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Veneziano-Model Predictions of Density Matrices for Final Vector Mesons*
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The generalized Veneziano model is used to describe the hypothetical reaction oo ppo'.
The amplitude for this process is, in this model, the residue at the double spin-1 resonance
of the seven-point function. The density-matrix elements of the vector mesons produced are
calculated, and their variation with the momentum transfers is studied.

I. INTRODUCTION

Ever since the appearance of the Veneziano
model' and its generalization to N-point functions, '
numerous attempts have been made to use it to fit
strong-interaction data. ' In particular, great em-
phasis has been placed upon 2-particle- 3-parti-
cle processes, for which the function B, defined by
Bardakci and Ruegg' is used. This model is ap-
pealing to phenomenologists for many, reasons. It
has most of the properties required by theory for
a scattering amplitude: analyticity, crossing
symmetry, resonances at positive integral values
of the trajectories with the right residues, single-
and double-Regge behavior, and duality between
direct-channel resonances and crossed-channel
Regge poles. Furthermore, using various argu-
ments of symmetry, exchange degeneracy, and the
absence of exotic resonances, the number of free
parameters can be reduced to a few constants;
there are no undetermined vertex functions as
there are in the case of the double-Regge model.
So far the fits to the invariant mass and momen-
tum-transfer distributions have been good. '4

However, the model cannot accommodate all the
features of strong-interaction physics: (a) The
Pomeranchukon exchange, not dual to any reso-
nance, is not described by the model and has to be
included artificially (as done by Satz and Pokor-
ski, ' for instance); (b) there is no satisfying way
to deal with baryon trajectories and to avoid parity

doubling; (c) few 'attempts have been made to take
spin effects into account, although the model can
make definite predictions in this respect.

The inclusion of spin can be accomplished in two
different ways: (a) The amplitude is decomposed
into its invariant amplitudes, which are then pa-
rametrized as a sum of appropriate N-point func-
tions'; (b) if a process like cc- cp is to be de-
scribed, the amplitude is just the residue, at the
spin-1 resonance, of the five-point function asso-
ciated with the reaction ocr- 000.' Thus when the
trajectories have been chosen, we are left with
only one (normalization) parameter. In other
words, the invariant amplitudes are completely
determined up to an over-all constant.

In the following we shall apply the second method
to the process era- ppo, where 0 is the hypothetical
scalar, isoscalar particle of mass equal to that of
the pion, and calculate the density-matrix elements
of the vector mesons produced. We can thus gain
information on the residue functions, about which
no definite prediction is made in the double-Regge
model. This reaction is chosen for its simplicity;
furthermore, by factorization the results can be
used to describe &P- ppp if only the &-A, trajec-
tory is included.

II. THE MODEL

W'e consider a scattering process involving sev-
en spinless particles. Such a reaction is de-
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FIG. 1. Kinematics for the seven-particle reaction.
FIG. 2. Kinematics for the production

process o~ pp cr.
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scribed by the seven-point function B7 invariant
under cyclic and anticyclic permutations of the ex-
ternal momenta (Fig. 1). The residue of B, at
simultaneous poles of spin 1 in the (71) and (23)

channels is just the amplitude for the reaction 00- ppa (Fig. 2). The ordering of the particles is
important. After a lengthy calculation, we ob-
tain (see Appendix A for details)

PB C(PA PE) EDB5( CiAB& +BC& +CD& +DE& +EA)

I2
PB ecPA ~D 5( ciAB& +Bc& cicD& +DE& +EA+ )

+ I& PB ecPB ~D +& (PA PE) ~c(PA PE) D + 5+ Ec eD]B5( ciAB& ciBc + 1& +cD& ciDE& ciEA)

+ )+ (PA PE) ~cPA eD + PA ec(PA PE) eD]B5( +AB& +Bc + 1& cicD& ciDE& +EA + 1)

i&2

PA ~cPA' EDB5( uAB-& —+Bc +1, -ncD& ciDE-& -nEA+ 2)

(PA PE) CPB D 5( AB& +BC+2& +CD& +DE& +EA)

+ + PA ~CPB' ~DB5(—+AB& +BC + 2, -nCD& -iEDE& -SEA + 1) . (2 1)

e& and eD are the polarization vectors of particles
C and D, B, is the five-point function of Bardakci
and Buegg, and a' is the common slope of the tra-
jectories.

Several comments must be made about this am-
plitude:

(a) The residue of B, at the simultaneous poles
is the amplitude for the production of the p mesons
together with all their daughters. In (2.1) we have
kept only the terms which are linear in each polar-
ization vector; these correspond to the production
of the two vector mesons alone.

(b) The model allows only trajectories of natur-
al parity with respect to the external particles. '
In particular, the particles lying on the trajecto-
ries +Bc and nAE will have parity (-1) .

(c) The trajectories in every channel are ex-
change-degenerate. To allow for nonexchange
degeneracy in one channel, we have to add to the
amplitude other terms coming from a different
ordering of the external momenta in the initial B7
function and thus introduce a signature factor
which will eliminate every second resonance on the
leading trajectory. For simplicity this will not be
done here.

(d) Notice that we automatically get the invari-
ant amplitudes in terms of B, functions (this is a
general property of the B„functions) which give the
characteristic single- and double-Regge behavior
in the high-energy limit. '

(e) For simplicity we choose identical a trajec-
tories in all channels. This choice will approxi-
mate the double & exchange in the real reaction
&P- ppP. In order to get the proper Hegge behav-
ior and to give nonzero widths to the resonances,
it is necessary to put some imaginary part in the'

trajectories. Therefore, we write

+i, i+ i=ciE(si, i+& ma )

+i ci,'8(s, ;„—4m, ')(s;;„—4m, ')'",
(2.2)

i=A, B,C, D, E; m, =0.138 GeV;

+~=1 QeV 2; cy~ =0.1 QeV '.
This particular choice of the imaginary parts gives
equal width to the particles lying on the same tra-
jectory as is experimentally observed for meson
resonances.

(f) If we set nAE=0 or ciBc =0, the amplitude
(2.1) reduces to that of the reactions ca- pp or aa- op obtained directly from the B, and B, functions,
respectively (bootstrap consistency). If iEAE and

n~~ vanish simultaneously, we get just the Feyn-
man amplitude.

We proceed, now, to calculate the density-
matrix elements of the mesons produced. To sim-
plify the algebra, this will be done in the double-

Regge limit —i.e., when the subenergies scD and

s» are large compared to the masses or the mo-
mentum transfers, with the ratio scDsDE/sAB kept
constant. '

III. THE DENSITY-MATRIX ELEMENTS

We now have to define the frames in which we

measure the spins of the particles C and D.
For particle C, a convenient choice is the Gott-

fried-Jackson frame, ' denoted I, where in the
rest frame of particle C the z axis lies along the
incident momentum p~ and the y axis along
(p„—pE) xpD =pDxpB [Fig. 3(a)]. In the double-

Regge limit, if we keep only the terms of leading
order, the momenta of all particles be in the xz
plane.

For particle D there are two possible choices of
a Gottfried- Jackson-type frame depending on
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which of (pB —pc) or (p„-pE) is considered to be
the "incident momentum. " We define frame II to
be the rest frame of particle D, where the z axis
is along (pB-$c) and the y axis along p„xpE [Fig.
3(b}]; whereas in frame II' the E axis is defined by
(p„—pE) = -(pB —pc} and the y axis by pB xpc [Fig.
3(c)]. Therefore, when tBc is small p" (the density
matrix of particle D in frame II) will look like the
density matrix of the p produced in the reaction

00- po, where t» is the momentum transfer
squared; on the contrary, when t» is small we
expect p" to have the same behavior as p'.

In frames II and II' the kinematics is more com-
plicated since, in general, the momenta of the par-
ticles are not coplanar. Indeed the plane defined
by (pA, pE) makes an angle &d, the Toiler angle,
with the plane (pB, pc). In our approximation, we
have"

1 1
cos(d = (fBc + tAE™B ) + (tBc + tAE ™D 2tBctAE 2tBcmB 2t„EmB')2l-t„~4-t~~

(3.1)

where $ =scBs»/sAB . The condition
~
cosa&

~

& 1 reiluires

(4 tAE 4 tBc)' - (™B' - (4-tAE+4 tBC)- (3.2)

which shows that if one momentum transfer is small, the other has to be large enough in order to satisfy
the second inequality. It is easy to get the following relation between p" and p":

II'
( I)'kB-PB i(X. B--P )Btd II

~D~D ~D ~D (3.3)

IV. PARITY TRANSFORMATION

The amplitude can be written in a condensed form as

A'kcxB QAijPi ~kcqj exBs (4.1)

where p;, q,. are any three independent external momenta. The quantity p, e~ is calculated in I and q,. ~),
in II or II . The numbers A;, are functions of the five invariants (s», scB, sBE, tBc, tAE) denoted (inv),
whereas the polarization products depend on (inv) and sincp;, qi; being the azimuthal angle of p; or q;.
Since the azimuthal angles are pseudoscalar, they can be expressed in terms of one of them, say sine.
(This is true because there is only one independent pseudoscalar constructed out of the external momenta
of the problem, namely c" pp p+BPpyp~p The value of sin~ is equal to this, up to some invariant fac-
tors }Writ.ing explicitly the arguments in the amplitude, we have

3

A~ ~ (inv, sinid) = QA„(inv)p; e~ (inv, sin&c)q& ez (inv, sinu&). (4.2)

Applying the parity operator, it becomes

Az &, (inv, simc) =qAilBqcqBqE(-I)' " (-I)'B A „c „(inv, -sining).

The q's are the intrinsic parities of the particles.

(4 3)

z IE

(b) (e)
FIG. 3. (a) Definition of frame I where the spin of particle C is measured. . (b) Definition of frame II where the spin

of particle D is measured. (c) Definition of frame H'.
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Since in frame I all the momenta are coplanar, P; c& does not depend on sine and, therefore, we get the
1

weQ-known relations

pic„c(inv) =(-1)lc "cpl „„(inv).
For particle D we have (in both frame II and frame II')

p'z „(inv, sinId)=(-1) ~ "Dp"1
&

(inv, -simu}. (4.5)

V. RESULTS

We study, first, the variations of the density
matrices with tA~ when t~~ is fixed. The matrix
elements of particle C are independent of t» for
constant t~c [Fig. 4 (a)]. This does not come as a
surprise since the amplitude factorizes and, there-
fore, the left vertex does not depend on the right
momentum transfer. Because we have the addi-
tional symmetry p' „=-p'„, due to the fact that p'

does not depend on the Toiler angle and that only
natural parity can be exchanged in the (BC) chan-

nel, we have plotted only Hepio and p». In frame
II' notice the change in Hep„, when -t„passes
through the value E -m D2, for small values of -t»
[Fig. 5 (b}].

I we fix now tAz and vary tac we get the curves
of Fig. 5. The density-matrix elements of parti-
cle C have the same behavior as those of the vector
meson produced in the reaction' OII- po (this is a
consequence of the bootstrap consistency of the

I

model). The elements of p" are similar to those
of p", where t» and t~~ have been interchanged.
Note also that, as expected' for small tAEr H p10&

and p",, have the same variations as Hep', 0 and pii
which shows that the vertex functions are slowly
varying when the external masses are continued off
the mass shell.

The change which appears in Rep'Io' (Rep'„') when

&so (f») goes through -($-mD') is due to kinemat-
ical effects. More precisely, th'e trouble arises
because, for certain values of the pair ( tec, -
-h»}, the frames II or 11' are not well defined.
Figure 6 shows, for fixed $, the range of varia-
tion of the momentum transfers for which the re-
action Oo ppo is kinematically allowed. In frame
11, wllell -tg sgoes till'o'llgh ($ -tÃII ) alld tee is-
kept equal to its minimum value (which corre-
spollds to sin(d =0) the lllolllellta of 'the exterllal
particles and therefore all the polarization prod-
ucts p ~ co vary continuously, although cose does
not: p" has then a smooth variation [the products

~2
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FIG. 4. (a) Variation of the density-matrix elements
of particle C in frame I at fixed momentum transfer tzz
when tA8 varies. (b) Variation of the density-matrix ele-
ments of parti. cle D in frame II at fixed momentum trans-
er tac when t~ varies.

FIG. 5. (a) The same as Fig. 4. (a) When t~ is fixed
and tac varies. (b) Variation of the density-matrix ele-
ments of particle D in frame II' at fixed tAB when t~g
varies.
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g-tee
ticles nonparallel to Oz to be discontinuous. Using
now (3.3}which states in particular

Rep'„' = -(costs Rep",0+ sin&o Imp"„)

and (4.5) which, for sin+=0, yields

Rep, o
= -Rep, o,II EI

we get

(5 1)

(5 2)

2- fYlo

gt-m, & g-tAE

FIG. 6. The physical region of scattering for fixed f,
is the domain enclosed by the lines cosa = -1 and coscu
= +1. Curves of constant cosa' are also shown.

Rep'„' =cosa&Rep~«' (for sin+=0 only). (5.3)

This explains the change of Hep'„' seen in Fig.
5(b).

The model described above is interesting be-
cause it contains a minimum number of param-
eters, namely, the trajectories and an over-all
normalization constant, but it is limited in its ap-
plications by the fact that it allows only natural
parity for the parent trajectories. Also the spin of
the nucleons is not properly taken into account.

p ~ eD are, of course, continuous, since they de-
pend only on (inv)]. But ps xpc goes through zero
and changes sign; in frame II', where the y axis is
along p~xp~, this causes the momenta of the par-
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APPENDIX A

Consider a scattering process involving seven identical particles (Fig. 1). All momenta are taken to be
incoming. Define the invariant subenergies

s;;+,=(p, +P, +,)' and s»+, ~~+, =(P, +P, +, +P,+,)', i, j=1, 2, . . . , V.

Two types of channels exist in this reaction, namely, 2 particles - 5 particles and 3 particles - 4 parti-
cles. Consequently, we introduce seven trajectories associated with the two-body channels:

0 1
+1 +'j 'j+l +Q sl 0+1 0

I' 1y 2y ~ ~ ~ p 7

and seven trajectories associated with the three-body channels:
0 +j~j+$,j+2 ~ ™j~j+l~j+2 j j+I j+2P

%e define the amplitude for this process by'

I 1

0 0 ulvvvl &=& j"-1
(A1)

where the integration variables u; and v& satisfy the following relations (necessary to prevent the occur-
rence of coincident poles in the amplitude which do not correspond to Feynman graphs):

1 —V2VGQV
uy = 1 —uvu2v6v~, vy 1——QVQ2v8V2

1 —Q2
Q3 =

1 —uv,
1 —u, v,

V3 =
1 —Q2v~ve

(1 —v, )(1 —u,v,v, ) (1 —vmv, )(1 —u, u,v,v, )
(1 —u, v, )(1 —v,v, )' ' (1 —u, v,v, )(1 —u,v,v, )'

(1 —v, }(1—u,v,v, ) 1 —u7v,

(1 —v,v, }(1—u,v, )
' ' 1 —u,v,v, '

1-u 1-u v2v6
u,=, vv=

1 —Q7V6 1 —Q2uvv2vg

(A2)
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The factor v4v, /44, v,v, is necessary to ensure the invariance of B, under cyclic and. anticyclic permutations
of the external momenta. Written under this form, B, already displays poles at zero values of the trajec-
tories. We need now to continue the function to the region where the Q's are positive. For this purpose we
expand the integrand in powers of u, and u7 and then integrate term by term in these two variables. It
comes out

(a) (&) (c). (d)o (a') ~ (&') ~ (c').
,(m+n+P+n' —n»4, — 4» — „,n+P+ m' +n' —n„„n4-„),l. m. n. P. l . m. n.

(A3)

where B, is the five-point function of Bardakci and Ruegg.

(a)„=a(a —1) (a —n+ 1),

(a), =1,

0=-Q —134 0 =-Q —1~67
(A4)

tj Q34 + Q45 Q345 7 c/ Q56 + Q67 Q567 y

345 Q 456 45 712 &

Q712 Q123 ~ ™12 Q456 '

I
C —Q456 + Q567 Q56 Q123 P

This formula shows explicitly the pole structure of B, and allows the continuation of the initial integral
representation to positive values of the Q's, except for poles at positive integers.

We concentrate now on the residue at Q» =1 and Q» =1. It corresponds to the production and decay of two
spin-1 resonances together with their daughters. If we write the residue in terms of the external momenta

p s, the amplitude for the production and decay of the vector mesons will be made up of the terms which
are linear in both (p, —p, ) and (p, —p, ), where P, and p, are the momenta of the decay products in the (23)
channel and P, and P, those in the (71) channel. We make the following change of notation:

P7+P1 PCS ™456 QCD ~

P2 +P3 PD& ™234 QDE &

. P4 PE~ Q45 QEA ~ (A5)

P5 Pg

P6 PBs

Q56 =Q~B ~

Q671 =QBC ~

P7 P1 CC u

P3 P2=~D~

PC EC 0
P CC

PD' CD=0~ ED &0.
(A6)

We can interpret ec and eD as the polarization vectors of two spin-1 particles C and D produced in the
channels (23) and (Vl), respectively, and conclude that the production amplitude for these two vector me-
sons is made of the terms in the residue which are linear in both ec and eD. This is legitimate since the
amplitude for the decay of a vector meson into two scalar particles of momenta q and q' is unique and of
the form E (q —q'). Using, now, the recursion relation

4( nABi nBCi nCD& nDE+ i nEA) 4( nABl nBC& nCDt nDEt nEA)

B,(-n„B, -nBc, n—cD+1, -nDE& -nE-„+1),

we get amplitude (2.1).

(A7)

APPENDIX B

The polarization vector ez. will be defined in the rest frame of particle i by
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We denote

A(x, y, z) =x2+y2+z2 —2xy —2yz —2zx.

The following results hold in the double-Regge limit only. In frame I we have

pc = (mct 0, 0, 0),

PD =
q
— slI18q ~ cos 8

2mc 2mc ' '2mc

where

mc' 2mc ' '2mc

m, '+m, '-t Bc a' /(2mB2mc', tBC)

mc mc

tBC+mc -mB2 2

COS8 = —
X)2 2A ' (mz, mc', t,c)'

2mctBc
sln8 =

A (mz, mc, tzc)

In frame II

p, =(m„0, 0, 0),

tBc —tAE™D
() ()

A (tBc tAE mD )
PB Pc

~ ~

mD mD

SCD, SCDSln8B CO SC DslnBBSin(d SCDCOS 8B
2mD' 2mD ' 2mD ' 2mD

~ ~

sD sDEsin8A sDEcos8p=p=
2mD' 2mD ' ' 2mD

~

~0—

In frame II'

pD=(mD, 0, 0, 0),

0 0
tAE tBC + D ~ (tBC tAE D )

PE 2m ' ' ' 2mD D

ScD ScDsln 8B ScDC OS 8B
-PB 0—

2mD' 2mD ' ' 2mD

sDE sDEsin8Acos(d sDEsin8Asin(d sDEcos8A
2m 2m 2m 2mD D D D

where

cos8 tBc —tAE+ mD „.„™Di'-tBc2

B Al/2(t t m 2) t B Al/2(t t 2) t

tAE —tBC + m D' 2m'-tAE
cos8A = sin 8A yg2 2A (tBc tAE mD ) A (tBc tAE mD )

1 1costs=, , t, ~t„-I 's ttttt„)), t—s, ,
BC V AE

SCDSDE

SAB

(B2)

(B4)
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Crossing-Symmetry Restrictions on Dispersion Relations,
and Sum Rules for mm Scattering Lengths*
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We study the constraints crossing symmetry imposes on fixed-variable dispersion relations
for &~ scattering. We show that the sum rules relating 2a0-5a0-18a&, a2, and a2 to the
total cross sections, which were derived by Wanders using the Mandelstam representation,
follow from twice-subtracted dispersion relations. These sum rules are good physical-re-
gion constraints to supplement the unphysical-region constraints of Martin and Roskies in
the study of models for low-energy ~~ scattering. Using a restriction on the absorptive
parts following from crossing symmetry, we transform Wanders's sum rule for the I =0,
l =2 scattering length into a form which is manifestly positive. Keeping only the S.—and P-
wave contributions, we obtain a lower bound for a2. If the p-trajectory intercept is less than

1, we show that lim Re T (s, 0,4-s)/s is determined by the total cross sections. If, in
addition, the leading isospin-2 trajectory has intercept less than zero, then even without
imposing elastic unitarity, the I= 0 S wave is determined by the absorptive parts without
the freedom of adding an arbitrary constant.

I. INTRODUCTION

Martin' has derived rigorous inequality con-
straints on the mn partial-wave amplitudes in the
unphysical region 0 &s & 4m, '; Roskies' has found

sum rules involving integrals of the partial-wave
amplitudes over 0 &s ~ 4m, ', which follow from
crossing symmetry. There have been recent at-
tempts'4 to use these unphysical-region con-
straints to study the behavior of the mz amplitudes
above threshold. Within a given parametrization
of the partial waves, it has been possible to make
physical-region predictions. "' However, Ulrich'
has found a new parametrization of the S and P
waves in which the unphysical-region constraints
hardly constrain the physical-region phase shifts.
He introduced the experimental p meson into the
P wave, and found that there existed a family of
S waves exactly satisfying the Martin and Roskies
constraints, which had drastically different phase
shifts above threshold.

In this note, we discuss several sum rules which
relate the mm scattering lengths to integrals of the
absorptive parts over the physical region. We
show that these sum rules, which were originally
derived by Wanders' using the Mandelstam repre-
sentation, are direct consequences of twice-sub-
tracted dispersion relations. Since the integrands
behave like s ' at large energies, these sum rules
are most sensitive to the energy region below 1

GeV. Therefore, these sum rules are good
physical-region constraints to supplement the un-
physical-region constraints of Martin and Roskies
in the study of low-energy n. m models. They re-
late the tip of the unphysical region to the reso-
nance region. Also, the p and o enter the sum
rule for 2a,' —5ao 18ay with opposite signs,
making it very sensitive to the detailed form of
the S- and P-wave phase shifts.

In Sec. II, we discuss the constraints crossing
symmetry imposes upon the subtraction constants
appearing in fixed-variable dispersion relations.


