to 1 GeV. The I=2 S wave is quite in-
sensitive between 500 MeV and 1 GeV to reasonable
variations of the subtraction parameter and varia-
tions of the € mass and width, so a definite predic-
tion is made for the I=2 S wave.

If in addition to crossing symmetry one imposes
a well-known sum rule on 2a, — 5a,,"® then only one
subtraction parameter remains independent® for the
case L=2. Thus twice-subtracted dispersion rela-
tions could be used to obtain the AA T with only
one independent subtraction parameter. The result-
ing approximations for the AA “ might be expected
to be valid up to 1 GeV or more, especially since
the V{7 with <2 can be approximated despite their
essential singularities by solutions to twice-sub-
tracted dispersion relations over the regions indi-

TRYON

(£

cated by Fig. 1(b).

The success of the model with L=1 in generating
S waves and P wave consistent with experiment up
to 1 GeV can be understood from the fact that a,
and a, automatically® satisfy the sum rule for
2a, - 5a,.'® Thus the S waves and P wave with L=1
are essentially equivalent to those which would be
generated by the model with L =2, when the latter
is constrained by the sum rule for 2q, — 5a,.'"

We remark that if one had never heard of Vene-
ziano amplitudes but simply wrote twice-subtracted
dispersion relations for the A T and determined
one of the two independent subtraction parameters
by imposing the sum rule for 2a, —5a,, then the re-
sulting amplitudes would agree with the results of
the aforementioned model for unitarized Veneziano
amplitudes within about 10% below 700 MeV for
A®”2 and below about 900 MeV for A ©° and A 4%,
Thus below these energies, the unitarized Vene-
ziano amplitudes have a much greater generality
than does the Veneziano model itself.
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The eikonal approximation for graphs representing the exchange of an arbitrary connected
amplitude I times in the vertex function is developed for a ¢3 theory and quantum electro-
dynamics when the two external particles are on the mass shell and the momentum transfer
is large and spacelike. The simplest case of elementary-particle exchange is calculated.

Summing over I , we obtain

. 2 1 2
reikenal (g2) = gexp[g%;f = W(%—)] and T*

) _ e2 -2 ]

U

where p is a photon mass introduced to eliminate infrared divergence problems.

I. INTRODUCTION

The off-mass-shell vertex function at high energy

transfer was studied originally by Sudakov,! who
considered radiative corrections in quantum elec-
trodynamics (QED) by calculating the asymptotic

" behavior of Feynman integrals. More recent cal-
culations for both on and off the mass shell were
done by Jackiw? using an infinite-momentum tech-
nique similar to Weinberg’s.® The vertex function,
obtained in QED for crossed-ladder radiative cor-
rections by Jackiw, is given by*

| eﬁy“uexp[ —¢’ 1n2<_q2 )] .
1672 u?
This result was conjectured from low-order cal-
culations. ‘

Recently the eikonal approximation has aroused
much interest as a useful tool in calculating high-
energy elastic scattering amplitudes. Abarbanel
and Itzykson® have clearly demonstrated for QED
that in the high-energy limit the eikonal method
gives the correct behavior of those graphs consid-
ered. (The exact high-energy behavior was calcu-
lated for QED by Cheng and Wu® in their extensive
work.) Later much work was done in applying the
eikonal approximation in ¢° theory” as well as

QED? to obtain high-energy amplitudes.

It is natural, therefore, to apply the eikonal
method to the graphs of the vertex function.®'°
In the asymptotic region there are two distinct
types of contributions to the Feynman integral for
a vertex graph: eikonal contributions and noneikon-
al contributions. An eikonal contribution corre-
sponds to a region of integration where the large
momentum of the incoming particle is carried es-
sentially unchanged by a line of propagators to the
vertex and another line of propagators carries the
large momentum from the vertex to the outgoing
particle. In such a region we can picture the in-
coming particle as moving through the interaction
region, emitting only soft virtual particles, until
it reaches the vertex which is a hard interaction.
At this point, large momentum is carried away,
and then the particle continues through the inter-
action region, absorbing soft virtual particles, and
finally emerging as the outgoing particle.

The distinguishing mark of a noneikonal contribu-
tion is that there are hard interactions at places
other than the vertex. That is, either a propagator
carries both the large incoming momentum and the
large outgoing momentum or large momentum is
split between two propagators.

Figure 1 illustrates the two types of contributions



