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The formal structure of current commutators near the light cone (currents separated by
nearly lightlike distances) is studied for quark models with interactions mediated by
SU(3) x SU(3) singlet vector or scalar mesons. The idea in the end is to abstract the general
structure features, and thereafter to discard the specifics of the underlying model. The
approach adopted here is formal, in the sense that all manipulations are based on canonical
equal-time commutation relations and on the corresponding canonical equations of motion.
The light-cone commutator is expressed in terms of certain bilocal operators and has a
definite tensor and SU(3) & SU(3) structure that forms the heart of the abstraction. The
analysis is greatly facilitated by a theorem which shows that the gluons can be treated in the
external-field approximation for purposes of determining the leading light-cone singularities.
It is an important result that the tensor and SU(3)x SU(3) structure of the light-cone commu-
tator turns out to be the same for the gluon models as for the free-quark model. The
practical implications of this structure, already discussed by Gell-Mann, are therefore
preserved in the gluon model. We review the applications. Some of the delicate points
connected with current conservation are discussed, and it is shown how to write the commu-
tator in a form where current conservation is manifest. We also discuss the structure of
the vacuum matrix elements of the commutator. Finally, we investigate the commutation
relations among the bilocal operators and show that the algebra closes for bilocals defined
on a single lightlike ray. In an Appendix our various results are compared with those ob-
tained by canonical light-cone quantization procedures.

I. INTRODUCTION

Theoretical interest in the properties of current
commutators near the light cone has been greatly
stimulated recently by the striking results of the
SLAC-MIT experiments on deep-inelastic electron
scattering. In the Bjorken scaling limit the ampli-
tude is controlled by the structure of the electro-
magnetic current commutators near the light cone;
and similarly for deep-inelastic neutrino process-
es, where the weak semileptonic currents come
into play. In varying degrees, parton models and

more abstract considerations based on the algebra
of equal-time current commutators all bear on
this problem of light-cone structure. The current-
algebra' ~ and parton-model" arguments lead to
certain sum rules on the structure functions of
inelastic lepton-hadron scattering. In the most
popular version, one identifies the partons with
quarks; and for the analysis based on current
algebra, one often adopts the naive equal-time
commutators (ETC) of the gluon-quark model (cur-
rents bilinear in quark fields, strong quark inter-
actions mediated by SU(3)-singlet vector "gluons").
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To a certain extent the two approaches have led
to identical results; and in no case has any con-
flict arisen. But until now the parton model has
been the more predictive. For example, in the
parton model one obtains the relation'

&2[&p(~) -&p'(~)l =[&. (~) -&3 (~)1,

whereas in the current-algebra approach the cor-
responding equality has so far been established
only for the zeroth moments (integrals over a&) of
the above structure functions. '

An inclusive framework for the discussion of
light-cone structure is provided by Wilson's ideas
on operator-product expansions, ' when these are
extended to the light cone. ' In particular, Gell-
Mann" has recently pointed out that all of the
parton-model sum rules can be gotten by abstract-
ing from the free-quark model its tensor and SU(3)
xSU(3) structure near the light cone. This abstrac-
tion is motivated by the indications from the SLAC-
MIT experiments that the operators appearing in

the light-cone expansion have canonical "dimen-
sions, " i.e., physical dimensions; also by the indi-
cation that o~/or may be vanishing in the Bjorken
scale limit. These things are consequences of the
light-cone structure of the free-quark model. On

the other hand they are known to be incorrect, in

perturbation theory, when nonsuper renormaliza-
ble interactions are switched on." In this sense,
to quote Gell-Mann, it appears that Nature "reads
the free-field theory books. "

In this paper we consider whether the light-cone
structure of the free-quark model is formally pre-
served when interactions of the neutral vector
gluon sort are switched on. The qualification
"formal" means that, in analyzing the light-cone
structure, we make use of the canonical equal-
time commutation relations and of the formal equa-
tions of motion. As already said, these formal
manipulations are falsified in a renormalized per-
turbation treatment of the light-cone structure. "

.

That is, although the formal results would obtain
in a cutoff theory, they would be altered beyond
recognition when the cutoff is removed and renor-
malization carried out. Our idea, however, is to
abstract from the gluon model its formal light-
cone structure, after which we discard the model.
We shall find on the light cone that the tensor and

SU(3)xSU(3) structure of the free-quark model is
preserved in the gluon model; and for the latter
model we shall determine the operators that ap-
pear in the light-cone expansion. These formal
procedures are motivated by the SLAC-MIT re-
sults, which suggest that Nature, whatever else
she does, may not pay too much attention to per-
turbation theory.

In Sec. II we review some general matters per-

taining to the short-distance and light-cone expan-
sion of current commutators. The explicit light-
cone structure of the free-quark model is then ex-
hibited in Sec. III. The problem of preserving
current conservation in the presence of interac-
tions is raised here, in connection with the idea
that the model be discarded, but its abstract light-
cone structure retained for the real world. The
slight modifications that have to be made are dis-
cussed. In Sec. IV we turn to the gluon model.
We show that it is sufficient to treat the gluon as
a c-number field for purposes of determining the
formal light-cone structure. We are thus led to
consider, near the light cone, the Green's func-
tion for a quark field interacting with an external
gluon field. This problem is solved in closed
form, to all orders in the coupling constant. The
resulting light-cone structure of the current com-
mutators is discussed in Sec. V, along with some
of the implications which follow from this struc-
ture. Finally, in Sec. VI we discuss the light-
cone commutators of the "bilocal" operators that
have appeared in the preceding section.

II. OPERATOR-PRODUCT EXPANSION AT

SHORT AND LIGHTLIKE DISTANCES
/

A convenient framework for describing the short-
distance behavior of local-operator pairs has been
introduced by Wilson. ' The idea is to express the
product (or commutator, say) of the local opera-
tors as an expansion in local operators, with

singular c-number functions as coefficients. Thus,
the commutator of two scalar operators has the
short-distance expansion

l&(x), &(y)1 =ZC.(x -y)(x -y)"' "(x-3)"~.

x ei",.'. .„(-,'(x+y)),

where 9&".' . .
&

is a local tensor operator of rank
Ifj. ' PgrfJ„. The singularity of the commutator is contained

in the c-number functions C„(x—y). Wilson sup-
poses that the degree of singularity is determined
by the "dimensions" of the operators A, B, and e'"',
as if scale invariance were a good symmetry.
Operationally this means that for each operator
one can assign a dimension in such a way that C„
is a homogeneous function of (x- y), of degree
-d(C„), i.e.,

C„(x)= (x —i ex ) "'~ —(x + ice ) "

d(C„) = d„+de —d(e'"') +8„.
(Note that we measure dimension in units of mass. )
In a free-field theory, or in an interacting theory
with cutoff, the dimension of an operator is equal
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to its physical dimension, so that, for example,
d[T»&)&] =3, d[T»s„&I&] =4, etc. Since our discussion of
interacting theories is to be formal, we take all
dimensions to be physical.

The commutator at short distances receives
dominant contributions only from operators 6'"'
with dimension d„~d„+da. Operators with larger
dimension are relevant for the short-distance be-
havior of derivatives of the commutator. In parti-
cular, it is evident that the short-distance expan-
sion is fully specified by the full set of equal-time
commutator s

gk

~ A(x, t), B(y, t), k =0, 1, 2, . . . ,

and conversely. For the kth derivative it is the
operators 6'"' with d„&d„+d~+ k that contribute.

We now want to turn to the structure of the com-
mutator near the light cone, ' (x —y)' =0. Since
here it is no longer true that all four components
of (x —y) are small, the dominant contributions
will come from operators with d„-J„&d„+d&.
We understand here that J„ is the maximum spin
of the operator 6&",...&

. Evidently it is no long-Pj.' ' Pgn
'

er the dimension alone that determines the impor-
tance of an operator near the light cone, but rather
the difference between dimension and spin. We
shall call this quantity the "tzvist" (r) of an opera-
tor:

7„—=d„-Jn.

Thus, for example, a quark current T»y&&1& has twist
7 = 2, as does the operator g (x)y„,s„,~ ~ ~ s~g (x).

It is convenient to sum all local operators of equal
twist into a bilocal operator. Thus, with

t&, =-,'(x-y), X=-,'(x+y),

we write the bilocal operator

et'&(x t ) = Q z» ~ ~ &'~ e „',".' ..„(x), (3)
&un

where the sum is over all the local operators 6'"'
with common twist v. In this way we expand the
commutator as a sum over bilocal operators of
different twist

[A(x), B(y)] = gC"&(t&.)8"&(X,6) . (4)

The most singular contributions near the light cone
come from the bilocal operators with smallest
twist r, with C"'(b,}-(h') ' &'~s "t'. Of course
the bilocal operator of lowest twist does not con-
tain the equal-time commutator of A(x} and all its
derivatives with B(y). Only the highest-spin com-
ponent of each of the equal-time commutators is
contained in the most singular term on the light
cone. Conversely, the highest-spin components
of the equal-time commutators completely deter-
mine the lowest-twist operators and, therefore,
the leading light-cone singularity. " In the follow-
ing discussion we will make much use of this equi-
valence between the light-cone structure and the
formal properties of equal-time commutators.

It is instructive to recall what the SLAC-MIT
experiments indicate for the light-cone commuta-
tor structure of electromagnetic currents. What

is measured is the diagonal nucleon matrix ele-
ment of the commutator

The evidence appears to support Bjorken's scaling hypothesis, according to which q.p W, approaches a
nontrivial limit as —q'-~, q p-.~, with &o = -q'/2q p fixed; i.e.,

q p W, -mE2(e).
This implies that, near the light cone, the matrix element has the structure"'

1

(pI[J& (—,'x), J™(-—,'x]Ip)= ——c(x,)5(x') " "
decos[&ux p]E,(co)+ ~ ~ .

0

(6}

In turn, this suggests that the commutator has a light-cone expansion dominated by a twist-2 bilocal opera-
tor 8„„(X,b ), whose matrix element is

&p I e„,(0, x) I p)= p„p„d&u cos[&ux p]E, (a&) + ~ ~ ~ .
0

The local operators 8„„„, „, (0) appearing in the short-distance expansion of the bilocal 8„„(0,x) have
matrix elements given by

(P I8PU, a~. . .n2~(0) IP) = P»pvpn~ ' ' 'Pn2~ 2 &

d~ ~ E2(~) + ' ' '
~

(-1)
0

We may immediately remark that the free-quark model has such a family of twist-2 operators
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e„".,„(x)= y(x)y„,s„," s„„y(x).

With respect to isospin, the experiments indicate that the leading light-cone operators have both isoscalar.
and isovector parts. Finally, the experiments are compatible with the vanishing of oz/o, in the sealing
limit. This accords with the light-cone tensor structure of the free-quark model.

III. LIGHT-CONE STRUCTURE IN THE FREE-QUARK MODEL

The commutator of two local operators can of course be calculated exactly in a free-field theory. In the
free-quark model, let us define the currents

J'&(r; x) =$(x)(1+ry,)y„—,'X'P(x), r =+I, a=0, 1, . . . , 8, (10)

and abstract the SU(3) x SU(3) and tensor structure of current commutators near the light cone, following
Gell-Mann. In carrying out the computation we encounter the anticommutator (P(x), iP(y)]. = -iS(x —y). Since
the quark mass terms do not affect the leading light-cone singularity, we take

8-iS(x-y) =yp D(x-y),
P

D(x) =—e(x,)5(x') .

Then

[J'„(r;x), J'„(r', y)] =0, r er'

and

(12)

[J'„(r,x), J'„(r;y)] =if„,(J'„(r,S; X,a)g„+J'„(r, S;X, A)g„„J'(r, S-; X, S)g„, —ireg~J'„(r,A; X, A)) 8 D(n)
1 8

p& g y

1
+d~, (J'„(r,A; X, n )g„„+J;(r, A; X, b)g „„-J'„(r,A; X, n)g„„-ir e „„J~(r,S;X, a)] 8

—D (Z).88'
(13)

We have defined here the symmetric Hermitian J(S) and antisymmetric anti-Hermitian J(A) bilocal opera-
tors of twist 2:

»+&y, y„2~' y + y 1+~y, y„2& (14)

and we have defined X= —,'(x+ y), A = —,'(x —y). In terms of local-operator expansions it is evident, for exam-
ple, that

J'„(r,S;X, n, ) = Q
t

b, ~ ~ b." p(X)-,'X'(1+ry, )s„, ~ ~ ~ s„g(X),
m =0,2,4,...

where 8 —= 8 —8„.

(15)

The idea now is to abstract from the model the

SU(3)xSU(3) and tensor structure in Eq. (13),
relinquishing the specific form of the bilocal opera-
tors given in Eq. (14) and relinquishing also any
use of the free-qua, rk equations of motion. The
temptation, that is, is to take the light-cone struc-
ture embodied in Eq. (13) as applying to the real
world, with interactions. Although we cannot then
claim to know the matrix elements of the bilocal
operators appearing in this equation, the tensor
and SU(3)xSU(3) structure is nevertheless pre
dictive. It allows one to derive all those results
of the (quark) parton model which are independent
of detailed assumptions on the distributions of the

I

partons in a hadron. We shall enumerate these
results later on, after we have shown that the
light-cone structure of Eq. .(13) also obtains in
models with interactions switched on.

However, there is one minor complication that
has to be dealt with before this light-cone struc-
ture can be adopted. One has to ensure that the
leading light-cone behavior is consistent with cur-
rent conservation. In the real world, of course,
all of the SU(3)&(SU(3) currents are in fact not
conserved. But where the symmetry breaking is
due to mass terms in the Lagrangian, as in the
quark-gluon model, one can treat all currents as
conserved insofar as the leading light-cone singu-
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[J'„(x, x), J'„(r, y)] = e„" (X, S)8 D (a},
where the structure of e&~~ can be inferred from
Eq. (13). Without making any use of equations of
motion, or use of Eq. (14), we can directly verify
that

(16)

e" 8&8 D(~)=e" 8"8"D(S)=0.
P Vef P VtX

To verify current conservation, it is only neces-
sary then to show that

8 g 8
GPVN =~ OPS}f =0.

X

Here we make use of Eq. (14) and of the quark
field equation of motion. It is then easy to show
that

(18)

/X' u gX+ gay P+gX+e, 8 8

8XP v ~& ~ gXv P ~ Pv
BENT[

0

g/P~v ~g A/V P &g ~ PV gX$~0 $

(20)

larity is at issue. This is because, formally, the
symmetry breaking will give rise to terms explicit-
ly proportional to the quark-mass matrix, and
these will necessarily have larger twist than the
SU(3) x SU(3)-symmetric operators. Indeed, if we
are going to abstract the SU(3) xSU(3) light-cone
structure of the free-quark model, we must insist
that all the currents be conserved to leading order
on the light cone.

In the (literally) free-quark model, Eq. (13) is
indeed consistent with current conservation, al-
though not manifestly so. To confirm the conserva-
tion properties, , we have to make use of the speci-
fics of Eq. (14) and of the equations of motion for
free quarks. To see how this goes, let us write
Eq. (13) in the more compact form

where

a '8"D(a) =8 D(~),

D(8 ) = (I/64v)e(x, )a'e(a') .
(23)

Since B„" (X, L) is a power series in A, with local
operators at X as coefficients, this defines e&„
to be a bilocal operator of the same nature. Using

Cl~ =16[CI„—(8„8 )(8„8 )]+30 —2 O~,

we can replace Eq. (21) by

(24}

Equation (16) follows readily from Eqs. (19) and
(20). But these latter will no longer remain true
when we abstract the light-cone structure to a non-
trivial interacting theory. Indeed, if (8/BX )J&(X, 6)
=0 were true, this would imply the existence of
an infinite number of local conserved operators,
with arbitrarily large spins. But this is possible
only in a trivial theory, without interactions.

We propose to overcome this difficulty in the
following way. We stick with the (literally) free-
quark model a while longer, using its equation of
motion to re-express the leading light-cone struc-
ture in a form where current conservation is mani-
fest, without further reference to the equations of
motion. To this end, let us rewrite Eq. (16) in the
form

[J'„(~;~), J'. (~; y)1

=g„„,n,g„„,O, O,-'[e „'l„,„B"D(~)],
(21)

where
8 8

gyp

Now define a new bilocal operator e„", such that

(22)

[J'„(r; x},J'„(r;y)] = 16 g„„, ,— „„,g,8 8 8 8

i6 g ~8
a 8 8 8

BXPB P gv' ~'x BX 8 e4~, -e, a = P'V'n g
X (25)

We have added terms which are identically zero in the free-quark model [Eq. (19)] and terms which are
less singular on the light cone than the leading terms. In the free-quark model, therefore, Eq. (25) is
equivalent on the light cone to Eq. (13); but it is manifestly consistent with current conservation and can
therefore be abstracted as a' model for the light-cone commutator in the real world.

It would be possible, by use of Eqs. (22) and (23), to derive explicit expressions for the bilocal operators
appearing in e&, but there is little merit in this. The net effect of the projection operators in Eq. (25)
is easily taken into account in momentum space. One simply multiplies the Fourier transforms of the
right-hand side of Eq. (16),



1064 D. J. GROSS AND S. B. TREIMAN

by the projection operator

(gyp"ll ll,

peal,

p')(g 'l2 i2, l2, ')(Q } +(gyp' ll'T Tali, p')(g ' ll'T T 'V, ')('Q )

where

Q= (Vi+02) ~=Ci V2 ~

(26)

~;.,( )x=gy(x)r „0(.)B„(.) (27}

It is important for our purposes to define the mod-
el in such a way that the gluon-field components
and their first time derivatives have scale invari-
ant equal-time commutators, i.e., in such a way
that the gluon mass does not appear in these com-
mutators. How this is achieved is spelled out in

Appendix A. Although we focus on the gluon model,
it will be evident that our results will apply to the
more general case in which the quarks couple to
SU(3) singlet scalar and pseudoscalar fields:

& „,=g&PrAP+gsAo (28)

As emphasized in the Introduction, our manipula-
tions on the model are deliberately formal in char-
acter, based on the naive equations of motion and
the canonical equal-time commutation relations.
These manipulations are valid in a cutoff version
of the model, but they are not justified in a per-
turbation treatment with infinite renormalization.

Just as in the free-quark model, discussion of
the light-cone structure of the current .commuta-
tors begins with the problem of finding the leading

light-cone singularities of the quark-field anti-
commutator

(P(x), P(y)].= -iS(x, y) . (29)

In the expansion of S(x, y) in terms of bilocal opera-
tors, the most singular terms can be reconstruct-
ed from the equal-time anticommutators of the

quark fields and their time derivatives. This fol-
lows from the general discussion in Sec. II. In

fact, the local operators appearing in the .expan-
sion of these dominant bilocal operators are just
the lowest-twist components of the equal-time
anticommutators of the quark fields and their time
derivatives. We shall use this fact to prove the

IV. FORMAL LIGHT-CONE STRUCTURE OF
INTERACTING QUARK MODELS

We turn now to the light-cone structure of cur-
rent commutators in the presence of interactions;
and in particular, we take up the gluon-quark
model. Here the currents are exactly as in the
free-quark model. But the quark fields now couple
to a neutral [SU(3) singlet] vector-boson field B„,
according to the interaction

83
, P(x, t), P(0)

t=0 ~

(3o)

Using the quark-field equations of motion, we ex-
press this as a sum of terms of which only the
following one involves anything higher than a first
time derivative of B„and, therefore, depends on
the quantized nature of the gluon field:

g y.y-~(x t) Bp' r(0)
O'B (x, t)

C =. 0

In turn we can decompose this into two pieces,

2B
g(r,r p(», t), p(0)], , "(x,o)

(31)

+gray. g(», 0);&',0(0}
&'B (x, t)

-0=0

(32}
The first term does not involve the quantized na-
ture of the gluon field. The second term does.
For it we use the equation of motion

( +~s')B„=ger„t,

and therefore, in computing the commutator in

the second term of Eq. (32}, we replace 80mB by

gPy„P. Both of course have the same physical
dimension, 3; but whereas the former operator
has maximum spin 3 (hence twist 0), the latter
has spin 1 (hence twist 2). That is, the lowest-

I

following theorem. In order to construct the lead-
ing light cone -singularity of S(x, y), it is suffi
cient to treat the I,luon as an external c-number
field. Namely, for the equal-time anticommutator

gn

s „P(x,0}, g(0)
4'=0

we assert that the form of the lowest-twist opera-
tor is the same whether B„is treated as a quant-
ized field or as a given c-number field. In evaluat-
ing this anticommutator, we make use of the equa-
tions of motion to reduce everything to canonical
equal-time commutator s and anticommutators
(involving zeroth-time derivatives of the quark
fields and zeroth and first derivatives of the gluon
field). To see how this goes, let us consider the
equal-time anticommutator
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S~(x, y) = -iT(g(x)(T)(y) }, (34)

where the symbol, T denotes Wick time ordering;
the corresponding result for the anticommutator
function S(x, y) will be evident. In the presence of
the external field, S„satisfies the equations

yp i „-gB"x S~ x, y =54 x-y

=S (x, y) i „+Z&"(y) r„~8$"

(35)

twist part of Eq. (30) comes from terms which do

not contain any equal-time commutators involving
the gluon field, i.e., do not involve the quantized
nature of the gluon field. Evidently this is a gen-
eral feature of any of the equal-time anticommuta-
tors of Eq. (29). Thus, insofar as we are inter-
ested only in the lowest-twist operators that dom-
inate the light-cone behavior of S(x, y), we can
treat B& as an external field.

In this approximation the anticommutator S(x, y)
is a c-number function and its leading light-cone
singularity is rather easily discussed. For con-
venience it will be simplest to determine the light-
cone structure in the first instance for the causal
propagator

Sr(x, S) Sf=dz, dz„dt"(x —«, )y B(z,)

XSP(z, —z,) y B(z„)Sz(z„—y),
(36}

where 8~&0)(x —y) is the free-field propagator func-
tion:

S~("(x—y) =iy SD~(x —y)

~

~ ~

4d P y P -ip ~ (x-y)
(2w)' p'+is (3'I)

Regarding S~(") as a-function of X= —,'(x+y) and &
= B(x —y), we Fourier-transform Eq. (36), writing

S' '(X, «)f d"'«PS S«"' 'e+e "'S"'(P, S). '

(38)

We then observe that the leading light-cone singu-
larity is determined by the behavior of S(g)(P, Q)
in the limit P, = ~P~-~. To leading order on the.
light cone (n, '-0), we therefore have

(To leading order on the light cone, we are entitled
to neglect the quark masses. ) Expanding S~(x, y)
as a power series in the coupling constant g, we
have for the nth-order term

S( )(X n )
g d Qd P Q d 6 Q Q, , y Py &(q,)r Pr &(q.) r &(q.)r P

(2)))' [P'+» Qj[P'+» (Q-n)1" [P'-2P Ql

where

(39)

B„(S)=(S),J '"d"xe()B.«x

In the numerator of Eq. (39) we encounter the product

y Py By P =2P.By P -y BP,
«and we observe that for probing the leading light-cone singularity (P, =

~

P
~
=P'-~), we can neglect the

second term on the right-hand side. Thus

r Py &(0,) . y &(q. )r P-r P2" Q P &(q~)

We now express the denominator in Eq. (39) in Feynman parametric form, and after some further algebra
obtain the following expression for the leading light-cone behavior:

Sgx(«S) (S(S) St'(x S)fd'Z. =d'Z". P(Z.)-" P(Z. )

+odyl ' ' 'do'n ~ & ai exp -i qi X+6 1-2
'0 i =-l )=1

where

E(q)=n, B(q).
On suitably redefining the Feynm'an parameters, we find that this can be written

(40)

(41}
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Sg (x, y)= S]0)(x-y), daF(X+(I —2a)b, )

where we have used

p(z) fd=kz ''"p(k) . (43)

All of this is for the causal propagator. For the anticommutator S(x,y), we merely replace S~(' by S~'~,

the free anticommutator function. Summing over all orders of g, we finally obtain
1 x

S(x, y) exp 2ig daa"B„(X+((—2a)e) S"'(x-y)=exp -ig dz" B„(z))S"'(x—y),&~0 0
(44)

where the integral in the second expression is tak-
en along a straight lightlike path from y to x.

The question arises how Eq. (44) is to be inter-
preted for the actual gluon model, where B„is a
quantized field which does not commute with itself
at lightlike distances. In this case the exponential
seems to be ambiguous with respect to ordering
of factors in a power-series expansion. Accord-
ing to our previous arguments, however, this
ordering should not matter. The resolution of
this apparent paradox is contained in the statement
that

[(x-y)"B„(x),(x - y)"B,(y)] -0, (x - y)' -o.

(45)

This is established in Appendix A. We may also
remark here that the light-cone structure of Eq.
(44) continues to hold if one switches on added
interactions with scalar or pseudoscalar gluons,
in the manner of Eq. (28). From Eq. (39) we can
see that the singularity is reduced by a factor 6'
if one replaces gy B(q) by g2. y, (t)(q)+gzo(q). Al-
ternatively, with the vector-gluon coupling
switched off, the only twist-2 local operator of
spin n that can appear in the short-distance ex-
pansion of current commutators is g( )yx„, &,

8~
xs& p(x) and this is independent of the fields Q
and o. We conclude that Eq. (44) is formally valid
for all renormalizable quark models which involve
SU(3) x SV(3) singlet gluon fields.

It must be emphasized that Eq. (44) does not rep-
resent an exact result even in the case of an ex-
ternal gluon field. It expresses only the most
singular terms on the light cone, i.e., those that
behave like 6'(b, ') as A'-0 [or for S~, terms that
behave like (A') ']. In fact if we apply Eq. (35) to
our approximate solution S~, we find

8
y„ i „gB„(x)S~(x, y) —6'-(x —y)

1
2ig da -ay "b."E»(X+(1 —2a)6)SdiB)(x —y),

(46)

where E» =8&B, —8„B&. Only in the trivial case

S(x, y} = exp ( igf dhzpz-(z)) 2"'(x —y)

+ T(x, y)D (x, y) + ~ ~ ~,

where
1

T(xyy ) = -ig da[(2a —1)y "b."——'y)'y('b. yp]
0

(47)

xp„„(Xe(i—2a)a) ezp(-igf dzzBz) .

(48)

The correction term explicitly indicated here be-
haves like 6(b, ') as 6'-0 [or for Sd„, behaves like
(6 ) ]; but when one applies the operator y„(s/sx)')
from the left, or y„(8/Sy„) from the right, it gen-
erates terms which behave like 6'(b.') [or for Sd„
like (b, ') '] and which cancel the right-hand side
of Eq. (46). There are additional terms of order
6(A') for S(x, y), not indicated in Eq. (47). Some
of these already occur in the external-field prob-
lem, e.g.,

g daa 1 —a y .6 6"OB„X+ 1 —2a A)D x —y;

where B& is curl-less does our approximate solu-
tion satisfy the equation of motion. Indeed, the
right-hand side of Eq. (46) is again of order (n') ',
even though S~ has been d'etermined correctly up
to (but not including) terms of order (A') '. This
is because the (A') ' corrections to S~ will con-
tribute additional (b, ') ' terms to the right-hand
side of Eq. (46). It will be useful for later pur-
poses to add these corrections to S~, in order that
Eq. (35) shall be satisfied to order (h') '. We will
want this when we come to write the light-cone
current commutators in a way where current con-
servation is manifest. We can get the correction
terms by retaining the next leading terms in the
Born series for S~; or equivalently by adding to
the leading approximation a correction which guar-
antees the validity of Eqs. (35) up to order (b, ') '.
In this way, for the anticommutator function, we
find
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and some arise from the quantized nature of the B
field and are operators, such as

h &g(X)IN(X)r &]D(x-y).
However, these additional terms do not contribute
to 5'(6'} singularities in Eqs. (35).

V. LIGHT-CONK CURRENT COMMUTATOR

Having derived the leading terms in the quark-
field anticommutator S(x, y), it is now easy for us
to write down the leading light-cane commutator
terms in the vector-gluon model. In deriving the
leading light-cone singularity, we can treat p(x)
and P(y) as anticommuting operators. The terms
which receive contributions from their anticom-
mutator will necessarily be less singular on the
light cone, since they will arise only if the equa-
tion of motion for B„is used at least once. From
the fact that S(x, y) is proportional to the free-
quark-model anticommutator S~')(x, y), with a co-
efficient function that is a scalar and an SU(3)
x SV(3) singlet, we immediately see that the tensor
and SU(3)xSU(3) structure of the light-cone com-
mutator is exactly as in the free-quark model.

That is, Eq. (13) continues to hold for the gluon
model, to leading order on the light cone, where
now

J'„r;&,X, & = —,
' x 1+ry, y»~'

xexp -ig dz&Bp z y + x y .
(49)

It is instructive to cast this bilocal operator into
a form which exhibits explicitly the local opera-
tors that appear in a power-series expansion in b..
To this end we make the replacements

y(X) = e ' '«y(X),

(I)(x) =P(X)e~ '«.
The shift operators may now be combined with the
exponential in Eq. (49) by use of the Hausdorff-
Baker theorem and the identity

l dz~B (z) fdkd =B(X+M)

=( )d B(X).

We then have

S ~ ~ ~J' + .X ~ X 1++y y ~ +6 ~ f)x+igb, ~ B(x) +-fb, ~ Qx+fg6, ~ Bx
(50)

This form allows us to identify the local operators of twist 2 that appear in the short-distance expansion of
the light-cone commutator (or equivalently, the highest-spin components of the relevant equal-time com-
mutators):

n

X 1+ry»2~' . d~a' dd~da] g''' d X,
t

evenA 5=0" odd)

where

dp = — p+igBp(X),

d„= „+igB&(X).

(51)

(52)

It may be noted here that the bilocal as well as the local opera'tors are explicitly invariant under gauge
transformations of the second kind.

At this point it is incumbent upon us to specify what we mean by the products, at a single space-time point
X, of field operators that appear in the above expansion of the biloca, l operator. These products are them-
selves singular. But again we take refuge in the fact that we are formally dealing with a cutoff field theory.
In this case the only singularities are contained in vacuum matrix elements of the local operators. The
connected matrix elements, that is, we shall suppose to be finite; so for the purposes of computing con-
nected matrix elements, we can discard the c-number part of the bilocal operator J'„(X,b }. However, this
vacuum expectation value part is of interest in its own right, since it is this part that is probed experimen-
tally in electron-positron annihilation experiments. In a cutoff version of the gluon model, the vacuum
matrix element of Z„(X,6) is given by the free-field-theoretic expression

J'„r, ;X,A =~ my„—'&' y + y y„~Z'
0

= 4i 5~a„[D,"'(x —y) aD "'(x —y)] . (53)



D. J. GROSS AND S. B. TREIMAN

We therefore abstract for the vacuum matrix element of the light-cone commutator

([J'„(~,~), Z'„(r, y)]), = const 6.,[S„D,(~)S„D(~)+ S„a,(~)Sp(~) -g„„S,II,(~)S'a(~)],

where

(54)

This structure leads to SU(3) x SU(3)-symmetric,
quadratically divergent, c-number Schwinger
terms in the space-time equal-time commutatox's;
and therefore to the prediction that the electron-
positron annihilation cross section scales':

o(s) - const/s .
The Weinberg sum rules, "generalized to SU(3)

x SU(3),"emerge as an additional consequence of
our formal analysis. This is because the only bi-
local operators which have nonvanishing vacuum
expectation values and which are not invariant
under SU(3)x SU(3) must be of twist 6, or higher,
i.e., must involve four Or more quark fields in an
SU(3)x SU(3) singlet combination. For the local
currents, therefore, the vacuum expectation val-
ues of the equal-time commutators [4;,4',. ] and

[sg(, J, ] are invariant under SU(3)xSU(3); sym-
metry breaking arises only for equal-time com-
mutators involving third and higher time deriva-
tives.

Returning to the light-cone commutator struc-
ture of Eq. (13), we still face the task of ca.sting
it into a form where current conservation is mani-
fest. This is necessary for applications, where
we have no theoretical knowledge concerning the
matrix elements of the bilocal operators. For the
free-quark model, recall, we made use of the
equations of motion to extract projection operators
that served to ensure current conservation. For
the gluon model we follow what is essentially the
same procedure. Suppressing all but Lorentz
indices, let us again write

[J„( ),~.(y)] =8„.(X, &)s"D(&) (55)

as in Eq. (16), where 8„„),is defined by Eqs. (13)
and (50). For the gluon model we no longer have
the conservation equations

8 8
8 p8pvy=a p Gpv~, =o ~

(

Although strict conservation cannot be achieved
by our approximation method, we caw ensure con-
servation to leading order on the light cope by in-
corporating the correction term in Eq. (4V). That
is, we now take

[~„(~),J.(y)1 = [8p. (x, &)s'+ ~„.(&, &)]D(&),

(56)

8) .= 4 (&)Y&))(&', &)y, I()y)) + (u —&, &—y) (5&)

[see Eq. (48) and recall that we are suppressing
all but I orentz indices]. To leading order of
singularities on the light cone, we then have

s„„[~„(~),~.(y)] =
s .[J„(~),~.(y)] = o ~

We can now follow the procedure outlined in Sec.
III to rewrite Eq. (56) in a manifestly current-con-
serving form, by adding to the commutatox non-
leading terms [of order 5(b.')]. We find

where P&&, .„,is the projection operator appear-
ing within the curly brackets of Eq. (25) and D is
defined by Eq. (23).

Notice that the 8„„term in Eq. (59), although it
is less singular on the light cone than the other
term appearing with it, cannot be ignored, since
both terms give equally singular contributions
when they are acted on by the projection operator.

As the remaining item in 'this section, let us
examine some of the results that follow from the
structui'e of Eq. (13),when this is applied to deep-
inelastic lepton-hadrog. scattering. Let P be the
momentum of the hadron and consider the spin-
averaged matrix elemenIt

dX 8 P (Jp 'Vq 2&, cI„Kp -2& P

PIIPII F()I,(I)( . ,p Pm)
g )I F ()I,())( . ,P P2) p . )IIIII .Il 4X F(+ (I)(i) ~ q P P2) +
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where we suppress terms proportional to q„or q, .
In dealing with these diagonal matrix elements, we
can work directly with Eq. (13) and need not re-
sort to Eq. (59}. Passing to the Bjorken limit
-q'-~, q p-~, (u=-q'/2(q p) fixed, one finds
from Eqs. (13}and (60)

—F2" '(r, (u) =ifd) d Gs (r; (u) +d,(„G&(r; (u},
M

2(uF,""(r;(u) =F"'(r (u)'

F," '(r; (u) = r[if„,G„'(r; (u) +d„,Gz (r; (u) J,

(61a)

(61b)

(61c)

where we have defined the matrix element of the
bilocal operators to be

12[F'[~((u) -F& ((u)] = F~(()u-Fx ((u) . (63)

pp d& &2hdP ~ 6 Gs(rd +) +. . .
G„'(r; (u)

(62)
The functions t"~ and G„are, respectively, sym-
metric and antisymmetric in ~, and real. From
the above equations we can easily derive various
sum rules. For example, the standard current-
algebra results based on equal-time commutators
are recovered by passing to the limit 6 =0, where
the bilocal operator J'„(0,b, = 0) reduces to the
local current operator, and where the right-hand
side of Eq. (62) reduces to an integral over the
structure functions. In this way we obtain the
Adler' sum rule and the Gross-Llewellyn-Smith'
sum rule. Moreover, the very structure of Eq.
(13) guarantees that o~/o r-0 in the scaling limit, '
as we see directly from Eq. (61b). Finally, we
recover a number of the relations which follow
from the parton model by noting that for deep-
inelastic scattering of photons, neutrinos, and anti-
neutrinos on neutrons and protons there are six
independent structure functions (for the neutrino
cases, we consider only b,S =0 transitions), wliere-
as these are expressed in terms of only five bilo-
cal operators, J'„", P„", Jz ", P„", Jz r [we de-
fine J' "=f[J'(r= 1)+J'(r=-l)J]. This leads to
the relation'

Moreover, from the positivity of E~,"~+E~~"~ we
can establish from Eqs. (61a) and (61b) the in-
equality'

F,"((u) +F~x((u) ~ —,'. [Fx~((u) +F& ((u)]

VI. THE BILOCAL LIGHT-CONE
COMMUTATOR S

In our discussion of the light-cone commutator
of local currents, we have encountered certain
bilocal operators. It seems natural, following
Gell-Mann, "to investigate the commutation rela-
tions among the bilocal operators themselves. In
the free-quark model this is easily done. For
example [ suppressing SU(3) matrices], . we have
that

[p (x)y„g(y), p (z)yJI(&)] = 0 (x)y„y y„p(&)s "Ay —z)

(j) (z)y-„y y„f(y)S"&(x &) . —

(65)

On the basis of such relations one easily verifies
that the commutator of J'„~,&,X, 4 with another
bilocal operator closes on the same set of bilocal
operators. However, it is not clear what features
of this algebra can be safely extracted beyond the
free-quark model. One is examining the struc-
ture of

(66)

initially for (x- y)' = 0, (z —i)' = 0. But should
one abstract from a model those features which
hold wherever any other pair of coordinates has
a lightlike separation [say (y-z)'=0]; or wher-
ever a/l separations are lightlike; or wherever
x, y, z, t are collinear points on a lightlike ray?
the free-quark model, the algebra closes under
all these conditions so far as leading singularities
are concerned. But this is no longer the case
when interactions are switched on, as in the gluon
model. In general the commutators of the original
bilocal operators generate nese biloeal operators
of twist 2; and in their short-distance expansion
these generate new local operators of twist 2, of
the form, e.g.,

n

d(X)d„, d„Q )d„, d„d„„d„„.dd, ddd(X). (dd

The only situation in which the algebra of our bilocal operators closes is when all four points in Eq. (66)
are collinear on a lightlike ray. For this case we can again treat the gluon as an external field. We are
concerned with the commutator

(I) (x)y„exp ig du" J3-„(u) (j)(y), (T)(z)y„exp ig d v t'8-„(v) y(t), (68)

and our theorem applies when x, y, g, t are collinea, r because the integrands appearing in the line integrals
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then commute with each other .Employing Eq. (44) we then find for this collinear situation

l~'„(~; ~},~'. (~; y)l, [~(~;~), J'„(~; i)I

t(t) r' tt&' ' trr"trr ((rrr)ryr'r trttt( ttzf-d rttt( ))t(t)t tt(r r)t'tt(t -t)»tt-(t -r)

--', tt( )y't'Vy* „y"y„"(t+ry,) „xtt(-ig»t"tt„( l)t)(t)t"tt( — )t (* —t)»tt(* —*)

—[)).—)) z i c d]. (69)

The right-hand side of Eq. (69) can be reduced to a sum of terms involving the original bilocal operators,
but we will not bother here to carry out the reduction. The important point, formally, is that the algebra
of the bilocal operators closes in the gluon model for collinear points. The requirement of collinearity is
very restrictive. No doubt the commutators of our bilocal operators have interesting singularities in other
regions of configuration space, but we are unable to say anything about these other regions. Even so, the
structure described in Eq. (69) for the collinear situation has observable consequences. We shall return
to these matters in a future publication.

In this Appendix we shall prove an assertion
made in Sec. IV, namely, that

(~- y) "(~-X)"[B„(~),BI,(y)] = 0, (~- y)' =0 .

Before doing so, however, we give a more precise
specification of our gluon model in such a way that
the canonical equal-time commutators of the gluon
field are scale-invariant. This can be achieved if
we perform a Stueckelberg-like transformation
on the traditional gluon model. Let us introduce
into the Lagrangian a free, negative-metric scalar
field P, of mass ms; and let us redefine the gluon
and quark fields by

B„-B„-(I/M)8„y,
e&(~/&) iy

(A2)

In terms of the transformed fieMs, the Lagrangian
ls given by

,' F„,F"'+ ,'m—~—~B„B"—,'—ms(BP"P + 8—"pe)
-'m 2y2+y[--'y 8+gy B-M]y (As)

The canonical variables are (I) and v& = Pt, B, and

8+,, p and m&=MBO. The equations of motion are

(y 8 +iM)(I) = igy B(l),

In the absence of interactions (g= 0), we would
have for arbitrary times

[B„(x),B„(y)]=g„„D(x-y;ms), (A6)

and Eq. (Al) wouM hold triviaGy. We now ask, in
the presence of interaction, whether Eq. (A6) is
modified by terms which violate Eq. (Al). As be-
fore, we are discussing the formal structure of
the commutator; and we ean therefore resolve
the issue by examining the equal-tAne commuta-
tors involving time derivatives of the gluon field.
The first equal-time commutator in which the
interaction of B& with the SU(3) singlet current 4&

f1gures ls

[8.'B„(x,0), 8.'4, (0)1=g'[Z„(x, 0)&.(y, o}].
Tllls lnlplles fllRt, the col'1'ec'tion 'to Eq. (A6) al'lses
from a twist-2 operator, which contributes a term
of the form

[E~(Xt A)b» +E»(Xt i)()h p+F„(Xr h)b gp„

+ e„„.„G.(X, a}a']e(S')e(S2) .
(A V)

But such a correction does not affect the validity
of Eq. (Al). Additional corrections to Eq. (A6) will
necessarily be proportional to 6' and will there-
fore vanish on the light cone.

8)'B~ =M/ r

(CI+msm}B&= gP y„$, -
(0+ms')(t) =0.

The canonical equal-time commutators of the
gluon field are now scale-invariant:

[B„(x,o},B„(0}]=0,

[8+„(x,0), B„(0)]=ig„„6'(x).

(A4)

(A5}

APPENDIX 8

In a recent paper Kogut and Soper" have dis-
cussed in interesting new procedure for quantizing
field theories in an infinite-momentum frame.
They have identified the independent eanonieal
fields and their canonical commutation relations
in the case of spinor electrodynamics; and they
show that the resulting theory is formally identi-
cal with the usual theory, boosted to the infinite-
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momentum frame. These methods have been uti-
lized by Cornwall and Jackiw" to derive canonical
light-cone commutators for the electromagnetic
currents in spinor electrodynamics. The relation
between the approach adopted in this paper and
that of Kogut and Soper's canonical light-cone com-
mutators is much the same as the relation between
Wilson's short-distance expansion and equal-time
commutation relations. Consider, for example,
the anticommutator (P(x), P(y)j. The light-cone
expansion gives a manifestly covariant expression
for the leading term when (x —y)~ = 0, and it deter-
mines the lowest-twist operators appearing in the
short-distance expansion. The "infinite momentum"
methods, on the other hand, yield frame-dependent

expressions for the anticommutators of canonically
independent spinor fields at lightlike separations.
These anticommutators contain information on
higher-twist operators.

It is amusing to see how the canonical anticom-
mutator of Kogut and Soper emerges, as it does,
from our leading light-cone expression for S(x, y}.
Their independent, canonical spinor field variables
on the light cone are P, and its adjoint g,*, where

0, =P,C= '.(r'-~')(~'+r')y,
and the canonical anticommutator is

Q, (x), y*, (O)) e(x'+x') =P,V(x'+ x')0(x' —x')a2(x, ) .
(B2)

We can recover this result immediately from our leading light-cone expression for S(x, 0) = iQ(x), P (0)) by
applying the projection p, to S(x, 0)y' and evaluating at x'+x' =0. We have

(P, (x), p,*(0))5(x'+x') =5(x'+x') exp -ig dx"B„(z) p, 5(x')e (x,)
0

=P,5(x +x )5(xo —x )52(x~) .

We have used [z;(x),z'(0)]t (H+ x'),

Consider now the current O', =- J0'+J3'. From Eq.
(B2) we immediately determine the light-cone
commutator"

[8;(x),Z', (0)J5(xo+ x')

= if„,Z', (0)5(x'+ x') 5(x' —x'}6'(x~}.
(B4)

It is easy to see that the same result emerges
from our Eqs. (1S) and (49).

For the case of electrodynamics (where B„ is
the electromagnetic field) Cornwall and Jackiw'~
have recently discussed also the commutator

where

ga Ja ga
0 3

This now involves the equations of motion. Corn-
wall and Jackiw" choose a particular gauge, B'
+B'=0, as they can do in electrodynamics. Vfe
remark that the same results emerge from the
methods of the present paper, provided that we
include the correction term T(x, y) in Egs. (4V}
and (48). We shall not go through the details. The
interesting point, however, is that our methods
can be applied with equal ease for any choice of
gauge and are applicable to massive gluon fields.
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We compute, in the perturbative model of Johnson and Low, the one-meson-to-vacuum
matrix element of the equal-time commutator of the charge density of a vector current and
a scalar density. A gradient term is found. Consequences of this result for the dimension-
ality of the current components are discussed.

I. INTRODUCTION A(x) = P(x)y,X„g(x),
(3)

Recently Beg eI, al. ' showed that the necessary
and sufficient conditions for the hadronic vector
currents J„ to have scale dimension independent of
the Minkowski index p. , imply the absence of gra-
dient terms in the commutator'

[Zo (x, 0), e(y, 0)],

where e is the trace of the "new improved energy-
momentum tensor. "' In the model of current alge-
bra with underlying quark structure, the currents
J& are bilinear in Fermi fields, and 8 is expected
to be a sum of mass terms of the form

S +S =EpglJ)+hei/JA8$,

In this paper we compute, in the perturbative
model of Johnson and Low, ' the one-meson-to-
vacuum matrix element of the equal-time commu-
tator (ETC) of the fourth component Z," of a quark
vector current and a quark scalar density $~. Our
results [Eq. (52)] show that for an unconserved
current, gradient terms are present, contrary to
the naive. expectation. ' Thus, while it may be pos-
sible for the components of a conserved current to
have a unique scale dimension, "anomalies" will,
in general, prevent the spatial and temporal com-
ponents of an unconserved current from having the
same dimension.

[A(x, t), B(y, t)] = g(x)[A.„,XB]g(x)S(x —y). (4)

As is well known, the manipulations which lead
to this equation are in general not valid and the
ETC must be defined in a proper way. One solu-
tion to the problem is to split the spatial depen-

&(y) = ir(y)&8((y),

where X and X
& are the usual SU(3) generators

and P(x) is a. spin- —,
' field of three different quarks,

with possibly three different masses (4&3 compo-
nents).

The naive ETC, obtained by straightforward ap-
plication of the canonical commutation relations,
is simply

II. COMMUTATOR BY NAIVE METHODS

In this section and in Sec. III we will consider
the following two densities:

FIG. 1. Graphs contributing to the matrix element
of the time-ordered product in Eq. .(8), to first order
in g.


