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We study the constraints crossing symmetry imposes on fixed-variable dispersion relations
for &~ scattering. We show that the sum rules relating 2a0-5a0-18a&, a2, and a2 to the
total cross sections, which were derived by Wanders using the Mandelstam representation,
follow from twice-subtracted dispersion relations. These sum rules are good physical-re-
gion constraints to supplement the unphysical-region constraints of Martin and Roskies in
the study of models for low-energy ~~ scattering. Using a restriction on the absorptive
parts following from crossing symmetry, we transform Wanders's sum rule for the I =0,
l =2 scattering length into a form which is manifestly positive. Keeping only the S.—and P-
wave contributions, we obtain a lower bound for a2. If the p-trajectory intercept is less than

1, we show that lim Re T (s, 0,4-s)/s is determined by the total cross sections. If, in
addition, the leading isospin-2 trajectory has intercept less than zero, then even without
imposing elastic unitarity, the I= 0 S wave is determined by the absorptive parts without
the freedom of adding an arbitrary constant.

I. INTRODUCTION

Martin' has derived rigorous inequality con-
straints on the mn partial-wave amplitudes in the
unphysical region 0 &s & 4m, '; Roskies' has found

sum rules involving integrals of the partial-wave
amplitudes over 0 &s ~ 4m, ', which follow from
crossing symmetry. There have been recent at-
tempts'4 to use these unphysical-region con-
straints to study the behavior of the mz amplitudes
above threshold. Within a given parametrization
of the partial waves, it has been possible to make
physical-region predictions. "' However, Ulrich'
has found a new parametrization of the S and P
waves in which the unphysical-region constraints
hardly constrain the physical-region phase shifts.
He introduced the experimental p meson into the
P wave, and found that there existed a family of
S waves exactly satisfying the Martin and Roskies
constraints, which had drastically different phase
shifts above threshold.

In this note, we discuss several sum rules which
relate the mm scattering lengths to integrals of the
absorptive parts over the physical region. We
show that these sum rules, which were originally
derived by Wanders' using the Mandelstam repre-
sentation, are direct consequences of twice-sub-
tracted dispersion relations. Since the integrands
behave like s ' at large energies, these sum rules
are most sensitive to the energy region below 1

GeV. Therefore, these sum rules are good
physical-region constraints to supplement the un-
physical-region constraints of Martin and Roskies
in the study of low-energy n. m models. They re-
late the tip of the unphysical region to the reso-
nance region. Also, the p and o enter the sum
rule for 2a,' —5ao 18ay with opposite signs,
making it very sensitive to the detailed form of
the S- and P-wave phase shifts.

In Sec. II, we discuss the constraints crossing
symmetry imposes upon the subtraction constants
appearing in fixed-variable dispersion relations.
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In Sec. III, we remark that the same analysis used
to study the asymptotic behavior of the real part
of an su-symmetric amplitude' can be applied to
the definite isospin nw amplitudes, if one assumes
the p-trajectory iritercept is less than 1. In Sec.
IV, we present a derivation of Wanders's' sum

for 2ao~5pza18ax~y using twice-subtracted
dispersion relations. We also clarify the derivation
of Olsson's' sum rule for a,'by using subtracted
dispersion relations. In Sec. V, we derive Wan-

ders's sum rules for the D-wave scattering lengths.
Using a restriction on the absorptive parts which
follows from crossing symmetry, 'we manipulate
the sum rule for a,'into a form which is manifestly
positive. By keeping only the S- and I'-wave con-
tributions to this sum rule, we find a rigorous
lower bound for a', . In Sec. VI, we evaluate nu-
merically the sum rule for 2a, —5ao —18a» and
the lower bound for a'„using a model for the S
and I' waves. '

II. CROSSING-SYMMETRY RESTRICTIONS ON SUBTRACTION CONSTANTS

Roskies' has shown that crossing symmetry requires the definite isospin mm scattering amplitudes to
have the form:

T'(s, t, u) = 5f (s, t, u) + 2(2s —t —u)g(s, t, u)+ 2(2s' —t' —u') h(s, t, u),

T'(s, t, u) =3(t —u}g(s, t, u)+3(t' —u')h(s, t, u),

T'(s, t, u}= 2f (s, t, u}+ (t+ u —2s)g(s, t, u) + (t'+ u' —2s')h(s, t, u),

where f, g, and h are totally symmetric functions of their arguments and the isospin is measured in the
s channel. It has been shown from axiomatic considerations" that T'(s, t, u) satisfies a twice-subtracted
dispersion relation for t fixed, 0 ~t&4 (m„'=1). Therefore, h(s, t, u) satisfies an unsubtracted dispersion
relation. When evaluated at s=4, t=u=0, this relation becomes a sum rule for the linear combination of
S- and P-wave scattering lengths 2a', —5a', —18a'„previously derived by Wanders. ' With two subtractions,
there exists the freedom of adding a constant c to f(s, t, u) and a constant 5 to g(s, t, u), without violating
the analyticity, asymptotic behavior, or crossing symmetry of the wv amplitudes. For this reason, the
lowest partial waves are determined by the absorptive parts of the. mn amplitudes, only up to the ambiguity'

f,'(s) -f,'(s}+5c+ 2b(3s —4),

f1(s) f1(s) + 5(s —4),

f', (s)-f', (s)+2c -b(3s —4).
The freedom to add a constant b to g(s, t, u) implies that lim, „ReT'(s, 0, 4 —s)/s is not determined by the
absorptive parts.

If we assume that T'(0, t, 4 —t) is of order t' ' (e&0) when t-~, then it follows that one no longer has the
freedom to add an arbitrary constant 5 to g(s, t, u). In this case, a'„2a', —5a',, , and lim, „ReT'(s, 0, 4 —s)/s
are all fixed by the absorptive parts of the ww scattering amplitudes. Under the further assumption that
T'(0, t, 4 —t) is of order t ' (e&0) when t-~, we see that one no longer has the freedom of adding a constant
c to f(s, t, u). In this case, even without imposing elastic unitarity, there does not exist the freedom of
adding an arbitrary constant to the w'm' amplitude. Also, the S-wave scattering lengths a', and a,' are in-
dividually determined by the absorptive parts. "

III. ASYMPTOTIC BEHAVIOR OF ReT (s,0,4-s)

The forward scattering amplitude for the process A+B-A+B, where B=B, is symmetric in s and u.
The asymptotic behavior of the real part of such an amplitude has been previously studied. ' We wish to
note that if one assumes that the leading I=1 trajectory has an intercept less than 1, then the same con-
siderations app1y to the definite isospin ~w amplitudes. The reason for this is simple. There are two su-
symmetric amplitudes ,'[T'(s, t, u) + T'(s, —t,u)] and &[T'(s, t, u)+ T'(s, t, u)] corresponding to v'v'- n w' and
n'm -n'n, respectively. The assumption that

Re[—', T'(s, 0, 4 —s)+ —,T'(s, 0, 4 —s) --,T'(s, 0, 4 —s}]/s

tends to zero as s tends to infinity, allows one to determine lim, „ReT (s, 0, 4 —s)/s by considering the
two su-symmetric amp1itudes exclusively.

IV. DISCUSSION OF SUM RULES FOR m'm' SCATTERING

On general axiomatic grounds, "one can write twice-subtracted dispersion relations for the mn scattering
amplitude T'(t, s, u) with t fixed, 0-t & 4. We adopt the convention that the first variable denotes the channel
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in which the isospin is measuxed.

s' ",A&'&(s', t) u' ",A~'&(u', t}T'(t, s, u) = a'(t)+ —ds' '
+— du' (I=0 2)s, s"(s' —s} v u" (u' —u) ' (la)

s' ",Ai'i(s', t) u' ",Ai" (u', t)T'(t, s, u) =b(t)(s —u)+— ds' „, , ', —— du' (1b)

%e define

A (s', t)= S(mg(2 '+)1)rmf, (s')s', ((+
2t

A&'~(s', t) =QC„.A"(s', t),

(2a)

A{'}(s',t) =Qg)„,A"(s' t) =A'(s', t) -2C„A&"(s' t) (2c}

where C», and D» are the s t and s —u isospin crossing matrices, respectively.

1
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1
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1
3
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Crossing symmetry implies

T'(s, t, u) =QC,~, T~'{t, s, u).

We would like to comment on some constraints crossing symmetry imposes on E(ls. (1a) and (1b).
E(luation (S), together with E(ls. (1a) and (lb), implies

s' " A'(s' t) u' ",A&'&(u', t)T'(s, t, u) = ,'a'(t)+ —,'b(t)(s —u—)—~ea'(t)+ — ds' „,' +— du' —„ (4)

where from E(l. (2c) we find AM(u', t) =A'(u', t) —A~'~(u', t). The antisymmetry of T'(s, t, u) in t and u im-
plies T'(s, t, u}=0 for s =4 —2t. Then E(l. (4) becomes

=b(t)+ — ds'A~(s', t) {, ){, )
——„+- du'A ' (u', t) „-{, ){, )

. (5a)

Dividing E(l. (11)by u- s yields

= -t)(t)+— ds'AL" (s', t) —„-
u —s s 4 ' s" (s' —s)(s' —u)

The unknown function b(t) disappears when E(ls. (5a) and (5b) are added.

+ = 48
T'(t, s, u) T'(s, t, u) t - s ",-', A'(s', t) - ,' A' {s', t)+ A'(s', t)[(4- S—s')/2{s'+2t -4)]

t —u s 4 (s' —s)(s' —t)(s' —u)

Setting t = 0 and letting s-4, we obtain a sum rule previously derived by %anders, '

1 ",2A'(s', 0) —5A'(s', 0)+ SA'(s', 0)[(4 —Ss'}/(s' —4}]
I2( I 4)

This sum rule follows from what has been established from axiomatic considerations. It is a good con-
straint to apply to low-energy mm models, since it depends chiefly on the energy region below 1 GeV.
Furthermore, the p and o' contributions enter with opposite signs, making the sum rule very sensitive to
the detailed form of the S- and P-wave phase shifts.

Let us note that we have defined the scattering lengths in the following manner:
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Tl(s, t, u) = 16sg(2I+1)f', (s)P, 1+ 2t
l (8a)

f', (s)=(Ws/k)e'si~'~sin6', (s), where 0'=(s-4)/4,

2g
g

= Iim f (s)/k (8c)

If we now make the physically reasonable assumption that the intercept of the leading I= 1 trajectory is
less than 1, then the following superconvergence relation is obtained from Eqs. (51):

5(0)
1 "d, AL"(s', 0)
F & s

This implies that Eq. (51) takes the form

T'(0, s, 4-s) 1 "d, p)(, 0)
1

4 —2s s 4 ' ' (s' —s)(s'+s —4)
(10a)

Equation (10a) is well known; when evaluated at s =4, t= 0, it becomes the Adler sum rule for 2uo-5u'.
The purpose of our discussion is to point out that Eq. (9), together with Eq. (5a), implies

T'(s, 0, 4 —s) 1 ", A' {s',0) A{')(s', 0)
dss -4 w 4 (s' —s)(s'-4) (s'+ s -4)s' '

Note that no superconvergence relation for b(0) could have been determined from Eq. (5a) directly. It was
necessary to use crossing symmetry and determine b(0) from Eq. (5b). Equation (101) shows that the P-
wave scattexing length a,' is determined by knowledge of the total cross sections. Olsson' has used Eq.
(101) to obtain information about the P-wave scattering length from the experimental ws phase shifts. His
derivation was formal since he used unsubtracted dispersion relations. It was not obvious from his deriva-
tion that one could not add an arbitrary constant to the right-hand side. This would not violate the analyti-
city or asymptotic behavior of the left-hand side of Eq. (101). Crossing symmetry rules out the possibility
of such an arbitrary additive constant.

Morgan and Shaw" have used forward dispersion relations to perform a comprehensive phenomenological
study of low-energy sw scattering. They point out that one of their solutions (denoted DUI in Table I of their
paper) has a P-wave scattering length a,' =0.081, differing from Olsson's result of a,'= 0.040+0.005. Mor-
gan and Shaw comment that Olsson's sum rule is automatically satisfied in their work, because their am-
plitudes satisfy forward dispersion relations. Vile have shown that Olsson's sum rule, follows not from
analyticity alone; one must also impose crossing symmetry. Therefore, it is not automatic that the am
plitudes of Morgan and Shaw satisfy Olsson's sum rule.

V. SUM RULES FOR D-VfAVE SCATTERING LENGTHS

Let us define the function F„(s, t, u) which is symmetric in s and t.

1 (a/at)" T'(s, t, u) (a/as)" Tl(t, s, u)F„sq tq u +II t s Q Q-8

where n= I, 3, 5...for I even, and n=O, 2, 4, ...for I=1. The t derivative is taken with s fixed, and the s
derivative with t fixed. Because of the Bose symmetry of T (s t u) we have 111troduced no spurious sin-
gularities into F„(s, t, u). Since TI(s, t, u) satisfies a twice-subtracted dispersion relation, F~(s, t, u) sat-
isfies an unsubtracted dispersion relation.

From Eq. (6), it follows that

1 "d, 2A'(s', t) —5A'(s', t)+ SA'(s', t)l(4 —Ss')/(s'+ 2t -4)j
6s: 4 (s' —s)(s' —t)(s' —u)

(6')

In Sec. II, we saw that F,'(s, t, u) was totally symmetric. In Eq. (6'), the symmetry in s and u is ~a~ifest,
but the symmetry in s and t imposes constx'aints upon the absorptive parts. Since
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8—E,'(s, t, u), =0,

me find

s 4 (s' —t)'(s'+2t-4) at at at s'+2t-4 ' (s'+2t-4)', '

Equation {12)has been previously derived by Roskies. ' The algebra involved in the derivation presented
here is considerably reduced.

We shall use the symmetry of E,'(s, t, u) to derive sum rules for the D-wave scattering lengths a', . These
relations have been previously derived by Wanders' using the Mandelstam representation. Our derivation
shows they follow from what has been established by Zin and Martin. " Using Eq. (12) together with Wan-
ders's sum rule (15), we obtain an equation relating a', to the total cross sections which is manifestly pos-
itive. Martin" has shown that a', (I ~2}is positive. He writes a Froissart-Gribov representation for f', (t),
I~2, O~t&4. Since the absorptive part A'&(s', t) is positive, the limit of f', (t)/(t-4)', as t-4, ispositive.
Our Eg. (1'I) is a manifestly positive sum rule relating a,' to the total cross sections.

It follows directly from Eq. (1a}that

(a/as) T'(t, s, u)
Q —S

1 I t-lt I 2i8 -s -Q
ds A (S~t)( I )2( I )2 (I=0, 2). (13a)

Using Elis. (1a) and (11) together with the crossing relations (3) and the condition

8 T'(s, t, u} =0,

ere find

(a/at)r'(s, t, u) af 1 "„,BA'(s', t)
Ij.gE

j
(s' —s)(s'+2t -4) s"

1 .",BA{'&{s',t) 1 1 1 ",{,}, 2s' —t-u
+ ds at ss ( I u)( z t) +& 4

d A {set}(sI t}2( I )2 (I Op2).

(13b)

The unknown function ab/at can be determined from the condition that

(a/as) T'(tp s, u) (a/at) T'(s, t, u)
Q —S E-Q

vanishes when s = t. Inserting the resulting expression for ab/at into Eg. {13b), we obtain

(a/at)T'(s, t, u) 1 " ds' BA'(s', t) 1 1 1 " ds' BA{'}(s',t)
E —Q 3' & S+2E —4 BE 8 —S S -E F & 8

1 1
s +2E —4 s —Q

s 4 (s' —t)' ' (s' —u)' (s' -4+2t)' 4 ' (s' —t)'(s' 2t —4)'

From Eg. (8), we see that

(14)

BT'(s, 0, 4 —s)/atlim = 60ma12.-4

Evaluating Eg. (14) at t=0, and letting s-4, we find
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4 ",Ss'sA'(s', 0)/at+3(s' —4)sA&')(s', 0)/st

+— ds' ' „, , ' ' (I=0, 2).1 ",6(s' —4}'A(')(s'1 0) + 3s'(2s' —4}[AI'&(s'2 0) —A(')(s'1 0)]
7T 4 s" s'-4 ' (15)

These sum rules for a', were derived previously by Wanders. ' By using Eq. (12) we can improve the sum
rule for a, by finding a sum rule which is manifestly positive.

The sum rule for a,' can be written

4 " (4s -4)sA'(s, 0)/s t - 3(s -4)sA'(s, 0)/st+ 5(s —4)aA2(s, 0)/8 t
l,80@a,' =— ds s'(s -4)'

1 " 2(s —4)'A'(s, 0) + 6(s'+ 4s —16)A'(s, 0) +10(s -4)'A'(s, 0)
4 s'(s -4)' (16)

Equation (12}evaluated at t=0 becomes

4 "„(s-4)[2sAO(s, 0)/et —5sA'(s, 0)/st]+3(4 —Ss}sA'(s, 0)/st 4 " 6(Ss -4)A'(s, 0)
(s 4)2s2 w 4 (s-4)' ' (12')

Subtracting Eq. (12') from Eq. (16), we obtain

4 "„(2s+4)SA'(s2 0)/St+10(s —4)SA'(s2 0)/St 1 "d 2A'(s, 0)+ 10A'(s, 0)

6 " ds s'+4s —16 4(Ss —4)ii, 4
sA'(s, 0)

w 4 s'(s —4)' s s-4 i ' st (17)

The first two integrals on the right-hand side of Eq. (17) are obviously positive. In order to show that the
third integral is positive, we expand the absorptive parts into partial waves:

A'(s, 0) = 16wg (2l+ 1)lmf', (s), —
t A'(s, 0) =16w Q (2l+ 1)Imf', (s)

4)O ll+1

The third integral becomes

6 ss
3 f, (

)s' —16
Q(2(+2)1 f'( )

s'+4s —16 4[l(l+1) —3)s+16
}s —4

which is manifestly positive. From Eq. (17), we can derive the following lower bound for a, by peeping
only the contribution from the S and P waves:

180wa', &32 —, Imf', (s) + 5 Imf', (s) + 9 Imf', (s)
ds s+4

(1.8)

VI. APPLICATION OF WANDERS'S SUM RULE TO A MODEL
s

In a previous paper, ' we applied the crossing-symmetry sum rules' to Brown and Goble's model" of mm

scattering. The P wave was considered to be given by experiment and by Brown and Goble, with m~= 750
MeV, I'~=115 MeV, 2a,'=0.059. We then used the crossing-symmetry sum rules to constrain the S waves.
The resulting 8 waves can be characterized by a,'= 0.105, a,' = -0.051, 6,'(mw} —6~0(mw) = 44', 6,'(810 MeV) = 90'
and 6',(750 MeV) = -11'. The phase shift 600passes through 90' very slowly, and remains near 90' well
above 800 MeV.

We wish to test these model S and P waves against Wanders's' sum rule for 2ao —5a,'-18a', . lf we ap-
proximate the absorptive parts on the right by the lowest contributing partial waves, Eq. (7) becomes

8 ~
d 2Imf,'(s) —5Imf,'(s) —9[(Ss -4)/(s —4)]lmf', (s)

(19)
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We numerically evaluate the right-hand side for
several values of the upper limit of integration J.
Qur results are given in Table I. The sum rule is
satisfied to about 80%. The sum rule is very deli-
cate since the p and 0 resonances enter with oppo-
site signs. Equation (19) provides a direct test of
our unitarization procedure, since both sides are
identica. lly zero for Weinberg's current-algebra
amplitude, "which we have taken to be the K ma-
trix. The disagreement between the left- and right-
hand sides of Eq. (19) is not due to our neglect of
higher partial waves, since the factor of s ' in the
integrand makes the high-energy behavior of the ab-
sorptive parts unimportant. Even if the f ' contri-
bution were not negligible, it would enter with the
wrong sign to improve the agreement.

From Eq. (18), we have the following lower bound
for a .'

a', &180 —, Imft(s)+5imf', (s)
32 ds

+9 Im ', s

.12
20
28
36
44
84

0.019
0.024

—0.012
—0.045
—0.050
—0.053

where M =1250 MeV, I' = 120 MeV. In this case

a', =lim '
4

=——=0.003,
f', (s) 1 r

2k 32 M

which is of the same order of magnitude.
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