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We conjecture for x7l amplitudes with I = 0 and I = 2 that Veneziano partial waves contain
essential singularities at infinity, and that both Veneziano and physical partial waves
contain infinitely many complex zeros on the physical sheet.

I. INTRODUCTION AND CON JECTURES

The asymptotic behavior of Veneziano partial-
wave amplitudes has been a subject of considerable
interest, primarily because the Veneziano model
may provide clues pertaining to the existence and,
should they exist, nature of dispersion, relations
for physical partial waves.

In the early literature, it was made plausible
by Drago and Matsuda' that all Veneziano partial
waves grow faster than any power along the
negative real axis of the energy-squared vari-
able. However, Park and Desai' recently studied
I= 1 Veneziano wx partial waves, and discovered
that these partial waves tend asymptotically to
zero in all directions (except along the ray at
0=0, where resonance poles occur at equally
spaced intervals). Thus the plausibility argu-
ment of Drago and Matsuda is not valid, and the
asymptotic behavior of Veneziano wm partial waves
with I=0 and 2 remains to be determined.

In this paper we report an investigation which
leads us to make the following conjectures:

(A) Veneziano ww partial waves with I=0 and
I= 2 grow faster than any power along any ray into
the left half-plane of the energy-squared variable.

(B) Veneziano wv partial waves with I=0 and
I=2 possess infinitely many complex zeros at
angles near 8= +2m on the physical sheet, with a
unique accumulation point at infinity.

(C) Physical sm partial waves with I=0 and I= 2

possess infinitely many complex zeros on the
physical sheet.

The considerations which lead to the preceding
conjectures are outlined below, together with

some of the consequences.

A'=E(s, u) E(s, t), —

A'= -E(t, u),

(2.1)

H. BASES FOR CONJECTURES

Consider the following Veneziano representation
for ww elastic scattering amplitudes':

A' = ,'F(t, u) —,'[E(s, t) + E—(s,u)—],

where the superscript on A denotes the s-channel
isospin,

F(1 —a(x) )I'(1 —o.(y) )
E(x, y) =—P ( ( ) ( ))

+ secondary terms,

(2.2)
a(x) —=a+ bx,

where a and b are real.
We shall denote the pion mass by p, and we use

the convenient energy-squared variable

v-=(k, i'=-,'(s-4p').
We normalize the A such that if they were unitary,
their partial waves would satisfy the representa-
tion

A ' (v) =u '(1+ 'i/lv)'"R', (v)e' &sinb, (2.3a)

for v&0, where R, is the ratio of elastic to total
partial-wave cross sections, and the phase shifts
5~ are real. The representation (2.3a) exists if
and only if

Im(1/A~'") = -p[(1+y, '/v)'"It', ] ' (2.3b)

for v&0, which is a necessary and sufficient con-
dition for A~'~ to be consistent with unitarity [ex-
cept that 1/At'l' contains a pole wherever 5, = ns
above threshold, and each of these poles may be
regarded as a 5 function in Im(1/A~'~')]. Bose
symmetry implies that partial waves with l even

(odd) are different from zero only if I is even (odd).
As a final remark on notation, we shall denote
partial-wave projections of the Veneziano ampli-
tudes (2.1) by V ' '.

The simplest way to obtain information about the
large- v behavior of V '~ in all directions is to
compute V 'l over a large region of the v plane.
Keeping only the leading term in the Veneziano
series (2.2) and using the values' a = 0.483, b

=0.01Vg ', we have computed the V 'l' for l=O, 1,
and 2 at a set of closely spaced mesh points span-

ning the region -250'' «Rev ~250'. ', 0 ~Imv
c250p'. (Since V '~'(v*)=[V '~ (v)]~, the values
for negative Imv follow immediately. )

Our results for V '~' support the conclusions of
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Park and Desai about I= 1 partial waves. How-

ever, we find that the partial waves with I=0 and
2 have a markedly different behavior in the left
half-plane. Specifically, we find that V ')' and
V")' for 1=0 and 2 can be well approximated over
the aforementioned region (except for a narrow
strip along the real axis) by functions d' of the
form

C( l)E f / 3)-0,5l7
G( ) C( ) -0. 71( /Il + (2 4}C( t)l + ln( /+2) ~ ~

where the C„' are constants whose values are
given in Table I.

Along any ray with l6l& —,'3, G(') tends to zero
like ))' '/lnv, which agrees with the known asymp-
totic behavior of V ') along a ray displaced slightly
from the positive real axis. ' However, along any
ray with —,v& l6l & v, G(') grows exponentially,
reaching values of the order of 10'p, ' within the
aforementioned region over which we have com-
puted the V ' '.

We also note that for any c&O, 6 ' possesses
infinitely many zeros inside the wedge (2)) - e) & 6
& 2w, and at most finitely many zeros in the upper
half-plane outside this wedge. Since G ' (v~)
= [G ' (v)]*, similar remarks hold for the con-
jugate wedge and the lower half-plane. In both
cases, the zeros have a unique accumulation point
at infinity.

Note in Table I that C, ' '/C, ' '= -2.00 for f = 0
and 2. Since A'= F(t, u) whi-le A' contains F(t, u)
with a coefficient of &, the exponential term in
G ')I is due entirely to the F(t, u) term in A' with
I=0 or 2, at least within the accuracy of our com-
putations (three significant figures).

To.facilitate our discussion of the accuracy of
the approximations V ') (v)=G ') (v} for I=0 and

2, we introduce discrepancy functions A(')'(v)
defined by

(a)
0.0 I

I I I

I I j

I j 1

I—

E

t2
(c) 0.0

used in the denominator because of the aforemen-
tioned zeros. )

In Fig. 1, we present upper bounds on the values
of h. and 4 for I=O and 2 over the region
250''& lRevl, 25''&Im v&250''. For lvlo-100'',
the upper bounds on & and b displayed in
Fig. 1 are sufficiently small to suggest strongly
that V ' ' and V ' with I= 0 and 2 satisfy conjec-
ture (A), and also the hypotheses of the following
theorem.

Theorem. Let F(v} denote a function which is
analytic on the physical sheet except for possible
cuts and poles along the real axis, subject to the
restrictions that at least one interval along the
real axis is free of singularities, and that F(v) is
real 'on every such interval. Suppose there exists

(2 5)

where the denominator is the average value of
lV

'
(v) l taken over a disk of radius Av= 20''

centered about the point v. (A local average is

TABLE I. Ualues for C(„'~ with P =0.50 @-',
which corresponds to F(p) =—125 MeU.

&C(i)rp,

(0)0 0.768i

(0)2 -1.54i

+28.5 +10.4i

-5.23 —0.45i

(2)2 0.098+0.673i -6.45 +1.68i

(2)0 -0.049 —0.336i -356 + 378i

-4.44 —19.Si

-2.52 +0.20i

+298 + 156i

-1.32 —. 1.28i

I-2 I I I I

0 I

10 Re ( vZv~)

PIG. 1. Upper bounds on (a) 6, (b) g (c) g(
and (d) g(»2



1218 E. P. TRYON

an e &0 such that E(v) does not tend to zero as
rapidly as v '" along any path to ~ on the physical
sheet. Suppose also that E(v) grows as rapidly as
v' along each of its cuts. If there exists a path to
~ on the physical sheet along which E(v) tends to
zero, then E(v) contains infinitely many zeros on
the physical sheet.

Proof. If E(v) satisfies the preceding hypotheses,
then 1/E(v) satisfies a once-subtracted dispersion
relation of the following form:

1 1 v —v, ", Im[1/E( v')]
E(v) E(v) m (v' —v)(v' —v)

+ (v —v,)Q (2.6)

where v, denotes the point at which the subtraction
has been made, and where v, and r; denote the
positions and residues, respectively, of any poles
which may lie on the physical sheet. The assumed
growth of F along each of its cuts implies that
Im[1/E] tends to zero as rapidly as v ' along each
cut, so the term involving the integral on the right-
hand side of Eq. (2.6) tends to a constant as v- ~.
Since F is assumed to tend to zero along some
path to , there exists a path to ~ along which
1/E grows without limit. Such growth is inconsis-
tent with Eq. (2.6) unless infinitely many poles are
present in the sum. Q.E.D.

All V '~' are real analytic functions with no sin-
gularities except for left cuts and, if I=O or 1,
poles along the positive real axis. All V '~ tend to
zero like v' '/lnv along a ray displaced slightly
from the real axis. ' The aforementioned results
of our computation of the V '~ with l =0, 1, and 2

suggest strongly that the V '~' and V '~ with I = 0
and 2 also satisfy the remaining hypotheses of the
preceding theorem. Since the V '~' do not oscillate
along the real axis, it then follows that V '~' and
V '~' possess infinitely many zeros at complex
points on the physical sheet. Because of the infi-
nitely many resonance poles in V ' ', there are
infinitely many zeros in V ' ' along the positive
real axis, and these zeros are sufficient to satisfy
the conclusion of the theorem. However, the ap-

proximating functions G ' possess infinitely many
zeros at angles near 8= +-,'m, with a unique accum-
ulation point at infinity, and we conjecture that the
V ' ' and V ' with I=0 and 2 share these proper-
ties.

Although we have not computed any V ' with
l & 2, the fact that the V ' ' and V '~ with I=O and 2

can all be approximated by functions G ' of the
form (2.4) leads us to extend the preceding con-
jectures about I=O and 2 partial waves to hold for
arbitrary l.

Thus far, our discussion has concentrated on the
leading term of the Veneziano series (2.2). How-
ever, the inclusion of secondary terms could not
invalidate conjecture (A) unless the secondary
terms contained an essential singularity which pre-
cisely canceled the one in the leading term. It is
not presently known whether there exists a com-
bination of secondary terms which would result in
such a cancellation. As for conjecture (B), the
existence of infinitely many zeros in V ' ' follows
from the preceding theorem, with quite modest
hypotheses about asymptotic behavior. If these
hypotheses are satisfied by the leading term of the
Veneziano series, then they will be satisfied when

secondary terms are included, unless such ex-
treme cancellations occur as to modify the asymp-
totic behavior in one or more specific and dramatic
ways. However, that part of conjecture (B) which
places the zeros near 8 = +&w has been made plau-
sible only for the leading term, and might require
modification when secondary terms are included.

Let us now consider physical A ', concerning
which we state and prove the following theorem.

Theorem. If there exists an e&0 such that A ' '
does not tend to zero more rapidly than v '" along
any path to on the physical sheet, and A', does
not tend to zero more rapidly than v '" as v-+ ~,
and if A ' grows as rapidly as v' for some c&0
as v- —~, then A ' contains infinitely many zeros
on the physical sheet.

P«of. If A " satisfies the preceding hypotheses,
then 1/A. '~ satisfies a once-subtracted dispersion
relation of the following form:

1
A(t)t(v) A(i)I(v )

v-v, , Im(1/A""(v')]
dv (v' —v,)(v' —v)

(2.7)

where v, denotes the point at which the subtraction
has been made, and where v, and r; denote the
positions and residues, respectively, of any poles

which may lie on the physical sheet. The assumed
growth of A '~' as v- —~ implies that Im(1/A('~~)

tends to zero with sufficient rapidity for the term
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involving the integral over the left cut to tend to a
constant as v- —~. However, the term involving
the integral over the right cut grows logarithmically
as v- —~ if R, tends to a nonzero constant as
v +~. If R, 0 as v +~, then the term involving
the i.ntegral over the right cut grows more rapidly
than logarithmically as v- -~. Since R, satisfies
the rigorous bound 0 &R, &1, we see that the inte-
gral over the right cut contributes a term to
1/At') which grows without limit as v- -~, where-
as 1/A~'~1 was assumed to tend to zero as v- -~.
Consequently, there must be infinitely many poles
present in the sum over poles in order to cancel
the growth of the term generated by the right cut.
Q. E.D.

The present author believes it reasonable to
conjecture that physical A ' with I=0 and 2 sat-
isfy the hypotheses of the preceding theorem, and
furthermore that infinitely many zeros occur at
complex v on the physical sheet. '

The theorem concerning physical A ' ' could, of
course be generalized to apply to functions other
than A ', but we shall not bother with such a
generalization here.

III. CONSEQUENCES

Having presented our conjectures and the moti-
vations for them, we shall now discuss briefly
their significance. The primary significance of
conjecture (A) is that V ' with I=0 and 2 do not
satisfy dispersion relations (with any finite num-
ber of subtractions). This suggests (but does not
prove) that physical A '~ with I= 0 and 2 do not
satisfy dispersion relations.

Notwithstanding the likelihood that V '~ with
I=0 and 2 do not satisfy dispersion relations, it is
straightforward to establish that if one writes
twice-subtracted partial-wave dispersion relations'
(henceforth PWDR's} for the S waves A~'~~, adjusts
the subtraction constants to agree with the V ',
and substitutes the Veneziano 5-function absorptive
parts of the first two towers' of resonances into
the integrals over the left and right cuts, then the
resulting functions agree with the exact V '~ with-
in 10% below E, = 700 MeV, and within 25% be-
low 900 MeV."A similar result holds for the D
waves. ' Thus even if physical A ' contain essential
singularities at infinity like those in V ' for I=O
and 2, it is reasonable to suppose that A ' can
be well approximated below 700 MeV by solutions
to twice- subtracted PWDR' s.'

The primary significance of conjecture (C) is
that 1/A ' contains infinitely many poles at com-
plex v on the physical sheet for I=O and 2. Since
unitarity can be expressed in a very simple way
for inverse amplitudes, namely, by Eq. (2.3b) to-

I
g( r)l y( r)r (3.2}

Since 1/V '~ is real for v&0, unitarity is satisfied
if and only if the absorptive part of p, is given by
the right-hand side of Eq. (2.3b) for v&0 (except
that p, may contain poles for v&0, which would
correspond to 5 functions in Imp', ). The dynamics
of Eq. (3.1) is contained in the real part of p~„ it
is obvious from Eq. (3.2) that an arbitrary A~'~

can be generated from Eq. (3.1) by a suitable choice
of p, . The inverse-amplitude method for unitariz-
ing Veneziano amplitudes (the original designation
'K-matrix method" is clearly a misnomer) con-
sists of analyzing and proposing models for the
functions p', defined by Eq. (3.2). Since none of the
models yet proposed" for p, have contained any
poles at complex v, these models for 1/Ai'~' have
contained the same poles as 1/V '~ at complex v.

In order to gain some insight into the potential
significance of the complex poles in 1/Ai'~ for the
low-energy region, let us consider the positions
and residues of the nearest poles in 1/V '~ . For
the sake of definiteness, we keep only the leading
term in the Veneziano series (2.2), and we again
use a=0.483'', 5=0.017' '. In Table II, we pre-
sent the positions v and residues r of the two poles
in 1/V 0 ' which lie in the upper half-plane and are

TABLE D. Positions and residues of nearest poles in
1/V ', together with values of the expansion parameters
$0 and $& defined in text. We have used P = 0.50 p. , which
corresponds to I'(p) =—125 MeV.

v/p2 hp/g

(0)0 29+ 67i

(0)0 41+211i

(0)2 49+ 122i

(0)2 59+256i

(2)0 25+ 135i

(2)2 38+182i

—26 —136i

76 —176i

-102 —106i

—84 —228i

154 —364i

-262 —370i

3.70

1.47

2.07

1.83

4.80

4.47

0.0305

0.0059

0.0000

0.0007

0.0291

-0.0053

gether with a pole in 1/A ' wherever 5, = nv above
threshold, many authors have obtained unitary
A ' from models for 1/A '~~."'" However, al-
most none of these models for 1/A ' have con-
tained any poles at complex v. The only exceptions
of which the present author is aware are those
models wherein A ' is obtained from V"l by an
equation of the form"

t)I
A(t)l (3.1)1+&,V& )

Upon solving Eq. (3.1) for p„one finds that p, is
precisely the difference function
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nearest the origin, the two such poles in 1/V
the nearest such pole in 1/V 2~0, and the nearest
such pole in 1/V ' '. Of course there are also poles
with conjugate residues at the conjugate points.

Near threshoId, the contribution of each pair of
poles at conjugate points can be approximated by

y yQ
- + -g= ~0+ ~i& (3.3)

We present in Table II the values of $, and $, cor-
responding to each of the aforementioned pairs of
poles. The values of $, are quite substantial, but
one subtraction is typically performed in a dis-
persion relation for the inverse of a partial wave,
and $0 can be absorbed into the subtraction con-
stant. However, the effect of (, cannot be absorbed
into the subtraction constant when only one sub-
traction is performed. The significance of the
values of $, in Table II can be judged from the fact
that p takes on the values 3p. , 6p. , 10', , and
20'' for E, = 500, 730, 910, and 1260 MeV,
respectively. Thus, for example, the two nearest
pairs of poles in 1/V ') make a contribution which
changes by about 0.44', between threshold and 1
GeV, while the two nearest pairs of poles in
1/V '~' make a contribution which changes by only
0.007'. over the same range of energies.

The pole parameters in Table II provide a model
for the nearest poles in I/A ' for I =0 and 2,
I=0 and 2. However, we have conjectured the
existence of infinitely many poles, and their net
effect must be considered. Toward that end, let
us recall that as v- -~, the net pole contribution
to the right side of Eq. (2.7) for 1/A ' changes in

just such a way as to cancel the growth of the term
involving the integral over the right cut. If, one
considers the simple case where R, (v) =1 and per-
forms the subtraction at v, =--,'p. ', then the term
generated by the right cut is precisely

(2/ )(I 2/ ) 1/21
i

1[ 1/2
( 2)1 2]i

(3.4)

for v(-p, '. [For v) 0, the right-hand side of Eq.
(3.4) gives the real part of the expression on the
left-hand side. ] If R, tends to zero as v- ~, then
the term generated by the right cut grows more
rapidly as v- -~ than is indicated by Eq. (3.4).
For example, if R, tends to zero like v '" as
v- ~, then the term generated by the right cut
grows like v' ' as v- -~. However, the first
derivative of v' ' is quite small for large negative
v, where the poles must cancel the growth of the
term generated by the right cut. Thus it may be
that the net contribution of the infinitely many poles
in 1/A ' does not vary much more rapidly near
threshold than the contributions of the poles pre-
sented in Table II, However, it could be other-
wise, and we presently have no means at our dis-
posal for deciding the matter.
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