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We study the nature and location of the physical singularities of a weak three-body decay
amplitude in perturbation theory (nonrelativistic). We find only the threshold singularities
one would expect. These are most easily expressed if final momentum variables are scaled
by the total energy.

I. INTRODUCTION

In this paper we study the location and nature of
the physical singularities of a weak three-body
decay amplitude. The purpose of such a study is
to sharpen our formal understanding of this sim-
plest of the three-body scattering problems with
an eye both to improved parametrization and ap-
proximation schemes for three-body decays and
to more complex three-body problems. We also
hope to shed light on the perennial problem of
variable choice, by finding the variables in terms
of which the singularities are most naturally ex-
pressed.

The model we consider is that of the weak three-
body decay of a scalar structureless object into
three interacting scalar particles. For simplicity
we take them all to have the same mass, but one
can easily see that unequal masses will not change
any of our results significantly. The assumption
that the decay interaction is structureless is also
made for simplicity. Since the amplitude for weak
decay is linear in that interaction (that is what we

mean by weak decay), any more complex decay
interaction form is easily studied. Forms that
just give the weak-decay volume a finite size' will
not affect our results. We assume the decay prod-
ucts interact via Yukawa potentials, but since we
are concentrating only on the physical singulari-
ties, the detailed form of the interaction is irrele-
vant. We use nonrelativistic methods throughout;
since all our singularities are thresholds, this
seems appropriate. We analyze the decay ampli-
tude in perturbation theory, but presumably our
results are not dependent on the convergence of
the perturbation expansion in the final-state inter-
action, particularly as every perturbation term
(beyond the first few) has the same leading singu-
larity.

As one would expect, the physical singularities

of the decay amplitude are all threshold singulari-
ties. There are two types of thresholds in the
problem. Qne is the two-body subenergy thresh-
old of a given pair. The second is the threshold
in the total energy released in the decay, which
we call E. In the decay rest frame, E is related
to the momenta of the three decay products (q, ) by

E=qa +q2 +qs

(I'=2m=1). We are interested here not just in the
location of the singularities, but in their forms.
Clearly we see from (1.1) that we cannot consider
the behavior of the amplitude at the E -0 threshold
for fixed (q, ) and keep the amplitude on the energy
shell. It is therefore more convenient to label the
decay products with scaled momenta,

qg =y(vE)

1=y, +y2 +y3 .2 2 2
(1.2)

E t'In"( E), n=o, 1, 2, ...; m=2n-, 2n+1, ... .
In Sec. II we show by using the standard tech-

niques of Feynman-diagram analysis how singular-
ities arise in perturbation theory. In Sec. III we
analyze the singularities from the point of view

We can then study E -0 for fixed y, and stay on
shell. We shall see that the singularities of the
amplitude are simpler even off shell if we consider

y; fixed rather than q,
In the decay rest frame the two-body subenergy

threshold of a given pair (lm) is at E = ~q„' (l g m

p n). We find the singularity associated with that
threshold is of the square-root type [(E- 2q„')'t'],
as one would expect. For scaled momenta this
gives [E(1 —2y„')]'t'. The leading three body-
singularity for scaled momenta is of the form
E In( —E), occurring in every order of perturbation
theory beyond the first, and all singularities are
of the form

i032
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of unitarity, showing in particular why one gets
E ln(-E) rather than the phase-space result E' ln(-E).
In Sec. IV, we present some conclusions and di-
rections for application of our results.

II. PERTURBATION ANALYSIS

In this section we take the individual perturbation
diagrams and find the singularity structure for
each of them. This is done in two steps. The first
is to find the points at which the respective inte-
grals are singular, by means of the usual pinch
analysis. ' Having found the region of integration
that contributes to the singularity, we approximate
the integrand in a suitable way and find the nature
of the singularity in the external variables. The
treatment follows that of Eden et al.,' but our
problem is considerably more complicated than
the cases that they discuss. This is in part be-
cause our nonrelativistic treatment puts particle
propagators and potentials on a different footing,
and in part because we must investigate the super-
position of several singularities. We restrict our
attention to singularities occurring for physical
values of the external variables. In the work be-
low, our calculations frequently employ a deter-
minant formed from the coefficients of the momen-
ta over which we integrate. When this determinant
does not vanish, a simple power-counting argu-
ment, as given in Eden otal. , ' suffices to display
the behavior of the singularity. Thus, the compli-
cations indicated above are associated with the
vanishing of this determinant; this in turn appears
to correspond to what Eden et al.' call "non-Lan-
dauian" or second-type singularities. Since we do
not know how to exploit this classification for the
purpose of obtaining the nature of such singulari-
ties, we resort to the special methods given below.

In terms of these, the nth-order skeleton graph of
Fig. 1 is, up to a constant,

n

g daq, .z.-'q. -' (2.1a)

n n
= (2n —1)! g d'q, g dnidp, .

i=1 j=I
n

x [a(a, p, q)]-'"a(1 -Q (a, + p, }),
/=1

(2.1b)

(2,2)

where we have employed Feynman parameters to
collect the various denominators.

The singularities of E„occur when D vanishes
either so as to "pinch" the hypercontour or at a
boundary. ' The boundaries of integration here are
a, =0 and p,. =0; the integrations over q have no
boundaries. In this way we obtain the Landau
equations

a
D=O, i= J. ..., n

Bqi

8
ni D=o.iP; =0, i=1, ..., n

(2.3)

(2.4)

and does not affect the analytic properties that we
derive (so long as it is short ranged and nonsingu-
lar), we can consider these graphs as approxima-
tions to the case when the full two-body t matrix
occurs n times. In Sec. II8 we show that the
general nth-order graph has no additional singular-
ities.

The skeleton graphs have propagators (h = 2m =1)

P, =2(q,..'+ j,. q, , +q, ,') -E,
and potential terms

A. Skeleton Graphs 8
p,.—D= p,. @i =0, 2 1p ~ eel ~e (2.5)

qy qp qo

FIG. 1. General nth-order skeleton graph in which the
potential does not act successively on the same pair of
particles, and in which the upper and lower particle do
not interact.

Consider the nth-order diagram (Fig. 1) in which
the potential does not act successively on the same
pair of particles. Since the potential will be seen
below to serve only to give convergent integrals,

Equation (2.3) is short for 3n equations, one for
each component of qie Since D is homogeneous in
n and p, (2.4) and (2 ~ 5) together imply that D van-
ishes. We know that the potential term Q, cannot
vanish for physical momenta, and so (2.5) implies
that p, vanishes for the Physical singularities. This
is precisely equivalent to saying that the potentials
contribute only unphysical singularities, and
hence that their detailed form is not significant
here.

We will want to approximate D in the neighbor-
hood of the points in the space of variables of
integration that give rise to the singularities, i.e.,
these points given by the Landau equations. Since
we cannot expand the 5 function in (2.1b), we elim-
inate it by doing one n integration, i.e., eliminat-
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p;=0, i=|,..., n (2.6)

ing one Feynman parameter; we choose to elimi-
nate n„. In doing this we lose the homogeneity of
D and therefore must require that it vanish. Our
equations become

Here the Landau equations are

1a=—D= n, (2q, +g,)+(1—n, )(2j, +q2) =0,
Bq

n-1
nn=l Z n»

5=x

a
n, D= n, (P, -P„)=0, i=1, .~., n —1

Q~

(2.V)

(2.8)

8

2 ~q2
D= (1 —n, )(2q2+q, ) = 0,

(1 —n, )n,
&D

1 g~
/

=D=-n,. (2q,.+j, ,)+ n,.„(2j,. +q,.„)=0,
2 q]

i=1, ..., n (2.9)

where we define n„„—=0 and where q and q, are
external momenta. We now need to consider all
the sets of equations that arise for the various
choices of which a's vanish, and to find the sin-
gularity structure for that choice. We start our
discussion with a detailed treatment of the low-
order graphs.

n=Z

The Landau equations (2.6)-(2.9) reduce to p, =0
and

$ BD

2 aq,
qi+q0=0

+P&(p +E+q'
& )+P2(p +E+q2 ) (2.14)

Again, we extend the integrals over Feynman pa-
rameters to infinity, and now we need three more
powers of the denominator for convergence, i.e.,
we differentiate with respect to g three times.
Evaluating the integrals as before yields

(-E+q) '(2q, ') '(p2+E+q, 2) '(p2+E+q, 2); (2.15)

then integrating with respect to g three times
yields

=2(1 —n, }n,(-q, ' —q2 q, +j, q, +q, ') =0.

There are now three special cases, corresponding
to our choice of a,. If we take n, =0, we need

q, =q, =0. Expanding about this point, we obtain

D=-E+2(q, '+q, j2+q, ')+2n, q, '

We expand about the point p, =0, q, =-~&„and
obtain

E2
, ln(-E).

qo
(2.16)

D= ,'q, ' -E 2+(j,-+~2)'

+ p~(p +E —4q2 +$2 'g ~+ q ~ ), (2.10)
We now discuss the effects of scaling the external

momentum:

Notice that only the lowest-order nonvanishing
terms in q, + ~&„and p, are kept. We now extend
the p, integration to infinity, so as to simplify the
integration. Since the convergence at infinity is
not sufficient, We replace D by D+p and differenti-
ate with respect to g; this gives a denominator
(D+q) '. We now use

d3
(x.-g-3/2g -n+3/2 pg) 2

(A + Eq2)n (2.11)

and

dp ~ g-l~ -n+1 ~)
(A+ Dp)"

(2.12}

to find for the first-order skeleton graph I',

—F,"(2q.' E+n) '"-(u'+E --,'q. '+i. 4, + q, ').

(2.13)

Thus, the singularity in F, is (-,q,
' -E)'~2. This is,

of course, the usual two-body threshold singularity.

q,. =y, &E.

If we do not scale, and q,
' is fixed (and nonzero),

then the singularity in E coming from (2.16) is
E'ln E, but E = 0 with q,' fixed is not an on-shell
point for the amplitude; if we do scale, y,' fixed
(and nonzero), then the singularity is E lnE. In
the special case of q,'=y~'=0, there is no scaling
effect; instead, the coefficient of n, in the approxi-
mate form is zero, and therefore in integrating
(2.14) one less integration is needed. The result
is E lnE. We see that scaled momenta are in some
sense the logical variables for this problem, since
with unscaled momenta the singularity is E'ln E for
qo'g0 and ElnE for qo 0; with'scaled momenta
no such anomaly arises. Moreover, by scaling the
amplitude is kept on shell.

The second end-point singularity is n, = 1. Since
n, =0, the propagator P, "does not participate" in
this singularity, and we expect it to resemble n = 1.
Indeed, we expand about q, = —~&„perform the

q» n» p„and p, integrations' (after one differen-
tiation and subsequent integration with respect to



71) and obtain a singularity (&q,
' -E)'~'. We see

that the singularity of I2 corresponding to e, =0 is
that of E,. In the same way all singularities of
E„„corresponding to n„+,=0 are those of, E„. For
this reason we eliminate e„+, and investigate only
singularities arising from the vanishing of the re-
mRHlHlg Q Se

Vfe now consider the third and last, case, in
which SD/&o., =0, with o., x0 and a, xl. Here q,
=q, =q, =0. Thus, both denominators can partici-
pate in the singularity only if the external momen-
tum q, is identically zero; it does not suffice for
it to be scaled and therefore to vanish as E van-
ishes. Differentiating Rnd integrating twice with

respect to q gives

j. 1 dQ~

p.'+E+ q, ' pP+E (1 —n, )'~'(3+ n, )
'

Here a, is not determined by the Landau equations,
and so appears only in coefficients of q's. ' The
singularity is E ln(-E) ~

Hex e we simply sketch the process of finding the
nature of the singularities, except when the meth-
ods differ from those above. First, if no a van-
ishes, j,=j,=j,=j,=0, and we have a singularity

E sgm da&da2
(u'+E)(V'+E+ q, '} (2.18}

Here again we must distinguish between scaled and
unsealed extex'nRl IQoIQentR: For qo scRled or zeroy

the singularity is E'~'; fox' q, unscaled Rnd nonzero
it is Z'~'.

The case a, = 0 is the only "new" ease, inasmuch
as it corresponds to allowing two separate propaga-
tors, P, and P„ to contribute to the singularity.
This mill give rise to what we call "product" sin-
gularities, i.e., singularities arising from the
product of two (or more) integrals, each of which

may independently be singular. We look at the
Landau equations for n, = 0 and allow both a, = 0
and sD/Bn, =0. In both cases j,=g, =0; no other
condition is common to both cases. Thus we ex-
pand D about q, =q, =0 and a, =p&=0. We can in-
tegrate over a, and p,. from zero to infinity, and

then ovex' a, fx'oIQ zex'0 to unity; we obtain'

where 6 is the determinant of the matrix of coef-
ficients of q, q,. 6 does not vanish so long as no e
.s Ruowed to vanish.

With a, =0 the Landau equations yield q, =q, =q,
=0; the singularity is therefore

(-E)'~' d n,
q.'(V'+E)(u'+ E+qo'}(V'+ E+q, ')

p'+E+q ' ' ' E+2(q '+-g g +q ') 2q'[-E+2(q 2+q j +q'}][p'+E+(q —q )'][p,'+E+q'] 'g~d

(2.20}

The form of (2.20) shows the promised factoriza-
tion. The first integral yieMs an E'ln(-E) singu-
larity. The second gives a singularity

(-'q.' -E)"(q.' -E) '; (2.21)

General n

We sketch here an inductive argument to show
that we ean find the nature of all physical singular-
ities of E„by the use of Feynman parameters.
Since we restrict ourselves to scaled mornenta,
these singularities are a11 at E = 0, If all a's are

this is obtained by analysis very similar to that
above. The factor (q, ') ' in (2.20) accounts for
the denominator in (2.21). Naturally, the E, has
no pole at q,'=E [just as E, has none at q,' =0, in
spite of Eg. (2.16)]; the term is significant only for
scaled Inomenta, for which the singularity is E '~'.
Thus, in addition to the previously found singulari-
ties E'~' (with scaled momenta), we have singulari-
ties E'ln(-E) and E'~'In(-E) arising from the pro-
duct of integrals. '

nonvanishing, then q, = q,, = ~ ~ ~ = q,„=0 Rnd we have
E"~'In(-E) for n even, and E"~' for s odd. If n, =0,
then q, = =q„=0; for scaled momenta the same
singularities arise. (In the case of unscaled mo-
menta there is an additional power of E.) If a„=0,
the singularities are those of E„„and therefore
known.

Products of singularities are found when a& ——0,
2&i&n-j.. First, take o.„g0and e„,=0, with
the other parameters unspecified. This implies
q„=q„,= 0; we expand about that point and likewise
about a„,=0. The coefficient of o.„,is 2q„,'.
We then do all the integrations over Feynman pa-
rameters; we obtain the product of two integrals.
The first is

(2.22)

This is understood as only over some neighborhood
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of q„=q„,=0, and has singularity E'ln(-E). The
second is

and

P = 2[(q, +q, )'+ (q, +q, ) q3+tf3 ] -E.
d'q, P,. '

Q 2q„ (2.23)

(2.24)

with singularity E' '. The other is like (2.23),
with n —3 substituted for n —2; it has the singular-
ities of F„,times F- '. Clearly, this process can
be continued to find all singularities in F„, know-
ing all those in F with m&n.

In summary, we can derive all the singularities
of the skeleton graphs in every order. They are
found to be of the form

En/2P ( E)]m

m = 0, 1, 2, ...;

(2.25)

n=2m, 2m+1, ... .

in which Q contains potential terms that serve only
to yield convergence at infinity. This is of the
form for E„„except for the (q„,') ' factor, which
introduces a factor E ' in any singularity of F„,
(only for scaled momenta) and adds no other sin-
gularity. The result is a singularity E ln(-E) times
any singularity in F„,. Next, we take n„w0, n„, '

g0, and n„,=0; this implies q„=q„,=q„,=0.
Here n„, has a zero coefficient, and e„,has
coefficient q„,'. (Recall that n„ is eliminated and
thus has no coefficient in our expansions. ) Again
we have two integrals. The first is

The graph in Fig. 2(a) need only be considered in
the case where P, and P, both contribute (i.e.,
with n, and n, both nonvanishing). Every other
case is identical with a singularity of E, (a relabel-
ing of momenta may be needed to show this). We
use the Feynman methods of the previous sections
for the two cases e, =0 and Q., g0. In both cases
q, = q, =q, = 0 is the point of singularity given by the
Landau equations, and so D is expanded about that
point and the integrations over momentum per-
formed, For o., +0, we obtain q, =0, and the sin-
gularity is E'~'; for u, = 0, the singularity is E'~'/
qp y

which is E' ' for scaled momenta. The graph
of Fig. 2(b) has a different structure only when all
three propagators participate (i.e., o„o.„and n.,
all nonvanishing). Here q, =q, =q, =q, =0 is the
point of singularity, and we find E' ' behavior.
Clearly all higher-order graphs can be handled
similarly.

We saw in section A that the basic singularities
were those associated with the vanishing of a sin-
gle propagator (i.e., one nonvanishing o, ); these
gave us E'~' and E ln(-E) singularities. The van-
ishing of several adjacent propagators in skeleton
graphs (i.e., several sequential o.'s nonvanishing)
was seen to yield only these same singularities;
thus the most general singularity, arising from
products of these "basic" ones, was as given

For a given order of perturbation theory there is
a maximum power of ln(-E) that occurs, but all
lower powers appear, so that the leading singular-
ity is E ln(-E) for all graphs beyond n= l. Thus
when the perturbation expansion has nonzero radi-
us of convergence near F. =0, the entire amplitude
also has E ln(-E) as its leading three-body singu-
larity.

q~ q~

q

B. General Graphs

We now want to find the nature of the singulari-
ties of graphs other than the skeleton graphs pre-
viously treated. The additional features are mul-
tiple interactions between the same two particles
and interactions between all three pairs of parti-
cles. If we consider identical particles, these
have an additional contribution that appears first
in third order; both possibilities are indicated in

Fig. 2.
The graphs in Fig. 2 differ from that yielding E,

only in the momenta that participate in the propaga-
tor P, (and, of course, in the potentials). For
Figs. 2(a) and 2(b) we have, respectively,

P ~
= 2 ((gal + q q

'
q3 +gq ) —E

qo

q)

(b)

FIG. 2. Third-order graphs not included in the skele-
ton graphs: (a) successive interaction between the same
pair and (b) all three pairs interacting.
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In Sec. II we derived the singularity structure of
three-body decay amplitudes in perturbation theor y.
We would now like to show that the singularities
obtained there can all be accounted for, at least
heuristicaQy, by a judicious use of unitarity argu-
ments.

Unitarity gives the imaginary part of an amplitude
in terms of other amplitudes, and by the usual
analyticity arguments the threshold point for that
imaginary part should be a singular point of the
amplitude in the variable appropriate to the thresh-
old. The nature of the singularity is obtained by
putting the threshold behavior of the imaginary
part into a dispersion relation and integrating near
the threshold. In most well-known cases the
threshold behavior of the imaginary part is given

by phase space by assuming the amplitudes them-
selves are finite at threshold. For example, the
argument for establishing the nature of the singu-
larity in a two-body amplitude T» near an n-body
threshold gives'

Zr E(3n-5)/2h ( E) (3.la)

for n odd, and

E(3n-5}/2 (3.1b)
t

for n even, For n=2 we get the well-known vE
singularity and for n= 3 the well-known E'ln(-E)
singularity.

Let us apply similar unitarity arguments to the
three-body weak-decay amplitude. Unitarity gives

ImA ~3
—

~3 p3 T33y (3.2)

where A» is the decay amplitude and T,3 the 3 to 3
scattering amplitude. Equation (3.2) assumes only
three-body intermediate states (no two-body bound
states etc.) and is linear in A» from the assump-
tion of weak decay. The 3 to 3 amplitude is the
sum of three disconnected terms (the three two-
body terms with fly-bys) and a completely con-
nected amplitude as follows:

Tss =QT2'25~+ Ts, .
t

The threshold of a disconnected term's contribu-
tion to unitarity is at E = &q', '. The singularity it

(3.3)

above. We have just shown that the vanishing of
several adjacent propagators in the most general
graph also yields no new type of singularity.
Since this is the only new feature of such graphs,
as argued above, we see that they introduce no
new singularities into the total amplitude. In fact,
the most that can happen is that some general nth-
order graph, due to its particular configuration,
will lack some of the singularities present in the
skeleton graph of that order.

III. UNITARITY ARGUMENTS

produces in A. is of the square-root type
(E ——,p, ')'~', since it is just a two. -body threshold
in the three-body space. These unitarity argu-
ments are sketched graphically in Fig. 3. The
treatment of pair subenergy thresholds is further
facilitated by the fact that each term in the decay
amplitude carries such a threshold in only one of
its pair energies, and thus the decay amplitude
can be written as the sum of terms each with its
own subenergy cut as in the Khuri-Treiman rep-
resentation. ' The three pair subenergies are not
independent, but are connected by the total energy
E. The amplitude has a singularity in E coming
from the connected 3 to 3 amplitude to unitarity.
This connected amplitude has its threshold at E = 0.
If Ag3 and T,3 wer6 finite at E = 0, the contribution
to the singularity structure of A» from this
threshold would be E'ln(-E), as is the case for
T22 ~ 3 ~ A ]3 is easily seen to be finite as E -0 in any
reasonable model of the decay mechanism. The
situation for T 33 is entirely different. If we keep
all the pair subenergies fixed and let E -0, T33

will remain finite, but such a procedure goes off
the energy shell. We can ensure that the amplitude
stays on shell as E =0 by scaling the external mo-
menta as in (1.2). In that case we can study the
limit E-0 for fixedy. We find

Im +=a LO +
I

FIG. 3. Schematic representation of the unitarity equa-
tion for the imaginary part of the three-body theory
amplitude. The first term on the right-hand side is the
contribution from two-body scattering and the second
from the connected three-body scattering. (Yhe C stands
for connected. ) The vertical line means that only the
6-function part of the intermediate state is to be taken.

(yl&"'(E) ly') = ' +,'y, + ~(y,y')In(-E)+ 0(&)

(3.4)

as E-O.' The coefficients A, 8, C can be calcu-
lated from the two-body scattering lengths and
some kinematic integrals, but do not require a full
solution of the three-body problem. The effect of
these terms in (3.4) is to take the leading E'ln(-E}
term and make it E ln(-E), 'E~'I(-n),Eand
E'ln'(-E). The higher powers of ln(-E} we dis-
covered in Sec. II come from E"ln (-E) factors in

A» and T», times the ln(-E) from threshold. The
E'ln'(-E) discussed above is one such case. This
compounding of singularities in the three-body
system is absent in the two-body case since pow-
ers of square-root singularities have at most a
square-root singularity, whereas powers of logar-
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ithmic singularities yield new singularities. In the
four-body problem there is again a vE threshold,
but there are logarithms in the three-particle sub-
energies to complicate matters.

IV. CONCLUSIONS

We have seen that an amplitude for weak three-
body decay has only threshold singularities for
physical values of its variables and that the nat~e
of these singularities is easily understood so long
as proper attention is paid to the behavior of the
related amplitudes at threshold. In perturbation
theory we have seen that the amplitude has square-
root thresholds in the pair subenergies and that
the leading three-body singularity is E ln(-E}.
This singularity comes essentially from the usual

E'In(-E} from phase space and the leading I/E
part of the 3-3 connected amplitude, if the decay is
studied as a function of the momenta scaled by the
total energy rather than as a function of the mo-
menta themselves.

The existence of the subenergy thresholds of the
pairs means that the decay amplitude cannot be
expanded in powers of the subenergies. " Expand-
ing in the square root of subenergies would be al-
lowed from the point of view of the subenergy sin-
gularities, since the subenergy threshold is of the
square-root type. However, on shell, the sub-
energies are connected by the total energy and it
is less clear how to write a representation that
simultaneously contains the subener gy square-root
cuts and the total-energy logarithms.
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some compact neighborhood, since q& was not given by
the Landau equations, we include its nonsingular contri-
butions as well as its singular contribution. This is why
we have the singularity E ln(-E), which comes wholly
from the integral over q2 and q3.

~Cf. R. D, Amado, in Elementary Particle Physics,
edited by M. Chretien and S. S. Schweber (Gordon and
Breach, New York, 1970), and references therein.
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