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We formulate a functional self-consistency equation for the Pomeranchukon pole trajectory.
The only ingredients are unitarity in the t channel {the channel of the Pomeranchukon) and the
specification of n (0). The three solutions studied here are: e (0) =1, cut dominant; e (0)
=1-e, cuts dominant; and G. (0) =1, pole dominant. We further provide expressions' for the
t-channel partial-wave amplitudes in terms of a small number of free parameters; these ex-
pressions are adequate for the calculation of the high-s behavior of o«, ReE(s, 0)/ImF {s,0),
and the diffraction peak in the domain ~t[1n(s/so))/[1n1n(s/so)]~ - constant. Three prominent
conclusions are: (1) multi-Pomeranchukon phase space plays a leading role in determining
the relative pole-cut strength; {2) there are fixed cuts in the vacuum partial-wave amplitude
that accumulate at j=1 even when 0. (0) =1—0; (3) Schwarz trajectories o. {t)=1+ yt + ~ ~ ~

have a special status.

I. INTRODUCTION

Diffraction scattering has been discussed from
so many points of view that we wish to begin with
a review of what seem to be the relevant dynamical
considerations. Subsequently, we shall state which
of these we are able to incorporate in the present
paper. Our language is that of S-matrix theory,
but a field theorist will readily substitute "t-chan-
nel iteration" for "t-channel unitarity", for exam-
ple.

The Froissart bound and its saturation suggest

that s-channel unitarity is an important dynamical
consideration. ' This bound implies that total cross
sections cannot grow faster than (1ns)', and its der-
ivation rests in part on s-channel unitarity. Pres-
,ent experimental evidence is consistent with satu-
ration of the Froissart bound, or at least with total
cross sections that do not fall with a detectable
power of s.' Any theory that agrees with experi-
ment will therefore be on the verge of violating
the Froissart bound, and will be saved from doing
so only if s-channel unitarity is imposed in a form
no weaker than a bound on the magnitude of the s-
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channel partial-wave amplitudes, as in Froissart's
derivation. Some of the contemporary models of
diffraction scattering illustrate this point. For
example, Cheng and Vfu's study of electrodynamics
and the Regge-eikonal model show that s-channel
unitarity converts a Regge trajectory a(t) with

a(0) &1 into a pair of singularities with a(0) = 1.'
"Eikonalization" of the Pomeranchukon singular-

ity is one type of s-channel iteration of the t-chan-
nel Pomeranchukon exchange. As such, it should
produce Regge cuts, and it does. 4 At just this
point t-channel unitarity becomes an important con-
sideration. The discontinuities across the Regge
cuts in t-channel partial-wave amplitudes are con-
trolled by t-channel unitarity. " The discontinui-
ties determine the (Ins) corrections to the asymp-
totic forms of amplitudes, so a full calculation
must also take t-channel unitarity into account.
The cuts are particularly significant for t&0,
since they have flatter trajectories than the Pom-
eranchukon pole, and even at t=0 they control
ReF(s, 0)/ImF(s, 0) if a(0) = 1.'

The satisfaction of s-channel unitarity and t
channel unitarity simultaneously is beyond the ca-
pacity of contemporary calculations. Current mod-
els can be classified as having either s-channel
unitarity or t-channel unitarity. All the "eikonal-
ized" models, including those of Cheng and Wu, '
and Yang and collaborators' are among the former.
The multi-Regge model studied by Chew and others
is an example of the latter. ' It is true that Cheng
and Wu first iterate in the t channel, but their final
s-channel iteration of t-channel towers surely up-
sets the t-channel cut discontinuities. Similarly,
in multi-Regge theory one uses s-channel disper-
sion relations to recover the full amplitude, but
this does not impose s-channel unitarity. Hwa's

bootstrap recognizes the importance of both types
of unitarity, but does not fully exploit t-channel
unitarity. '

There are at least two further dynamical consid-
erations that should be mentioned. The first is
the condensation of an infinite number of Regge
cuts on j= 1 at t =0. Suppose there is a pole or cut
singularity in the even-signature, vacuum, I;-
channel pa, rtial-wave amplitude with o.(0) = l. As
mentioned, this is allowed by Froissart and sug-
gested by experiment. Then there must be addi-
tional Regge cut trajectories o (t):

n„(t)=na(t/n') —n+I (n=2, 3. . . .).
These all coincide at k =0: a„(0)= 1. Since the orig-
inal singularity must rise through t=0, cuts with
larger n lead cuts with smaller n in the scattering
region. Therefore, a complete understanding of
diffraction scattering 'depends delicately on the
summation of all the cut contributions. As we

shall see, the situation is not quite as hopeless as
this seems to imply, since the threshold behavior
of the cut discontinuities weakens as n increases.
At any finite s there is an interval of momentum
transfer over which only a specified number of
cuts are important. This interval increases with
the number of cuts included, and decreases with

s. Since the interval shrinks as s increases, the

Regge description of nonforward scattering be-
comes unwieldy at ultrahigh energies, although it
may be manageable over a limited interval of mo-
mentum transfers at presently accessible energies.

In view of this difficulty, it is worth mentioning
that Schwarz has put forward a unique method for
reducing the number of Regge cuts to only two. "
Schwarz cuts have been used by Hwa, "and they
arise naturally from the eikonalization of a trajec-
tory with n(0) &1. This suggests that they may be
forced on us by s-channel unitarity. Finally, they
appear in the discussion of amplitudes that violate
the Pomeranchuk theorem. " Schwarz imposes the
condition a„(t) = a(t) for all N. If we write a(t) in
the form

a(t) = 1+I'~'g (Int),

Schwarz's functional equation becomes

g(x) = g (x —2 Inn),

(1 2)

and one finds that g(x) must be a periodic function
of x with the logarithm of the square of every ratio-
nal number as a period. The only smooth solution
is g(x) =y, a constant. In order that the t-channel
partial-wave amplitude have no spurious fixed sin-
gularity at t=0, the two branches 1+yt'~' must be
Regge cut trajectories.

This brings us to the last item on our list of dy-
namical considerations. It is clear that any deep
discussion of diffraction scattering in the Regge
framework cannot ignore cuts. At present there
is no complete dynamical scheme for taking ac-
count of them. This difficulty is most concisely
expressed in Gribov's Reggeon calculus, where
the relevant dynamical object is the amplitude for
particle +particle - Pomeranchukon+ Pomeranchu-
kon. " There is no reliable way of calculating this
amplitude in terms of familiar amplitudes or pa-
rameters.

The foregoing observations have colored the ap-
proach we take in the present paper. Since diffrac-
tion scattering is complicated, we wish to make
only modest and clearly identified assumptions,
and to derive results that are reliable, if incom-
plete. Qur assumptions are the following:

(1) We take s-channel unitarity and experiment
into account only to the extent that the leading
Pomeranchukon singularity for t&0 is assumed to
have a(0) = 1. In Sec. III, we examine the case
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a(0) = 1 —5.
(2) We assume that this singularity is a pole, and

that the full complement of Regge cuts of Eq. (1.1)
is present. In a future paper we shall examine the
interesting possibility raised by Schwarz's self-
reproducing cuts. Schwarz cuts turn out to have
unique properties associated with their self-repro-
ducing character, so their discussion naturally
constitutes a separate topic. Here we merely re-
port that self-consistency akin to what we find in
this paper is also possible for Schwarz cuts.

(3) We exploit t-channel unitarity completely.
For this purpose we use the unitarity study of
Qribov, Pomeranchuk, and Ter-Martirosyan. '
This study includes intermediate states of arbi-
trary number of particles, and extracts from the
unitarity integrals the contributions of intermedi-
ate states of any number of Reggeons. The Reg-
geon unitarity relations are solved to obtain the
behavior of t-channel partial-wave amplitudes in
the presence of Regge cuts generated by n Reg-
geons. Our work starts with this representation
of the t-channel partial-wave amplitude. The uni-
tarity work of Gribov' should be distinguished from
his later papers on the Reggeon calculus. "' The
latter papers start with sums of Feynman diagrams
rather than unitarity.

(4) There are a few technical assumptions whose
significance will be clarified in later sections of
the paper. One is that there are only "weak" fixed
cuts at j = 1. The self-consistency of this assump-
tion is subject to a partial check. A second as-
sumption is that the Pomeranchukon pole and its
attendant cuts "interact. " This question has an
analog in the Regge theory of potential scattering.
In general, when two Regge trajectories cross, the
trajectory functions are singular at the energy of
the crossing. " If singularities do develop, we say
that an interaction occurs, otherwise not. We shall
give arguments that strongly indicate that the Pom-
eranchukon pole must interact with the multi-
Pomeranchukon cuts.

The spirit and results of our work are compara-
ble to at least two other lines of research. The re-
sults obtained by analyticity methods in Sec. IV are
similar to results found by Gribov and Migdal by
analyzing the vertices and Green's functions of the
Reggeon field theory. '4 The Pomeranchukon pole-
cut relationship we find has been studied by others,
but less conclusively. "'"

In Sec. II we use Qribov's representation to set
up a functional equation for the Pomeranchukon
pole trajectory. This equation is a self-consisten-
cy or bootstrap condition on the pole trajectory in
the presence of its cuts. We use the solution to
obtain an explicit representation of the partial-
wave amplitude near t=0 and j= 1, and discuss the

implications for diffraction scattering. In Sec. III
we discuss the modifications that occur if a(0) is
slightly less than one. In Sec. IV we observe that
the solution of Sec. II does not have Mandelstam's'
sign for the two-Pomeranchukon cut, 4 and we deter-
mine what further modifications are required to
obtain agreement with Mandelstam. In Sec. V we
review the insights that have emerged, and show

why the Schwarz trajectories have a special status.

II. POMERANCHUKON SINGULARITIES WITH

e(0)=1

Gribov et a/. have shown that an elastic partial-
wave amplitude has the representation

, (2.1)B(tj )+[1/a'( —,'t)]ln[j —2a( —,'t) + 1] '

where A and B are real analytic functions of t and

j at the branch point of the Regge cut due to inter-
mediate states of two Pomeranchukon poles. ' "
Actually, the discontinuity across the j-plane cut
of the denominator of Eq. (2;1) is not exactly con-
stant. What Gribov et a/. have shown is that the
threshold behavior of the discontinuity is a con-
stant. This means that B is not strictly analytic at
j=2a( ,'t} —1, bu—t contains weakly singular terms
like

[j —2a(~t)+1]"ln[j —2a(4t)+1] (n=1, 2, ...).
(2.2}

We shall later verify that such terms do not affect
our study, and can therefore be ignored. B will
further contain singular ter.ss due to intermediate
states of n Pomeranchukon poles. Gribov et al.
have shown that such terms have the threshold be-
havior

[j —na(t/n') +n —1]" 'ln[j —na(t/n') + n —1]

(n = 3, 4, ...) . (2.3)

These terms are potentially significant near j=1
and t =0, but they too will turn out to be negligible.
The coefficient of the logarithm in Eq. (2.3) arises
from the threshold behavior of n-Pomeranchukon
phase space, and it vanishes strongly for the high-
er cuts. It has the consequence that the behavior
of a(t) near t =0 is controlled by the collision of
the pole with the two-Pomeranchukon cut only.
Also, it provides an extra factor of (1ns) " in the
contribution of the n-Pomeranchukon cut to the
asymptotic amplitude in the s-channel. These two
simplifications are of central importance in the
Regge theory of diffraction scattering. Without
them it would be impossible to construct an ex-
pression for f (t, j) in terms of a finite number of
parameters.
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An improved statement of the results of Gribov
et al. is provided by the representation

A(f j) 2 4}
B(~ j)+-'~'(j}»([~(j)—f]/f'(j}] '

where t(j) is the moving two-Pomeranchukon cut in
the f plane. " t(j ) is given implicitly by the equa-
tions

2o( sf( j)) —I =j,
—,'f(2o, (f) —1) = f.

(2.5)

Equation (2.1) should be regarded as a. special case
of Eq. (2.4), valid where o.(t) is analytic, It is in-
adequate here because we anticipate that o.(t) has a
branch point at t=0, where the pole and cuts col-
lide. Equation (2.1) would have f(f, j) manifest that
fixed t-cut, in violation of the analyticity implied
by the Mandelstam representation and the Frois-
sart-Gribov definition of the partial-wave ampli-
tude. Equation (2.4) results from Eq. (2.1) when
one removes the t-cut by attributing an appropriate
fixed f-cut to B In ge.neral, t(j) and f(t, j) in
Eq. (2.4) will have fixed j-cuts if a(t) has a, fixed
t-cut, but fixed j-cuts violate no general principles.
In fact, the fixed j-cut of f(t, j) is unavoidable be-
cause if we try to remove it by attributing an ap-
propriate fixed j-cut to B, we are led back to
Eq. (2.1) with its illegal fixed f-cut. In conclusion,
Eq. (2.4) is the preferred statement of the results
of Gribov, et al. Equation (2.1), which is the rep-
resentation given by Gribov et al. , is valid only
where o.(t) is analytic.

We note in passing that the Schwarz trajectories
belong to the small class of trajectories that are
singular at I =0, but which give an analytic t(j).
For the Schwarz trajectories, t(j) =(j —1)'/y'.

The next step in our argument is to discuss the
analyticity of B. In the t plane, B can have no cuts
near t=0 for j=1 once we have dropped the weak
cuts of Eqs. (2.2) and (2.3). . This follows from the
standard energy analyticity of partial-wave ampli-
tudes B(t,j) .can have fixed or moving poles of ar-
bitrary order that are near t=0 for j=1, and in
Sec. IV we shall makes use of this possibility.
Here we assume that no such poles are present.
In the j plane, aside from the weak moving cuts,
B can have a fixed j-cut at or near j= 1. We as-
sume that any fixed j-cuts in B are so weak that
they can be ignored, like those envisione'd in Ref.
19. Later we shall report on estimates that par-
tially justify this assumption. Subject to these as-
sumptions, we can expand B(t,j) in a power series
about t = 0 and j= 1.

f(~ j}=A(~,i)/D(~, i),
D(t, j)= —',f'( j)ln[(t( j) —f)/f'( j)]

+ b, + b,t+b, (j —1)+~ ~ ~ .
(2.7)

Since f(t,j) is the even-signature vacuum ampli-
tude, it has a Regge pole at j= n(t). This pole can
appear either as a pole of A or a zero of D in
Eq. (2.7). In the former case the Pomeranchukon
pole does not interact with its cuts, and in the lat-
ter case it does. There is good reason to believe
that the noninteracting case is unphysical. Gribov
et al. show that the amplitude for particle+particle- Pomeranchukon+ Pomeranchukon has the form
vA/D, and the amplitude for Pomeranchukon+
Pomeranchukon- Pomeranchukon+ Pomeranchukon
has the form 1/D. Therefore, if the Pomeranchu-
kon pole is in A. rather than D, the Pomeranchukon
production amplitude has a square-root Regge cut
that is not generated by the Mandelstam mecha-
nism. 4 In addition, the three-Pomeranchukon ver-
tex would vanish identically. Both of these conse-
quences of a pole in A are implausible, so we as-
sume that the Pomeranchukon pole is a zero of D.
n(t) satisfies the self-consistency or bootstrap
equation

D (~, o'(f)) = o (2 9)

» f(2(i+1))—-'&(j)

+ b, + —,'b, t( j)+ -', b, (j —1)+ (2 9)

In this section we are interested in solutions of
Eq. (2.9) with t(1) = 0, which corresponds to o.(0)
= 1. At first glance it seems impossible for
Eq. (2.9) to have solutions with t(1) =0, because
then the logarithm diverges at j = 1 while all other
terms seem to remain finite. However, if t'(j)
vanishes like [ln(j —1)] ' at j= 1, the cut term in

Eq. (2.9) can take on any value at j = 1, including
-b,. This shows that we can expect t(j} to behave
like (j-1)/ln(j —1}at j=1. Further inspection
suggests that the solution of Eq. (2.9) with t(1) =0
has the expansion

This equation is most easily solved by making the
substitution t- —,'t(j). Using Eqs. (2.5) and (2.7), it
becomes

0=D(-.'f(i), -'. (j+ 1))

B(&j)= b, + b, t+ b, (j —1)+ ~ ~ ~ . (2.6) 1 (j —1) ) ' (2.10)

It is traditional to write f (f, j) in the form Substituting this expansion into Eq. (2.9), we find
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0 = (b, + -', X,) + —,
'

X,
ln[ -ln(j —1)]

ln j-1
+ —', (A., —A., —X,ln2) . , +R, +R, .In(j —1)

(2.11)

The remainder term R, receives contributions
from the higher terms in Eq. (2.10), and it vanish-
es at j= 1 "logarithmically. " R, receives contribu-
tions from b, (i &0) and the weak singularities of
Eqs. (2.2) and (2.3). Up to logarithmic factors, R,
vanishes linearly at j= 1, so R, is negligible com-
pared to R,. This means that all the terms in t(j)
that vanish linearly at j= 1 (up to logarithms) are
determined by bo and the two-Pomeranchukon cut.
The weak moving singularities and b, (i &0) deter-
mine terms in t( j) that vanish at least quadratical-
ly at j= 1, and which are not even shown in
Eq. (2.10). This justifies dropping the weak mov-
ing singularities in Eq. (2.9), and we see that we
could have dropped b, and b, as well. The first
three expansion constants in Eq. (2.10) are

z, = -2b„x,=0,

A., = -2 ho(1 + ln2) .
We now have D(t, j) near t=0 and j= 1:

(2.12)

bo ln2

xln j —1+, + ln-,' j —1

This trajectory is acceptable only if b, = B(0, 1) is
positive, since the real part of the trajectory must
rise through 1. However, this is the only dynam-
ical condition that must be met for a self-consis-
tent trajectory. By examining D as a function of t
for j&1, we find there is just one Pomeranchukon
pole on the physical sheet of the t plane, with t &0.
In the j plane, this pole and the two-Pomeranchu-
kon branch point move as a function of t and be-
come complex as t is decreased through t=0. At
t=0 the pole residue vanishes. A second pole and

(2.13)

The Pomeranchukon pole trajectory can be calcu-
lated from Eqs. (2.5), (2.10), and (2.12). The re-
sult is

a(t) = 1 ——ln — 1+t t in[-in(t/b )] 1
+ ~ ~ ~

b, b, ln(t/b, ) ln(t/b, )

(2.14)

ReE(s, 0) -v
ImF(s, 0) ' " 21n(s/s, )

(2.15)

Note that we must require A(0, 1) &0, and that the
leading behavior of the cross section is controlled

'by the two-Pomeranchukon cut since the pole resi-
due vanishes at t =0. The corrections provided by
b, and the weak cuts of Eqs. (2.2) and (2.3) are
down by factors of [1n(s/s, )] '.

According to Gribov's Reggeon calculus, " it is
impossible to construct a field theory in which the
two-Pomeranchukon cut contributes positively to
the total cross section, as in Eq. (2.15). Gribov's
observation is based on a very general principle,
namely, the real analyticity of Feynman ampli-
tudes. Gribov and Migdal use this observation to
rule out a "strong coupling" solution of the Reggeon
field theory, and what we have calculated here is
the S matrix version of a strong coupling solution. '4

Gribov's stipulation implies that it is inconsistent
with the general principles of quantum mechanics
to have n(0) = 1 and a vanishing Pomeranchukon
pole residue at / =0. Vfe believe this argument is
correct, and in Sec. IV we shall investigate what
modifications are required to make the pole resi-
due nonvanishing at I;=0. Once this is done, the
two-Pomeranchukon cut can contribute negatively
o Otot ~

A
X

8
:0

two-Pomeranchukon cut emerge from behind the
fixed cut at j = 1 and take up complex-conjugate
positions so that f(t, j) remains a real analytic
function of j for t &0. Real analyticity is main-
tained only because we have used Eq. (2.4) rather
than Eq. (2.1) as our starting point. There are in-
finite numbers of poles and cuts on the Riemann
sheets entered by winding around the fixed and

moving j-cuts, but they all remain off the physical
sheet for real t." Therefore, they do not contrib-
ute to asymptotic amplitudes in the s channel. The
pole and cuts in the j plane that we have described
are depicted in Figs. 1 and 2.

At t = 0 the poles and cuts of Figs. 1 and 2 con-
dense into a single cut with branch point at j= 1.
It is easy to evaluate the Sommerfeld-Watson inte-
gral to find the leading asymptotic expressions

2 A(0, 1)o,«, „- (const)'
b

X

A

FIG. 1. Poles and cuts in the jplane for t & 0.
A: o (t); B: 2&(t/4) -1; C: 1.

X

A%

FIG. 2. Poles and cuts in the j plane for t (0.
A. 0, (t); B. 20. (t/4) -1 C: 1.
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(2.16)

The interval of momentum transfer is

f In[In(s/s, )]
b, ln(s/s, )

(2.1V)

When -t is at the upper limit of this range, the

The issue of the sign of the two-Pomeranchukon
cut is related to a more familiar dispute. In the
first calculations of Regge cuts, Mandelstam's
calculation~ gave a sign for the two-Reggeon cut
that disagreed with the sign found by Amati, Fubi-
ni, and Stanghellini. " The disagreement has been
handed down to the successors of these calcula-
tions. Models that are based on s-channel unitar-
ity, like the multi-Regge model, tend to give the
Amati-Fubini-Stanghellini sign, "while models
based on the full amplitude, like the absorption
model, tend to agree with Mandelstam. Most com-
mentators favor the Mandelstam sign. " The sign
we have found in this section is the Amati-Fubini-
Stanghellini sign.

The most intriguing prediction of Eq. (2.15) is
the asymptotic ratio of the real and imaginary for-
ward amplitudes. It contains no arbitrary param-
eters, and it is in order-of-magnitude agreement
with experiment. Foley et al. have measured the
ratio for the pion-nucleon amplitudes. '4 They find
a ratio of about -0.1 for w -p and about -0.2 for
v'-P between 8 and 20 GeV/c. Using the conven-
tional so of 1 GeV', we predict about -0.4. How-
ever, since In(s/s, ) is only 3.7 at 20 GeV/c, there
will be 30% corrections from the multi-Pomeran-
chukon cuts, and the charge dependence of the ex-
perimental results shows that secondary trajec-
tories play a role. In any case, the modifications
of Sec. IV introduce a parameter into the ratio and
change the sign of the prediction.

The diffraction scattering predicted by the distri-
bution of singularities shown in Fig. 2 is difficult
to assess analytically. One might guess that the
combination of a fixed cut and singularities moving

rapidly to the left will give an elastic cross section
with both shrinking and nonshrinking components.
It is easier to estimate the interval of -t over
which the multi-Pomeranchukon cuts are negligi-
ble. The threshold behavior of n-Pomeranchukon
phase space introduces a factor (Ins)'-" in the con-
tribution of the higher cuts. This factor allows the
pole and two-Pomeranchukon cuts to dominate near
the forward direction, even though the higher cuts
dominate for large enough -t. We estimate that
the three-Pomeranchukon cut is small compared
to the two-Pomeranchukon cut for momentum
transfers such that

elastic cross section has dropped by a factor of
[In(s/s, )] '. lf we continue to take s, = 1 GeV', at
20 GeV/c the three-Pomeranchukon cut comes in
when the elastic cross section has dropped by an
order of magnitude. Experimentally, this range
is -t~0.5 GeV', and b, is about 1 GeV'.

Equation (2.4) incorporates the effects of inter-
mediate states of two Pomeranchukon poles. As
we have seen, the cuts generated by more than two
Pomeranchukon poles are unimportant near t = 0,
both in the sense that they do not affect a(t), and

in the sense that they contribute subordinate terms
to the asymptotic s-channel amplitudes near t =0.
In principle, Eq. (2.4) should also include terms
coming from intermediate states of several poles
and cuts, or of several cuts alone. Here again,
phase-space arguments show that such terms are
ordinarily negligible near t = 0 because, for exam-
ple, two-cut intermediate states give a branch
point whose position and threshold discontinuity

'

are like that of intermediate states of four poles.
However, in the present section, where the pole
residue vanishes at t=0, such usual suppression
of intermediate states with cuts no longer holds.
Given the linear vanishing (up to logarithms) of the
pole residue at t=0, the two-cut intermediate state
gives a contribution at t= 0 that is comparable to
the two-pole intermediate state. Fortunately, in
Sec. IV, where the pole residue is finite, no such
problems arise, and all the approximations made
in setting up the equation for a(t) are controlled,
except the assumption that any fixed cut at j = 1 in
B(t,j) is weak. To discuss this assumption, recall
that in Gribov's original unitarity paper, ' one ob-
tains expressions for f(t,j) —f~'"~(t, j},where (2n}
indicates continuation around the 2n-particle uni-
tarity threshold. For the n-Pomeranchukon cut,
where a(t) W a~'"~(t), one can separately determine
the Hegge-cut discontinuities of f and f~'"~, arriv-
ing at the representation we have quoted. This
separation cannot be made for a fixed cut, so it
cannot be verified that the fixed cut of Eq. (2.13)
contributes negligibly to f(t,j) when included in the
list of intermediate-state j singularities. What can
be shown is that f —f"~ has a fixed cut of negligi-
ble strength. Tgis is a partial check on consisten-
cy, since it is unlikely that f would have a, weak
cut if f —f~" had a strong cut. One can further
conjecture that f and f —fi3"~ should have similar
discontinuities across fixed cuts because they have
similar discontinuities when the cut moves, how-
ever slowly.

We should mention one exceptional situation that
allows the Pomeranchukon pole to appear as a zero
of D and still not interact with its two-Pomeranchu-
kon cut. In Ref. 19 we point out that the factor
f'( ,'(j+1)) in the a-rgument of the logarithm of
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Eq. (2.9) can be replaced by a constant or various
other expressions, with only trivial changes in
Eq. (2.12). However, if f'( 2(j-+1})is replaced by
some function that behaves like c(j —1) at j = 1,
a(t) becomes analytic at t=0. We see no reason
why this particular choice should be the physical
one.

III. POMERANCHUKON SINGULARITIES WITH
n(0) = 1-5

When the intercept a(0} of the Pomeranchukon
pole is at 1 —5 (5 small), it is still possible to ob-
tain a self-consistent trajectory. The possibility
of self-consistency for a continuous range of a(0)
is at odds with our expectation for trajectories
determined by a functional equation like (2.8). We
might expect Eq. (2.8) to have many solutions ar-
ranged in a discrete sequence, with only a discrete
sequence of possibilities for a(0). (In a typical
calculation only a small number of the solutions
would be taken seriously. ) The difference of the
present case is evident when we display the full
functional dependence of D:

D(t, t(j), t'(j)) = b. +-'t'(j)»{(t(j) —t]/t'(j))

(3 1)

Here we have dropped all the terms that were
shown to be unimportant in Sec. II, assuming that
they remain unimportant if a(0) is sufficiently
close to 1, or what is the same thing, t(1) is suffi-
ciently close to zero. Thus, the equation deter-
mining t(j) is

which is a nonlinear differential-difference equa-
tion. %'e expect such equations to have solutions
passing through any f(1). In fact, we expect an in-
finite number of solutions passing through any t(l},
because the differential-difference equation is
equivalent to a differential equation of infinite or-
der:

(3 2)

Thus the problem is not why there should be solu-
tions with any t(1), but how to deal with an infinite
number of possibilities. The explanation lies in
the factor j —1 in the translation operator in
Eq. (3.2); it guarantees that all the solutions having
a given t(1}have the same asymptotic expansion
about j = 1. This behavior is plausible because t(j)
= f(-,'(j+ 1)) at j= 1, and it explains why we found a
unique expansion about j= 1 in Sec. II. If it were

A„(e —e,/2")""
ln( e —A/2") (3.4)

These singularities of the inverse trajectory are
successively weaker, and they accumulate at e =0,
or j = 1. The presence of such singularities means
that f(t, j) has fixed j-singularities accumulating
at j= 1, even though a(0) = 1 —5.

These fixed j-cuts are disturbing, because there
are many channels with the following properties:
(1) nonvacuum quantum numbers; (2) o.(0) well be-
low one; (3}the amplitude receives contributions
from intermediate states of two Reggeons with the
quantum numbers of the channel. The discussion
we have just given seems to require the existence
of fixed cuts accumulating at j= 1, unless the tra-

not for the asymptotic equality of all the solutions
of Eq. (3.2) at j= 1, the functional equation would
have little predictive power.

These observations about bootstrap equations
are of general applicability. If one goes beyond
crude approximations, bootstrap equations must
generally be expected to contain differential oper-
ators that greatly reduce the predictive power of
the equations.

The specific self-consistency equation we wish
to study is

-2'
In{[t(1+e) —,'t(1+ 2@—))/t'(1+e))

(j= 1+2e), (3.3)

for parameters b, &0, t(1)&0, t(j) real for j &1.
The existence proof for solutions of Eq. (3.3) is
difficult because the argument is advanced: To
calculate t'(I+a) for (e(& p, one must know t(l+e)
for (c(&2p. Therefore, no local existence proof is
possible in the neighborhood of e =0. Existence
proofs in the literature are based on continuity as-
sumptions that are not satisfied by Eq. (3.3)." We
are forced to assume that Eq. (3.3) has solutions,
and proceed to a qualitative discussion of their
properties.

For some Reeo&0 we have t(1+e,)= —,'t(1+2m, ).
1+eo is the angular momentum and —,'t(1+ 2e,) is the
energy at which the Pomeranchukon pole and two-
Pomeranchukon cut trajectories collide. From
Eq. (3.3) we might expect that t'(1+a) has the sin-
gular behavior -2b, /In(e —e,), so that t(1+a) has
a singular term behaving like -2bo(e —e,)/In(e —c,).
The presence of t(1+2m) in Eq. (3.3), together
with this singularity, implies that f'(1+ e) has a
further singularity at —,'~o, with leading behavior
2A, (E —2fo}/In(E pE'o), This leads to a second
singular term in t(1+ e) with leading behavior
A, (e —~e,)'/1n(c —3e,). The argument can be con-
tinued with the conclusion that near e,/2" there is
a singularity in t(1+ e) with leading behavior
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I+ 2qo

I

Rej

I+2g+0

FIG. 3. Branch lines of t (j). There are an infinite
number of branch points that accumulate at j=1. After
detailed calculation, these branch lines are shown to be
on unphysical sheets, and t (j) is analytic in the plane
with a cut up to j=1.

jectories behave so peculiarly that the pole never
collides with its cuts. However, this conclusion
is not required by t-channel unitarity when ~eo~ is
large, as it is when a(0) is well below one. In
Eq. (3.1) we can replace the numerator of the loga, —

rithm by an arbitra, ry function h(t( j) —t). Then,
as long as h(x) - x when x- 0, we satisfy t-channel
unitarity. We are perfectly free to make h. singular
to x„where x, .= t(1+-,'e, ) —,'t(1+&,)—, in such a way
as to remove the singularities of Eq. (3.4). There
is a spurious moving cut introduced into f(t, j) by
the singularity of lz, but it lies below the leading
singularities. This possibility is unavailable only
when x,-0, which corresponds to o,(0) = 1 —5, the
case considered in this section.

The terms of Eq. (3.4) are complex at e = e„
since Rema&0. Real analyticity of t(j) implies that
there are two solutions of t(1+a,) = ,'t(1+ 2@,), e,—
and e0*. There are two pole-cut collisions for e0
0, and two sequences of singularities of the form

t(j) =t(1)+P a„(j—1)".
n=l

(3.5)

We then put Eq. (3.3) in the form

given in Eq. (3.4). These singularities of t(j) are
illustrated in Fig. 3. It should be emphasized that
there are further sequences of cuts due to multi-
Pomeranchukon intermediate states that are not
illustrated in Fig. 3.

There is one further possible elaboration, which
is actually realized. Since there are cuts of t(j)
all the way up to j=1, it is possible for the pole-
cut collisions to occur on unphysical sheets of t(j),
even for very small e, . Then t(j) is analytic in the
j plane cut along the real axis up to j = 1, and the
branch points of Fig. 3 are on other sheets of t(j ).

This qualitative discussion can be put on a quan-
titative basis by constructing a series of approxi-
mations to t(j). The sequence we construct has
the following three properties: (1) It is an asymp-
totic sequence as t(l)-0, so we expect it to be a
useful approximation to the solutions of Eq. (3.3)
when t(1}is small; (2) the (n+1)st member of the
sequence has n of the singularities exhibited in
Eq. (8.4), on unphysical sheets of t(j), and with
slightly modified properties; (3) each member of
the sequence is analytic at j=1. Because of prop-
erty (3) we know that the sequence cannot converge,
since t(j ) is not analytic at j = 1. To construct the
sequence, we begin with a power series about j=-1
as an ansatz for t(j},

t(1+a)=t(1+a)+ ' ' + ' det'(I+a)ln2boa, e a, . ', t(1+ q) ——,'t(1+ 2e)
260 + al 260 + l 0

t' I+e

We substitute Eq. (3.5) on both sides and find

a, = -2 ho/[In —', t(1) —lna, ],

(8 6)

(3.7)

where

(m)

(8 8)

Ql ~ ~ 1 qP
(m)

(3.9}

means sum over all sets of p non-negative integers (q,.}that satisfy the restrictions
p

Qq, =m, Qtq, =p.
i=1

Equation (3.7) determines a, . When t(1) is close to zero, a, has the leading behavior -2b, /lnt(1), and the
parameter a,/(2b, + a, ), which appears in Eqs. (8.6) and (3.8), has the behavior -1/lnt(l).

Equations (3.8) are a set of nonlinear recursion relations that determine the a„ for n ~ 2. The right-hand
side depends only on the a, with i &n, since the p=n =1, m = 1 term of the sum contains a contribution -na„.
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It is easy to verify that Q„has the form

n [t(I)]n-1~ ns 2b + aP=1
(8.10)

where the a„~ are numerical constants independent of t(1). For t(1) close to zero the terms with small P
dominate the terms with large P because of the limiting behavior of the parameter a,/(2b, + a,). In particu-
lar, the leading contribution to Q„ is given by the constants

(-I)"
ans

( I) (s) (3.11)

It is easy to verify that the recursion relation, Eq. (3.8), determines the a„~ in terms of the a„,~, with
n'&n, P'&P. The condition P'&P is crucial for the construction of our sequence of approximations. It
means that any approximation that has the correct Q„~ for p' & p generates an approximation with correct
a„~ for p &p+1 when the former is inserted on the right-hand side of either of Eqs. (8.6) or (3.8). This
suggests the following iteration procedure. We begin with

(3.12)

where a, is determined by Eq. (3.7). We then generate a sequence of approximations by turning Eq. (3.6)
into an iteration formula, i.e.,

ts„(e+ 1) = t~(1+ a)+ ' ' + ' dÃt~(1+a)ln

0+Quip+

Qyp
(3.13)

The foregoing discussion establishes that the sequence has the property

ts„(1+c) —t~(I + e) =[a,/(2bo+a, )]~"t(1)g~(a,e/t(1)) . (3.14)

This is precisely the criterion that the sequence be an asymptotic sequence in t(1) for fixed a,e/t(1). ss We
therefore expect the sequence to form a good sequence of approximations to the solutions of Eq. (3.3) for
0 & ~e

~

& t(1)/a, . Although this interval shrinks as t(1) approaches zero, it always includes the points at
which t(1+ a) is singular, as we shall see.

The first iteration is

2a, bne 3a, t(1) 2a, e 2Q~Ct, (1+E)=t(1)+2b.'+'a, + 2(2b'. +a) 1+St('1) ln 1+St('1) (3.15)

Q E 2Qc Q 2Qe
St 1

The expansion of t, (1+a) has the same a„s for p &1 as t, (1+a), so t, (1+a) is as suitable for further itera-
tions as t, (1+&). This shows that the appearance of the first power of the logarithm in Eq. (3.15) does not
indicate a real discrepancy with Eq. (3.4). Higher iterations will provide the corrections, although the
corrections might be smaller if one iterates t, (1+e).

The collision equation, t,(1+a,) = ,'t, (1+2m, ), ha—s solutions near e, at co and e,", where

(8.16)

It is easily verified that the power-series expansion of this approximation is given by Eqs. (3.10) and (3.11)
with a„~=0 for P &1. The trajectory is singular at e, = -St(1)/2a„but the singularity does not have the
character indicated by Eq. (3.4), nor does e, quite satisfy the collision equation t, (1+e,) = —,'t, (1+2m, ).

To understand these deficiencies, we first note that we can replace t, (1+@)by t, (1+a) without harm:

e, = — — ——iwt(s1) O(+t(1)a,) .3t(1) 3t(1)
2Q, 4b, (3.17)

The remainder cannot be evaluated from t„but the three terms exhibited will be the same in all orders of
iteration. These collisions are. very near Ey showing that t, does the best it can -but they are on sheets
of t, (1+v) reached by passing. through the branch cut that terminates at e,. We take this to signify that
t(1+a) is analytic in the e plane cut along the negative axis. There will be a sequence of branch points on
the negative real axis, with the branch point at e,/2" appearing in the (n+ 1)st and higher iterations. The
collision singularities shown in Fig. 3 will be on unphysical sheets entered by passing through these real
cuts There wi. ll be singularities at e,/2" and e,*/2" in the (n+2)nd and higher iterations.

We can use Eqs. (2.5) and (3.15) to obtain the first of an asymptotic sequence of approximations to the
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Pomeranchukon trajectory:

2a, 4(2bo+ a,) t(1) 3 3t(l) t(1) ' t(1) j '

The relation between ot(0) and t(1) given by this equation verifies that t(1)20 corresponds to o(0}61.

IV. POMERANCHUKON SINGULARITIES VATH n(0) = 1 AND MANDELSTAM CUT SIGN

In See. II we pointed out that the Pomeranehukon trajectory and partial-wave amplitude found ther'e are
not acceptable because the discontinuity across the two-Pomeranchukon cut contributes positively to total
cross sections. In this section we shall investigate what alterations must be made to change the sign.

The reason the cut is forced to contribute positively in Sec. II is that the pole residue vanishes at
t =0 so that the cut leads. The vanishing of the pole residue at t =0 can be traced to the logarithmic singu-

larity of o.'(f) there. The only way to change the behavior of n'(t) is to make B(t,j) singular at t =0 and

j= 1, so that the logarithmic singularity in Eq. (2.9) is compensated by B rather than t'(-,'( j+ 1}}.
There are two ways to make B singular at t=0 and j= l. One is to attribute to B a fixed j-eut that di-

verges at j=1. Unfortunately, the constraints imposed on fixed j-cuts by t-channel unitarity are ambigu-

ous, as discussed in Sec. II, so it is not feasible to pursue the possibility of a. fixed cut. The second possi-
bility is some sort of moving pole that passes through t=0 and j=1. We ean easily treat this possibility.

By trial we find that the simplest behavior of A and B near t= 0 and j= 1 is provided by the expressions

a(t,j)=
[c,t+ c,(j —1) + ~ ~ ~ ]',

I

8 4 5b, t+ b~{j —1)+ b~t + b4( j —1) + bst( j —1)
[c,t+ c,(j —1) + .. ]'

(4.1)

Note that A. and B must share a second-order pole if the Pomeranchukon-pole residue is to be finite at t = 0.
This behavior is also desirable on two further grounds. First, the amplitude for particle +particle
- Pomeranchukon+ Pomeranchukon is WA/D, so a first-order pole in A. would introduce a spurious moving

branch point into this amplitude. With Eq. (4.1), the Pomeranchukon-Pomeranchukon production amplitude

has a moving first-order zero, so its analyticity is unmodified. Second, the fact that A. and B share the

zero means that the elastic amplitude has no zero that moves through t=0 and j=1, and there is no viola-
tion of the Herglotz property in taking a second-order pole. The sole effect of the moving pole is to weak-

en the two-Pomeranchukon cut enough to permit o.'(t) to remain finite at f =0.
The self-consistent equation for t(j) is

. 0 = —,'b, t(j) +-,'b, (j —1)+ &b,t'(j) +-,'b, (j —1)'+-', b, t( j)(j —1)
t

+ -,'ft(~ [,' t(cj) -,' +(jc--1)]'ln t j —,'t(j) t'— (4 2)

For t(j) we write the expansion

f(j) =X,(j -I}+Z,(j —I)'+X,(j —I)'In(j 1)+ ~ ~ ~ .
Substituting into Eq. {4.2) we find

Ao = -2b,/b„X, = -b~/b, + b, blab,
' —b,mb, /b, ' —2b, (b,c, —b, c,)'(ln2)/b, ,

X, = b, (b,c, —b,c,)'/b, '.
The corresponding Pomeranchukon trajectory is obtained from Eq. (2.5):

(4.3}

(4.5)a(f) = 1 — ' —(b~ b4 —b~b2bs+ bm b~)—~+ (b~cm —b~c, ) 2 lnb~t

In this formulation of the self-consistency equation, there would be a pole trajectory passing through n(0)
= 1 in the absence of cuts; it is given by the first three terms of Eq. (4.5). The two Pomer-anchukon cut

provides a modest modification to this trajectory. b, /b, must he negative so the trajectory rises.
The. partial-wave ampbtude near t=0 and j= 1 has the form

ea]

f(t j)= Ib t+b(j —1)+b t'+b (j —1) +b t(j —1) —~[t t+b (j —()]'ttt j —1+
1 3

(4.6)
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Here C is a contour around the cut of f(0,j), and
we have approximated -cot-,'vj by —,'v(j —1). Since
f(0, j) is real analytic, for high s we find

vs d ImE(s, 0)
d(lns) s

= (const)'s
do'

d(lns)
' (4.9)

Therefore, any dlstr1but1on of PomeraIlchukon sin-
gularities that has o „,bounded by a constant at
high energy will have the signs of ReE/Im E and
the leading cut contribution to o gpg linked as in
Eq. (4.7). On the other hand, the Froissart bound
allows o „,to grow as fast as (lns)' at high ener-
gies. This corresponds to a third-order pole at
j= j., and in this case the pole leads the eut in both
ReE and ImE.

A pole-cut relationship similar to the one we
have found has been obtained by Gribov and Mig-

The cuts and poles produced by this amplitude are
shown in Figs. 1 and 2. Note that in Eq. (4.6) there
is no fixed eut at j= 1. Its absence is due only to
the fact that we have kept the minimal number of
terms required to expose the branch point in t(j).
In higher approximations the fixed cut will be pres-
ent. At t=0 w'e can evaluate the Somrnerfeld-
Watson integral. In this instance the predictions
are

2
2 QP C2

) (
— (const) 1 +

2 1 P

Re E(s, 0) )Tc,'
ImE(s, 0) ' " 2b,ln'(s/sa)

'

Note that if we insist on Mandelstam's sign of the
two-Pomeranchukon cut contribution to o „, (which
is the motivation of this section), then ReE/Im E
disagrees in sign with experiment in the case of
pion-nucleon scattering at Brookhaven energies.
Indeed, at present energies both the sign of ReE/
ImE and the approach to constant cross section
from above agree w'ith the Amati-Fubini-Stanghel-
lini sign of the cut. Thus we'have a situation where
on the one hand we have good theoretical reasons
for choosing b, &0, and on the other hand experi-
mental data suggest b, &0 at presently accessible
energies. The simplest rationalization is to assert
that we have not yet reached asymptotic energies.

One point that bears on this discussion is the fol-
lowing. There is a general connection between the
signs of ReE/ImE and the behavior of o „,at high
energy if at t =0 the partial-wave amplitude has a
branch point at j = l. %'e begin with the Sommer-
feld-Watson integral:

dal, '~ starting from Gribov's Reggeon field theory. "
One conclusion of these authors is that their Pome-
ranchukon pole must be "quasi-stable, "meaning
that the three-Pomeranchukon coupling vanishes
when one of the Reggeons has j=1 and t= 0. Quasi-
stability is required if the two-Pomeranchukon eut
is to have Mandelstam's sign. It is not difficult to
see that our assumption that B(t,j) has a second-
order pole is equivalent to quasi-stability. The
amplitude for Pomeranehukon+ Pomeranchukon- Pomeranchukon+ Pomeranchukon is 1/D(t, j).
There is a second-order zero in the residue of the
Pomeranchukon pole at t =0 in this amplitude,
which corresponds to a linear vanishing of the
three-Pomeranehukon vertex at t=0.27 Gribov
et u/. have no more insight than we do about the
dynamical origin of the pole in B, or quasi-stabil-
ity. Quasi-stability is simply necessary if we si-
multaneously demand a(0) =1 and the Mandelstam
eut sign.

For t 10, there is a part of the diffraction cone
that is adequately described by the Pomeranchukon
pole and tw'o-Pomeranchukon eut. It is specified
by Eq. (2.17), with b, replaced by -I),/I), .

V. SUMMARY OF RESULTS

Two main insights have resulted from our inves-
tigation. The first is that near t=0 the multi-
Pomeranehukon cuts are suppressed by the phase-
space factor exhibited in Eq. (2.3). This suppres-
sion is necessary in order to achieve a self-consis-
tency condition on o, (t) near t=0 in terms of a finite
number of paraIneters. Likewise, the suppression
allows us to give expressions for the partial-wave
amplitude near t =0 and j =1 in terms of a few pa-
rameters, and to determine the asymptotic form of
the s-channel amplitudes within the momentum
transfer interval given in Eq. (2.17).

The second insight is that the two-Pomeranchukon
cut must itself be suppressed if a partial-wave am-
plitude is to be constructed that has the pole lead-
ing at t =0, and allows the Mandelstam cut sign.
This' was achieved in Sec. IV by means of a moving
pole in 8. This additional suppression has dynam-
ical origin that does not lie in t-channel unitarity,
and it is clearly of interest to discover its origin.
The suppression makes the Pomeranchukon quasi-
stable in the terminology of Gribov.

In See. IV we have constructed the simplest par-
tial-wave amplitude that is consistent with t-chan-
nel unitarity, and which yields the Mandelstam cut
sign. Although we have not listed all the possibili-
ties investigated, we did try all the simpler forms
of A and B before settling on Eq. (4.1) as the sim-
plest parametrization consistent with our objective.
Here we wish only to point out that one important
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FIG. 4. Unitarity diagram for the contribution of two
Pomeranchukon poles to the discontinuity across the
four-particle cut. The energy and angular momentum
are indicated.

case was left out. Its nature can be indicated by
reviewing the mechanism by which Regge cuts are
generated. In Fig. 4 we show the contribution of
intermediate states of two Pomeranchukon poles to
the discontinuity of f(t, j) across the four. -particle
cut. A Regge pole occurs at j= a(t, )+ u(t, ) —1, and
since t, and t, take on continuous values in the inte-
gration over phase space, the pole is drawn out
into a cut. The branch point occurs where n(t, )
+ u(t, ) —1 achieves its extremum, with t, and t,

constrained by energy conservation, t,' '+ t, ' '
= t'~'. This yields the familiar trajectory
2n(4f) —1. The area of the (t„ f,) phase-space
plane that contributes to the discontinuity across
the Regge cut near its tip is inversely proportional
to the second derivative of a(t, )+ n((t' ' —t, ' ')')
with respect to f, at t= ,'t„—whi ch is 2u" (-,'t)
+4n'(-,'f)/t. This expression vanishes identically
if n(t) = u(0) + y t ' ', which is just the Schwarz cut
i: n(0) = 1. For such trajectories multi-Pomeran-
chukon phase space no longer vanishes as rapidly
near the tip of the cut as we have assumed, and

our investigation must be repeated. Near t =0
there are phase-. space modifications even if there
are corrections to the Schwarz cut; it is only nec-
essary that the leading terms in a(t) be n(0)+yt' '.
As mentioned in Sec. I, the Schwarz trajectory is
interesting because it generates only two Regge
cuts, and because it arises from the eRonalization
of a pole with a(0) & 1. We shall investigate this
remaining possibility in another paper.

*This work is supported in part through funds provided
by the Atomic Energy Commission under Contract No.
AT (30-1)-2098.

~M. Froissart, Phys. Rev. 123, 1053 {1961).
~J. V. Allaby etal. , Phys. Letters 30B, 500 (1969).
3H. Cheng and T. T. Wu, Phys. Rev. Letters 24, 1456

(1970).
4S. Mandelstam, Nuovo Cimento 30, 1127 (1963); 30,

1148 (1963).
~V. N. Gribov, I. Ya. Pomeranchuk, and K. A. Ter-

Martirosyan, Phys. Rev. 139, 8184 (1965).
6A. A. Anselm, Ya. I. Azimov, G. S. Danilov, I. T.

Dyatlov, and V. N. Gribov, Ann. Phys. (N. Y,) 37, 227

(1966); J. B. Bronzan and C. E. Jones, Phys. Rev. 160,
1494 (1967).

~If one assumes there is a simple pole with o, (0) =1,
the measurement of ReP(s, 0)/ImE(s, 0) is a particularly
easy way to isolate the contribution of Regge cuts, and to
estimate their strength relative to the pole. This is
discussed in Sec. IV.

T. T. Wu and C. N. Yang, Phys. Rev. 137, B708 (1965);
N. Byers and C.N. Yang, ibid. 142, 976 (1966); T. T.
Chou and C. N. Yang, in Proceedings of the Second Inter-
national Conference on High-Energy Physics and Nuclear
St~cture, Rehovoth, Israel, 1967, edited by G. Alexan-
der (North-Holland, Amsterdam, The Netherlands, 1967),
pp. 348-359; Phys. Rev. 170, 1591 (1968); Phys. Rev.
Letters 20, 1213 (1968); Phys. Rev. 175, 1832 (1968);
J. Benecke, T. T. Chou, C. N. Yang, and E. Yen, ibid.
188, 2159 (1969).

BG. F. Chew and A. Pignotti, Phys. Rev. 176, 2112
(1968); G. F. Chew, M. L. Goldberger, and F. E. Low,
ibid. 180, 1577 (1969); M. L. Goldberger, C.-I Tan, and
J. M. Wang, ibid. 184, 1920 (1969).

~ R. C. Hwa Phys. Rev. D1, 1790 (1970).
~~J. H. Schwarz, Phys. Rev. 167, 1342 (1968); T. Sa-

wada, ibid. 165, 1848 (1968); R. E. Mickens, Nuovo Ci-.

mento 56A, 799 (1968).
~2V. N. Gribov, I. Yu. Kobsarev, V. D. Mur, L. B. Okun,

and V. S. Popov, Phys. Letters 32B, 129 (1970); A. A.
Anselm, G. S. Danilov, I. T. Dyatlov, and E. M. Levin,
Yadern. Fiz. 11, 896 (1970) [Soviet J. Nucl. Phys. 11,
500 (1970)];J. Finkelstein, Phys. Rev. Letters 24, 172
(1970); R. Oehme, Phys. Rev. D 3, 3217 (1971).

~3V. N. Gribov, Zh. Eksperim. i Teor. Phys. 53, 654
(1967) [Soviet Phys. JETP 26, 414 (1968)].

4V. N. Gribov and A. A. Migdal, Yadern. Fiz. 8, 1002
(1968) [Soviet J. Nucl. Phys. 8, 583 (1969)];8, 1213
(1968) [8, 703 (1969)];Zh. Eksperim. i Teor. Phys. 55,
1498 (1968) [Soviet Phys. JETP 28, 784 (1969)];V. ¹

Gribov, Yadern. Fiz. 9, 424 (1969) [Soviet J. Nucl.
Phys. 9, 246 (1969)].

~~R. Oehme, in Strong Interactions and High Energy
Physics, edited by R. G. Moorhouse {Oliver and Boyd,
London, 1964), p. 148.

~6R, Oehme, Phys. Letters 30B, 414 (1969).
~TR. Oehme, Phys. Letters 32B, 573 (1970); Phys. Rev.

D2, 801 (1971); J. S. Ball and F. Zachariasen, Phys.
Rev. Letters 23, 346 (1969); P. Kaus and F. Zachariasen,
Phys. Rev. D1, 2962 (1970); J. S. Ball, G. Marchesini,
and F. Zachariasen, Phys, Letters 32B, 583 (1970).

According to Ref. 5, 0.'(~t) should be replaced by
{n'(~t)[n'(@f) + (-,'t)n "(g))/~2. This leads to trivial
modifications, so we use the simpler term.

~9The factor t'( j) in the argument of the logarithm can
be replaced by a constant, or various other expressions,
with trivial changes in our results. This shows that our
results are insensitive to fixed j-cuts in B that induce such
replacements. Gribov's unitarity study does not distin-
guish among the choices.

In Ref. 16, Oehme points out that e becomes singular
only when two or more poles collide, but not, for example,
when a pole and cut collide. We satisfy Oehme's stipula-
tion because an infinite number of poles collide at t = 0.



SELF-CONSISTENT POMERANCHUKON SINGULARITIES. I 1109

2~D. Amati, S. Fubini, and A. Stanghellini, Nuovo Ci-
mento 26, 896 (1962).

G. F. Chew and W. R. Frazer, Phys. Rev. 181, 1914
(1969).
23J. Finkelstein and M. Jacob, Nuovo Cimento 56A, 681

(1968).
24K. J. Foley, R. S. Jones, S. J. Lindenbaum, W. A.

Love, S. Ozaki, E. D. Plattner, C. A. Quarles, and E. H.
Willen, Phys. Rev. 181, 1775 (1969).

258. Sugiyama, in Proceedings, United States-Japan

Seminar on Differentiai and I unctional Equations, edited
by W. A. Harris, Jr. and Y. Sibuya (Benjamin, New York,
1967).

26A. Erdelyi, Asymptotic Expansions (Dover, New York,
1956), p. 8.

A vanishing of the three-Pomeranchukon vertex at
t =0 should be distinguished from the identical vanishing
of this vertex. The latter possibility was discussed in
Sec. II when we discussed whether the Pomeranchukon
pole and cuts interact.

PH YSICAL REVIEW D VOLUME 4, NUMBER 4 15 AUGUST 1971

Quark Model of Dual Pions*

A. Neveuf and John H. Schwarz
Joseph Henry I.aboratories, Princeton University, Princeton, Nezo Jersey 08540

(Received 27 April 1971)

Interacting pseudoscalar pions are incorporated into Ramond's model of free dual fermions.
By considering the emission of N —1 pions and factorizing in the quark-antiquark channel, we
recover the same N-pion amplitudes as were proposed in a previous paper.

Ramond' has recently proposed a model of free
dual fermions related to the Dirac equation by a
correspondence principle' analogous to one relat-
ing the conventional dual-resonance model to the
Klein-Gordon equation. This fermion model pos-
sesses an infinite set of Ward identities that prob-
ably provides for the cancellation of all ghosts.
Another recent development was the discovery of
a dual model of pions' having a number of realistic
features not shared by the conventional dual-res-
onance model. Subsequently, the algebraic prop-
erties responsible for the successes of this model
(including the apparent absence of ghosts) have been
obtained. ~

In this paper we show that there is a deep con-
nection between the fermion and pion models.
Specifically, we construct the amplitude for emit-
ting N lpions -from a fermion line [Fig. 1(a)]. Re-
quiring the gauge algebra of the fermion sector to
hold in the presence of interaction imposes the
condition m„'=-&, the same condition required
for the gauges in the meson sector. By factorizing
at the first pole in the quark-antiquark channel
[Fig. 1(b)], we obtain the same N-pion amplitude
as in Ref. 3.

Let us first review the algebra of Ramond's fer-
mion model. In addition to the usual harmonic-
oscillator operators' satisfying

[a„",a„']= -mg"'t)

Ramond introduces anticommuting operators satis-
fying

(d", d„'] = -g"'6„

[d", a'„'] =0,

where m andn are integers, d]' =d"~, and Q,"
= —(i)/)) 2 )y,y". Then, introducing

(r)r/2 p a)( -(nr

1 "(~)=i)/2 y, g d„"e '"',

one finds that the operators

satisfy the Virasoro algebra'

[L, L„J=()n-n)L, „.
The wave equation for a fermion state is

where m is the mass of the spin- —,
' ground-state

fermion and

E„=(e'"'I'(T) ~ P(r)) .
Ramond' s subsidiary ghost-eliminating conditions
are

E„~g) =0, n= 1, 2, 3, . . .

or, equivalently,


