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We study the symmetry-breaking role of the k meson in the context of the (3,3%)+(3*,3)
model and compare its role with that of the pseudoscalar mesons in the hypothesis of partial
conservation of axial-vector current. In some dynamical schemes, field-divergence ident-
ities derived from the hypothesis of partial conservation of axial-vector current may play a
parallel role to those derived from partial conservation of vector current, as is evident in
many effective-Lagrangian and “hard-pion” calculations. However, the point of view that
the vacuum is approximately SU(3)-symmetric, coupled with Dashen’s counting of the order
of chiral symmetry breaking, suggests a scheme in which « plays a dynamically dissimilar
role to that of the pion or kaon. We pursue this possibility and show that it is required if one
demands that certain alternative definitions of the off-mass-shell amplitude are forced to
coincide, at least to lowest order of chiral symmetry breaking. In such a dynamical scheme,
which we find attractive, the ¥ cannot at small momentum transfer dominate the vector
divergence in the same sense that the pseudoscalars dominate the axial-vector divergence.
A « effect can, however, contribute to matrix elements in a higher order of symmetry break-
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ing, and we illustrate such a scheme in a simple Lagrangian model.

I. INTRODUCTION

The picture of chiral symmetry and chiral sym-
metry breaking which has evolved over the past
few years has been dominated by the idea of spon-
taneous breakdown and the related idea of pole-
dominated axial-vector divergences which have
“smooth” matrix elements in momentum transfer.
Practical calculations have leaned heavily on the
smoothness approximation. The Goldberger-
Treiman relation,' the Adler condition,? and the
Adler-Weisberger condition® indicate that it is re-
liable at the 10% level for pion matrix elements.
We shall be interested in the implications which
follow if the smoothness approximation is also re-
liable at this level for kaon matrix elements.*
Such smoothness conditions associated with partial
conservation of axial-vector current (PCAC) also
play a central role in the analysis of the transfor-
mation properties of chiral-symmetry-breaking
and SU(3)-symmetry-breaking parts of the Hamil-
tonian density; for example, let us consider the
Gell-Mann-Qakes-Renner and Glashow-Weinberg
(3, 3*) +(3*, 3) models.>*® In the Gell-Mann-Oakes—
Renner (GOR) analysis,® summarized by

(i) PCAC for 7 and K mesons,
(ii) (0|u,|0)#0,

(iii) (0lu,)0)=0,

(iv) fo=Sfx,

(1.1)

[

one is led to believe that these conditions hold to
within the accuracy of the PCAC smoothness condi-
tions. Notably absent from this scheme, but pres-
ent in the Glashow-Weinberg (GW) analysis,® which
also relies on smoothness conditions, is the «
PCVC (partial conservation of vector current) con-
dition and the attendant modifications

(i) PCAC for k and K mesons and PCVC for
the k meson,

(i) {Olu,l0)#0,

(iii) {Ofugl0)+0, (1.2)

(iv) fo=fx=f« (neglecting renormalization ef-
fects),

(v) SU(2)-symmetric vacuum.

In view of the experimental indications that a «
meson exists” but that it fails to dominate the
scalar form factor in K, decay,® it is of interest
to reconsider the role which k may play in the
scheme of approximate SU(3)xXSU(3) symmetry.

In particular, we present an attractive scheme in
which the « plays an essentially different dynami-
cal role than the pseudoscalars and we correlate
this dynamical difference with a group-theoretical
difference in the way chiral symmetry is realized
in the chiral-symmetry limit. We shall show that
k dominance fails, at least in connection with an
approximate Goldstone role for k, if certain alter-
native off-mass-shell extrapolations are required
to coincide in lowest order of chiral symmetry
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breaking.

Dashen®!® has recently argued that it is very dif-
ficult to accommodate a x-dominance relation and
a Goldstone role for the « in the chiral-symmetry
limit. It is relatively easy, on the other hand, to
construct models which mock either the GOR
scheme or the GW scheme, and it seems useful
to examine the two alternatives. Our point of view,
in fact, is that the GOR scheme, the GW scheme,
and the Dashen argument are really not inconsis-
tent with each other, provided one suitably modi-
fies the statements (i)—(v) by stipulations which
make precise what limit of the theory one is dis-
cussing. Essential to this is the counting proce-
dure of Dashen in which the order of symmetry
breaking is parametrized in powers of 5, the chi-
ral-symmetry-breaking parameter in the decompo-
sition of the hadron energy density as 3€=3C, - 63/,
where JC, is a chiral singlet and 63’ an SU(2) sin-
glet. We shall argue that if the « is to be accom-
modated without destroying a smoothness condi-
tion which requires alternative off-mass-shell
definitions to coincide, then one must allow the
vacuum Q(6) of 3¢(56) =3¢, — 63¢’, (0]uy|0), (O[us|0),

S fxy» and f, to depend on 6 in such a way that
(with 63C=u, + cuy)
lim Q(6)=9Q,, an SU(3) singlet,

80

lim Q"g&'_‘” £0, (Olu,]0)=0(5),
-0

lim <—°'—’g&'—0> =0, (0luyl0)=0(5%),

§=0

(1.3)

1imf1r=1imf!(; I fK=O(1);
§—0 50

Lim fK_1=0’ fK-1=O(6)7
§—0

lim m,%=0, limm*=0; m,%, mg?=0(5),
80 50

lim m,2+0, m2=0(1).

8-0
Thus the GW scheme [with formal xk-PCVC condi-
tion, SU(2)Q, and f,#f,] can, in this context, be
regarded as a more general description which
tends in the chiral-symmetry limit to the GOR
scheme. Note, however, that « is ot a Goldstone
particle in this point of view and plays an essential-
ly different role in nature from the pion and the
kaon; even though it is coupled linearly to the
vector divergence when 6+ 0, it decouples in the
limit 6~ 0 where the corresponding decay con-
stant f ! vanishes.

In this scheme the k-PCVC condition and the
other refinements of the GW scheme are of the
order of PCAC smoothness corrections, on the
same footing as corrections to the Goldberger-
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Treiman relation. Indeed we shall be led to this
point of view by a brief study of pseudoscalar ma-
trix elements of the (3, 3*)+(3*, 3) densities in the
(3, 3*)+(3*, 3) model of chiral symmetry breaking.
In a sense we shall merely be making explicit cer-
tain PCAC smoothness assumptions which are im-
plicit in the GOR analysis and the work of Dashen.
We shall see that these smoothness assumptions
effectively make alternative off-mass-shell defini-
tions of these scalar matrix elements coincide but
also effectively deny the k a Goldstone-like role in
chiral- and SU(3)-symmetry breaking. This is the
subject of Sec. II, in which we also comment on
the feasibility of realizing the chiral-symmetry
limit with the « as a true Goldstone particle (M >
=0, f,~'#0 in the chiral limit), concluding that
the PCAC smoothness condition and the require-
ment that alternative off-mass-shell definitions
coincide must then be relaxed. In Sec. III we con-
struct an explicit model which spans the GW or
GOR schemes and satisfies the limits in Eq. (1.3)..
In Sec. IV we summarize and comment briefly on
the implications of our results.

II. PSEUDOSCALAR MATRIX ELEMENTS
Let us consider the matrix element
(P,(p)W,(0) [P (p")) (2.1)

where P,(p) is a pseudoscalar meson with octet in-
dex ¢ and four-momentum p, and W;(0) is a scalar
density. If we define the matrix element with one
off-mass-shell pseudoscalar meson in the conven-
tional manner!! and take the soft limit p— 0, the
result is

}’in% (Py()|W,(0)|P,(p')) = -2if (OILFS, W, IP,(p"),
(2.2)
where the PCAC constant f, is defined by

i)A,(x):m-‘i di(x), 8A;(x)=8,4,,(x). (2.3)

2f,

If now the second pseudoscalar is reduced and
PCAC and a soft limit are taken, the result is

lim  (P,(p) IWj (0)[Py(p")

p—0;p’' -0
= -2f .27 O ILF3, [F3, w1110} .
(2.4)
The limit, if the matrix element {(P,(0)|W, |P,(0)) is

to have a definite meaning, should be independent
of the order of reduction, and since

p'_’lil"l;l_’ <P¢(p)|W;(0)lPk(P')>
= _zfisz<o “:-F\?’ [Fg) Wj(o)]] l0> ’
(2.5)
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we are required to conclude that
(o|[F3, [F3, w,11l0) =(O[[F3, [F5, w,]lj0) . (2.6)

This is required if we define the double-soft off-
mass-shell amplitude by reducing the pseudo-
scalars one at a time. The purpose of this section
is to advocate that we may, under certain condi-
tions, reach the same conclusion even if an alter-
native off-mass-shell definition is employed when
W;=u;, a scalar density in the (3, 3*)+(3*, 3) model
of chiral symmetry breaking. The underlying as-
sumption which supports this point of view is the
smoothness of the matrix element

(0[oA, [P, (p)) =m;2/2f (2.7)

as p—~ 0, a smoothness which we shall identify with
the PCAC hypothesis. The important implication
of Eq. (2.6) is that (0|u,|0)= 0, where u, is the

J

[ o>

SU(3)-breaking part of the Hamiltonian density.

First, however, let us consider an alternate
procedure for obtaining the double-soft limit. De-
fine the tensor

My (b, p")= fd“xfd"x’e"""' e~irx

x{0 ,T(Ap, i(x)W](O)A u,k(x’)) |O> .
(2.8)

Then we have
PuP;ﬁMpu=fd4xfd4x’e”""' et

X 8,0,0(TA,,,; W;A,)[00. (2.9

We can now differentiate in either order and use
the generalized Ward-Takahashi identities, com-
bined with the off-mass-shell definition

(Pi(P) 'Wj(0)|Pk(PI)>= ‘(+i)2(17'2 + mkz)(pz + miz)(4f,fk /m;zmkz)f d4x'f dixel?"s it <O|T(8A,W15Ak)|0>

to obtain the double-soft limits

lim (P,()W, PN/ fu= [atx [ dx0lrA,W,04,)0
]

»—0,p' ~>

(2.10)

(2.11a)
= ~(0|[F3, [F3, w,(0)]]]0) + f a*x(0|T(w,[F3, 2A,])|0) (2.11b)
= _(ol[ng [Fiy W](O)]] IO>+ f d4x<0|T(Wj[F§) 3Ak])|0> ’ (2110)

where the last equality rests on the assumption
that the result is independent of the order of par-
tial differentiation. Equations (2.4)-(2.6), (2.11b),
and (2.11c) clearly do not necessarily lead to the
same value for the double-soft limit and illustrate
well-known ambiguities or freedom in defining
matrix elements involving more than one off-mass-
shell pseudoscalar meson. When W;(0)=3(0), or
any other operator which annihilates the vacuum,
then Egs. (2.11b) and (2.11c) reduce to Egs. (2.4)
and (2.5), respectively, because the second terms
of (2.11b) and (2.11c) vanish and Eq. (6) is identi-
cally satisfied. Let us, however, consider the
case where W;=03C"=uy+ cug, the chiral- and SU(3)-
symmetry-breaking part of the hadron energy den-
sity in the (3, 3*) + (3*, 3) model, which does not
necessarily annihilate the vacuum. Let us mean

by PCAC the hypothesis that the matrix elements

of 84, =(m;/2 f,)¢; are smooth enough in momen-
tum transfer so that

2
(0154,(0) | P( p) =%‘I 8i5 0

n
|
A3
)

3

Then
(P(0)|63¢'| P,(p"N) = =21 f(O|[FF, 85 ]| P.(p")
=2/0[24,(0)|P,(p)
=m0, =2f(0[0A,| P,(0)
= _4fifk<0 I [Fi, [Fi’égcl] |0> ’
(2.13)

where the second equality follows from the general-
ized Heisenberg equations of motion applied to the
divergences and the remaining equalities follow
from (2.12) and a second reduction. Similarly,

(Py(p) 63" | P(0)) = 2 f,{ P;( ) [8A4,(0) [0) =m,*5
=2f{P(0)[84,[0)
=-4/,fOI[F3, [F,65¢]][0) .

(2.14)

Thus liberal use of (12) has led us to the strong
smoothness conditions!?

(P,’(O)jéi}c’lpk(l)l» =<P¢(P) lﬁ(}C',Pk(O»

=(P;(0) [53¢" | P,(0)) (2.15)
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requiring
(0 ‘[Fiy [Ff,ﬁf}(f’]] ,0> =(0 I[-F:’: [1“2,53(3’]] |0> ’
(2.16)

or
0 =fikl<0 ’[FUGC‘C'] [0) = Sir1 Frank0 I Um [0) (2.17)

which is certainly satisfied since the vacuum is
invariant under space-time translation. Thus Eq.

(2.6) is satisfied for the special case when W, =053C".

Also,
(Pi(p)|63c'| P;(p))

is clearly diagonal as a result of assumption (2.12)
and takes the well-known form?!?

mij2 = 5¢j4fi2[%+ (%)Uzcdiis]
X[(0uo | 0) + (2)72d;;5(0 |ug |0)] . (2.18)

We also conclude that, if the PCAC smoothness
approximation (12) is good, the second term in
Eqgs. (11b) and (11c) from the reduction of
(P, |63¢’'| P,y must be negligible, which is consis-
tent with the counting of Dashen® and Dashen and
Weinstein,> 1° since they are of order 6% whereas
the double-commutator terms are of order 6. This
will be the case so long as there are no scalar
poles with mass squared of O(3) to reduce to 6 the
explicit 6% dependence of the second term in Eqs.
(2.11a)—-(2.11c) when W, =563C’. A scalar dilaton
whose mass is of 0(6) would of course interfere
with the smoothness.'* At this stage there still
seems to be support for a xk meson, even within
the smoothness context, since {0|ug|0) is not ob-
viously zero despite departures of (2.18) from the
Gell-Mann-Okubo form. It is no coincidence that
a singularity with x quantum numbers cannot con-
tribute to the matrix elements we have so far
treated. When W;, however, carries strangeness,
there is a potential candidate for a scalar pole,
namely, the x particles” whose mass may be of
0(5).

To make the effect of the x more explicit, we
can use Egs. (2.11b) and (2.11c), the Jacobi iden-
tities, and the charge algebra to obtain

i8(x O [ F (%), W;(0)]10)

= Ja=01 7w, O [se(w), Fo()]}0).

(2.19)

Now assuming that the SU(3)-breaking part of the
Hamiltonian density is the eighth component of an
octet, we find

S O1W,10) = f sy [0 TV, OW,()IO) .

(2.20)

By inserting a complete set of intermediate states
in the time-ordered product and saturating with a
k pole, we find the well-known relationship
(0|w,|0) =é—mﬁ—+nonpole terms (2.21)
y 3 (2f ) ) ’
Thus the difference between extrapolations (2.4),
(2.5) and (2.11b), (2.11c) is a (0| W,|0) effect
which persists or vanishes in the chiral-symmetry
limit according to whether the k is or is not, re-
spectively, a Goldstone-like particle.
It is usually assumed, even in work where the
k pole is used to dominate the vector divergence,®
that the (approximate) SU(3) symmetry is realized
by an approximately symmetric vacuum, resulting
in approximate SU(3) multiplets. In this case
(0|W,|0) and (1/2,)? are of second order in SU(3)
breaking, while m,2 is zeroth order in the breaking
parameter. The difference between 1/f, and 1/f,
is of order SU(3) breaking and one expects the
Ademollo-Gatto theorem to apply to f,(0). In the
k Goldstone interpretation, on the other hand,
(0|W,|0) and m,? are of first order in SU(3) break-
ing, while 1/f,, the k coupling to the weak current,
does not vanish in the chiral-symmetry limit. It
is of zeroth order in chiral-symmetry breaking
as are the weak-decay constants of its Goldstone
partners, the 7 and K (and n); these latter decay
constants are not degenerate in the SU(3) limit
where the vacuum has SU(2) symmetry, and the
Ademollo-Gatto theorem does not apply to f, (0).
Since the x does not obviously dominate the K,
scalar form factor,® there seems to be no utility
in regarding it as a Goldstone boson, and we can
effectively rule out the second possibility just dis-
cussed. The general conclusions regarding the
first possibility hold whether or not the « term is
the only important one in Eq. (2.21). That is, the
difference between the extrapolations (2.4), (2.5)
and (2.11b), (2.11c) should be of order SU(3) -
xSU(3) breaking, disappearing in the symmetry
limit. This view that the PCAC ambiguity is a
symmetry-breaking effect is quite compatible
with the smoothness condition (2.12), as we shall
now argue.
Consider the matrix elements

(PP u;(0) [ Py(p'D) (2.22)

where u; is any scalar density belonging to the
same (3.3*)+ (3%, 3) representation as 63’. We
have the soft limit

(P4(0)[u,(0) | P ") = =2 f(O|[F}, ;]| P p)
==2f,d; ;{0 | v, | P (PN
no sumon 2. (2.23)

In the (3, 3*)+ (3%, 3) model, however, v, is propor-
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tional to the axial-vector divergence 94,, where
by the smoothness-condition equation (2.12) we
have, analogous to conditions (2.15), the natural
off-shell identifications

(P;(0) |u;(0) | P( p"))==2fd; {0 | v, | P,(O))

=(P,(0)|;(0)| P,(0))  (2.24)
and
(P( ) |u,(0)| P,(0)) = ~2f,d; ;{P;(0) | v | 0)
=(Py(0) |u;(0) [ P,(0)) . (2.25)

It is clear, however, that (2.24) and (2.25) are in-
consistent with (0|u,|0) #0 and x PCVC. One can
see this formally by observing that to have (2.24)
and (2.25) we must have (2.6) with W,;=»;. But
this implies that

0 =f;,(0 I[Fn uj]l(» == iklfljm<0|um,0> ’

which implies that (0 |u,|0) =0, to within the _
PCAC smoothness assumptions. Again the smooth-
ness condition (2.12) has led us to drop the second
terms in Eqs. (2.11b) and (2.11c), and has pre-
vented « from playing a Goldstone role with m,?
= 0(5)y (olual(» = 0(6), and fx "= 0(1)-

We can understand this limitation on « in another
way by strongly restricting the momentum-trans-

fer variation of vector-divergence matrix elements.

Let us examine the matrix element
(Ki(P) |“1(0) I "k(,b'» ’

2 — 2
P, S=mgT,

(2.26)

p*= _mtz’

where K; means kaon and 7; means pion.'” x PCVC
would take the form

m,2
) (2.27)

v, = f ¢;=C fiathy (j=4,5,6,7),

which implies
Cfa45<K¢( P) | Uy [ Tfk( PN = <K¢( p) ' ¢?<| ”k( ') mKZ/ZfK

_m (K (P)JT*0) |7 (2"))
2f « me+(p=-p'2 ’
(2.28)

where J* is the k source current whose matrix ele-
ment should be slowly varying if k PCVC is to be
on the same footing as 7 and K PCAC. But this im-
plies a large momentum dependence for (2.26), in-
consistent with previous assumptions. There is no
reason, however, which prevents a k meson from
existing and coupling linearly to the vector diver-
gence provided its coupling vanishes and (0 |uy|0)/5
vanishes in the chiral-symmetry limit. A scheme
consistent with Eq. (2.12), for example, is the fol-
lowing:

m=0(1),

[ >

<0 ‘usl()) =O(52)’
fK-l =0(5):

in which case « effects are one order of 6 down
from PCAC effects, and the different off-mass-
shell definitions coincide in lowest order. In such
a picture, we have for the axial-vector divergences
(following Dashen®)

2
™M’ Gapy
(fxlaA,lB)_%”q2 o +0(0)

- {0(1) 7-0, (2.29)

0(6) otherwise,

whereas for vector-divergence matrix elements
we have

(ClavV¥|D) = _m  Gépk +0(5)
N ml(z +q2 2f «

=0(6) independent of ¢*. (2.30)

In other words, even if the k contribution varies
rapidly for ¢®~ 0, there is no reason to believe it
is the dominant contribution to the matrix element
for small ¢? and hence no reason to insist that the
matrix element itself is varying rapidly. Thus for
small § in this scheme, the PCAC corrections,
which are of order 6, can be neglected as ¢*> -0,

in which limit the pole term is of order unity. The
smoothness hypothesis is merely a statement that
the correction term can be neglected even for ¢*#0
but small. The matrix elements of the vector di-
vergence, on the other hand, behave in an essen-
tially different way in the chiral-symmetry limit.
They are of order 5, independent of ¢%, and are of
the same chiral-symmetry-breaking order as
PCAC correction terms such as 37 or Knm con-
tinuum contributions. For internal consistency,
therefore, k or (0|u,|0) effects should be neglected
in calculations in which strong smoothness condi-
tions are invoked which require the off-mass-shell
amplitude definitions to coincide and result in the
“smoothness” of (2.24) and (2.25).

Of course, we cannot claim that we have derived
the smoothness conditions or the requirement that
off-mass-shell definitions coincide at the double-
soft limit, but only that we have correlated them
with a dynamical scheme in which the vacuum is
approximately SU(3)-symmetric and in which « ef-
fects are an order of chiral-symmetry breaking
down from PCAC effects. [Alternatively, of course,
one could reject the strong smoothness conditions
and the concomitant requirement that the alterna-
tive off-mass-shell definitions coincide in lowest
order, as well as the approximate SU(3) symme-
try of the vacuum, lowering it even in the chiral-
symmetry limit to SU(2).] We find our scheme,
however, an attractive possibility consistent with
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the apparent asymmetry with which axial- and
vector-charge conservation is achieved in the sym-
metry limit, and suggestive of a parallel asymme-
try in the way the axial-vector and vector diver-
gences behave when chiral symmetry is broken.

In Sec. III we pursue this picture by constructing
an explicit model in which the k meson behaves in
this way.

III. A MODEL

Consider a Lagrangian
L£=-5(0,u,8,u; +8,v,0,0,)) = L1, (uy, vy), (3.1)

where £,,,, is a polynomial in the fields #; and v,,
which span a (3, 3*) + (3%, 3) representation’® of
SU(3)xSU(3); and suppose #; = (0|« |0) and 7,
=(0lv, |0) are solutions to the extremum condition
8L/0u;=0, 8L/8v,=0. Then by familiar tech-
niques'® we have

8A ;= (3)/2(C0 |ug |0) + dyy; O |ug [O) 2,20y + -,

3.2
OV, = Fauy (O lutg OV Pty 4 -+ + (3.2)

where only the terms linear in the fields have been
kept and at most vacuum expectations of %, and u,
have been allowed.?° Identifying the decay con-
stants we have

1/2fi = (%)1/2«) Iuolo) +d8”(0 'ua|0> ,
1/2f = %\f{? (0 lua 0).

In Eq. (3.2) the pseudoscalar and scalar masses
are given by

(3.3)

028 9’8
2_9Vsar 2 9 Lsrar 3.4
"™ ve0, Y T ou0u, (3.4)

If £ is linear in a chiral-symmetry-breaking pa-
rameter 0 and if the ground-state solutions have
the form

(0luy|0) =2 =0(1),

(0ug|0) =1"=0(5), (3.5)

then the ground state is SU(3)-symmetric in the
chiral limit but SU(2)-symmetric otherwise, and

1/2f,=0(1),
1/2f, - 1/2f,=0(5), (3.6)
1/2f = 0(5) .

This is the form of the solution we shall find,

which also must have
m®=0(d),
m2=0(1) 3.7)

in order that the divergences be of order 6. It is
at this point necessary to distinguish between the
basic fields #; and v; and the Hamiltonian densities
which appear in the decomposition of 3¢(x) in the
(3, 3*) +(3*, 3) model. We denote these by u, and
ug so that

{}C=5(isym—(u5+ugc), (3.8)

where 3y, is a chiral singlet. A polynomial La-
grangian model with the desired properties is
given by

Lotar = £-ag ’
L=al,+BI} +yI,, (3.9
where

L=u?+v?,
Iy = 4dy, (uguyu, — 3v,0,u,) = 6V6 uguyu,
+6V6 uo,v, +12V6 vov,u, +6V6 ul® = 18V6 v,2u,,
1y=2(dy g Gy +3f 130 Goer +E g0 f s = f 130 vaa)
X (w0 upty + 0, 00,0, + b, 0,0 = 2u0,u,0;)

AL = 8[a(uy + cug) + AUy + cU,)],

where U, and U, are members of the (3, 3*) + (3%, 3)
decomposition®! of the tensor product of the basic
multiplet with itself,

Uy =18(3)"2 8;5(1y” = v5%) = 12(3)"*(ugy = vo0;) =6(3)/2 8;0(0,% = v,2) +4dy 1 (s, — v,0,),

(3.10)

Vi==36(3)"2 6,quovo = 12(3)"2 6,000, =12(3)2(uv, +uov;) +8d 0,0, -

This model has been discussed elsewhere in the context of symmetry breaking with (0|#|0) =0.22 The ex-

tremum equations are

0=2ax+4V8 B2 - 26 128 +8y[$2° +2(\)PA - §V2 1] - 6a - 86d(3)/2 X +4bdc(3)/2 )/,

(3.11)

0=2a )" —4V6 BA'A = 12(3)2 BA"2 + 8y[222A" = V2 (M)A + 18] = 6ca +48d(2)M/2 1’ +4(2)"/2 bdeh + 8(5)/2 bden’,
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where A=(0|u,|0) and X’ =(0|u,|0). The relations
between (ug, u3) and (uy, u,;) are

ug = 8(auy + dU,),

3.12
g = 6(aug +dU,) . (3.12)

Equations (3.11) have several solutions which dif-

fer in their residual symmetry in the 6=0 limit.

The solution we are interested in [(0u,|0) = 0(5)],

expanded to lowest order in 0, is

5 a+8d(2)Y2

A'=A‘s ’
4 a+V6 B (3.13)
R Ea—4d(§)”27\
T4 a+4i6pr,
where
L(2)7[2 (5 -29)"]
A3"2<2) [V*yz 3v) |-
It is clear that
(0lugloy=0(0),
(3.14)

(0lu;|0y=0(0%).
Moreover, one can readily verify that
my® = (2f, )2[% + (%)1/2 cdg;; ][<0 I“élo) + (%)1/2daﬁ<0|ué [0>] ’

4 (3.15)
m® = 3(2f X0 lug|0) .

It is clear that for this solution m,®=0(5), de-
partures of m,? from the Gell-Mann—Okubo form
are O(6%), and m,2=0(1). The model solution has
the GW structure but differs from the GOR scheme
only by higher orders of the symmetry breaking.
The k mass persists in the model when the chiral
symmetry breaking is turned off. It is not a Gold-
stone particle in this limit, and its mass stands in
no particular relation to the pseudoscalar-meson
masses, nor does its mass vanish or tend to « in

the SU(3) limit of £ (¢=0), where the vacuum solu-
tion, Eq. (3.13), tends to SU(3) symmetry also. In
this model solution the x plays no special role in
symmetry breaking in the symmetry limit?® and its
PCVC condition is therefore essentially different
from the PCAC conditions in just the way which we
discussed in Sec. II.

IV. CONCLUDING REMARKS

We studied the implications of a PCAC smooth-
ness hypothesis and observed that it was not possi-
ble in this context to put k PCVC on the same foot-
ing as PCAC, concluding that « effects are of the
same order as PCAC corrections. We discussed
this situation in terms of vacuum expectation val-
ues of densities in the (3, 3*)+(3*, 3) model and
decided that, to within the smoothness approxima-
tion, « and (OJu,|0) effects should be ignored, but
that k PCVC could be accommodated in a scheme
in which it plays a subordinate role, contributing
at the level of PCAC corrections. This discussion
was facilitated by the counting procedure of
Dashen®'° which enabled us to describe a chiral-
symmetry-breaking scheme which takes the Gell-
Mann-Oakes~Renner® form in lowest order of
chiral-symmetry breaking and admits the « effects
in the next order. Finally we constructed a simple
model for illustrative purposes in which the « me-
son plays such a symmetry-breaking role. In this
model the x meson is not a Goldstone particle in
the SU(3) or SU(3)xSU(3) limit, is still coupled
linearly to the vector divergence, but does not
dominate the vector divergence for small ¢ in the
sense that the pion dominates the axial-vector di-
vergence, even for small m,2. This is compatible
with the current experimental status of the scalar
form factor for K,, decay,® which does not seem to
be rising at ¢%=0 as it would if the k were strongly
influencing its behavior.?*

*Work supported in part by the U. S. Atomic Energy
Commission.
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A study of scale-invariance breaking and its connection with anomalous dimensions is pre-
sented. A new relation between the anomaly in scale dimension of the pion field and the low-
energy form of its gravitational vertex function is obtained, without the use of perturbation

theory.

1. INTRODUCTION

Recently, study of the behavior of strong inter-
actions under scale transformations has shown that
such analyses can be extremely useful in discuss-
ing problems in quantum field theory connected
with the renormalization group and in elucidating
the structure of the strong-interaction Hamiltonian.!
Broken scale invariance at low energies has pro-
ceeded mainly by means of a Goldstone realization
of the symmetry,?~° with one interesting exception.®
A major aim of these authors has been to evaluate
the dimension d of the scale-symmetry-breaking

term in the strong-interaction Hamiltonian.”

Study of a formal theory of scale-symmetry break-
ing by considering the high-energy behavior of
Green’s functions,®~'° backed by perturbation-
theory arguments, suggests that the scale dimen-
sion of the pion field differs from its canonical
value of 1 in the presence of interactions and mass
terms. The anomaly arises from the breakdown
of certain theorems about the high-energy be-
havior of Green’s functions. When modifications
are made to the energy-momentum tensor, it is
shown that the dimension differs from the canon-
ical value by a power series in the coupling con-



