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The purpose of the present paper is to suggest noncovariant Feynman rules for the Yang-
Mills field in the radiation gauge, to all orders with any number of loops using the methods
of canonical quantization. It is shown that even though the interaction Hamiltonian in the
radiation gauge has an infinite number of terms, the Feynman rules contain the usual three-
vector and four-vector vertices, and a vector-scalar-scalar vertex, along with one propaga-
tor for the gauge particle and another propagator for the fictitious scalar particle. The
fictitious particle, however, appears only within loops, and the scalar loop has an extra
factor (-2) relative to the corresponding vector loop.

I. INTRODUCTION

In a recent paper, ' the canonical quantization procedure was used to study the Yang-Mills field' in the
radiation gauge to obtain the covariant Feynman rules' for the field. In paper I, we showed that even
though the interaction Hamiltonian in the radiation gauge consists of an infinite number of terms, the non-
covariant Feynman rules for the tree diagrams can be described by means of a three-vertex and a four-
vertex along with two noncovariant propagators. With the help of these rules, the covariance of the tree
diagrams was demonstrated to all orders. The purpose of the present paper is to prove the noncovariant
Feynman rules to all orders in the coupling constant, with any number of loops. We present the detailed
combinatorial analysis leading to these rules. In Sec. II, we present a theorem which we will prove in
Secs. III and IV (for the tree diagrams in Sec. III and for the loops in Sec. IV). What the theorem says is
that the noncovariant Feynman rules with any number of loops are the same as the ones for tree diagrams
(paper I), except that the loops with all three vertices (n) and all propagators of type -iq„q„/[k' —(k.q)']
must be multiplied by a coefficient 1 —1/2" ', all other loops have the coefficients given by the symmetry
of that loop. In Sec. V, we show that if we introduce a vector-scalar-scalar loop and a scalar propagator,
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the resulting noncovariant Feynman rules can be restated, , giving the main result of our paper.
Feynman rules for the Yang-Mills field in the radiation gauge are, therefore, the following (see Fig. 1):
(1) Propagator for the gauge field [Fig. 1(a)]:

„(„) -in„k„k„—0 n(k„q, +lf,n„))k' ie-"" k' —(k g}'

(2) Three-vertex involving gauge fields only [Fig. 1(b)]:

r„":(P,k, q)= (- g)~...[ 5,.(P- k) + 5. (k- q},+ 5,(q-P) ].
(3) Four-vertex involving gauge fields only [Fig. 1(c)]:

pg2Psp4(kl) k2t kS& k4) g [~aa&((2 a~a~( p&p) p2p~ p p p2p } an~~ a((4a2(5p&p45pgp2 p&p25p&p4}

+ e aa) ()4~ aa2a~(5p&p2 5p&p 5p&p& 5p4p2
}]

(4) Vector-scalar-scalar vertex [Fig. 1(d)]:

r'p"(P, k, q) = -2g~„,(k- q),(5p, -@pe,)

2g c,u 5-pg(k '—q)r .

(5}Propagator for the scalar particle [Fig, 1(e)]:

G"(k)= k2 (k )

where qp
= (0, 0, 0, 1) in the frame in which we are working.

No extra coefficient need multiply the diagrams, except that the scalar loop must be multiplied by a fac-
tor (-2) in all cases.

II. A THEOREM

It was noted in I that the interaction Hamiltonian for the Yang-Mills field in the interaction representa-
tion is given as follows:

XI=2gg» b„xb, +-,'g'b„xb, b„xb, +XI+X

where

~, =--.'g'Z (.+1)X.(-g~-'M}"~-'X,
nR)

(2)

where

y=bpx s,bp, M =bpx sp, (a+gM}u(x; y, t)= 6'(x-y), (4)

(5)

and all the rest of the notation is the same as in I. Note that X, is the term, first discovered by Schwing-
er, ' which is required if the field theory has to satisfy the requirements of Lorentz covariance. ' In the
present paper, we ignore the term X, and concentrate on the rest of the interaction Hamiltonian. More-
over, making a free-field expansion for the fields in the interaction representation, we also showed that

«a b-x p& (y
&own '(

p,o

(a)

I,b
k I,b q, kc

(b)

02yI R d4gp y

(c)

~& p~pt~o

k,b q,c

FIG. 1. Noncovariant Feynman rules for the Yang-Mills field in the radiation gauge are presented in (a)-(e). The
scalar particle can occur only within a loop and this loop must be multiplied by a factor (-2).
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FIG. 2. These propagators are used for the sake of
convenience in-proving the theorem in Sec. II. In the
text, (a) and (b) are referred to as D- and E-type propa-
gators, respectively.

FIG. 3. (a} represents a closed loop with n three-
vertices and all E-type propagators. Such a loop
must be multiplied by (1-1/2" ~) if n & 2 and (b)
must be multiplied by ~.

&a.(x-x ') k k -k ~ 'k +k '+k
(0is(s l'(x t)h'(x' t'))i0)= " . k d'n 0 — " " "' )'"" """' """" (6)

(2m)4 0' ie -" "" 0' —(k.q)'
fa (x-x') kk -k ~ k +k ' +k'

(Olge, (((x, })S~('.(x', }')))0)=
(2

}', „, . d'A(N }p-}}'q„vip) }}„.— "." ~,
"

(~
„"," ' "j

(7)
where q& =(0, 0, 0, 1) and denotes the frame dependence of the propagator.

It is clear that the q q]] term in E(I. (7) will generate new terms when a Dyson-Wick expansion of the S
matrix is performed. This extra term helps in the rearrangement of terms in the Dyson-Wick expansion
so as to give the following intermediate result, from vrhich in Sec. V me vrill prove the main result of the
present paper, as described in the Introduction.

Theorem. The effective interaction Hamiltonian for the Yang-Mills field in the radiation gauge, ignoring
X„can be taken as

X, =-g~, =-,'gg„„5„xb„+-,'g'b„xb„b„xb, , (8)

along with the following two propagators in momentum space:

(}) (}}
}}

'}!pk }l''g(}lpq +ll II))+}l I'll
j [ } . ~ g( }]k'-i~ k'-kq

F„'„(k)= -i6,» "
), [shown in Fig. 2(b)].

Furthermore, a diagram v6th all I' propagators and n three-vertices and no four-vertex must be multi-
plied by a coefficient 1- I/2" ' (shown in Fig. 3). It is, of course, well known that a loop with only two
vertices is to be multiplied by an extra factor of —,

' if it contains either both F-type or both D-type propa-
gators; the factor —,

' is the inverse of the so-called symmetry number of the diagram as defined in Ref. 7.
(See Fig. 4.)

It must be stressed at this point that me have rvritten the rules in the above way mainly to make the proof
more understandable. This final set of rules given in the Introduction a&ill be proved in Sec. V.

III. TREE DIAGRAMS

Our aim, in this section and Sec. IV, is to substantiate the noncovariant rules given in Sec. II. For that
purpose, let us observe a few important things: Whereas the D-type propagator in a diagram arises %hen
there is contraction between two field operators, in the Dyson-Wick expansion of the 8 matrix, the E-type

pIQ. 4. Using the definition in Ref. 7, one can show that (a) has a symmetry number S„=2 and, therefore, should
be multiplied by 2, whereas (b) and (c) have symmetry number S„=1 and therefore should be multiplied by 1,, Further-
more, whenever in a diagram loops of the type shown in (d) and (e) appear, each of them should be multiplied by a.
factor of g ~
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(b)

FIG. 5. A typical part of a Feynman diagram
vrith five consecutive E-type propagators.

FIG. 6. (a) represents g&F&„&(p,q,k) e&(k)e„(q),
and (b) represents g~qpF~p), (P,q,k)eg(k).

propagator arises solely from the inverse Laplacians contained in X,. Therefore, in any Feynman dia-
gram, a part which contains a chain of F-type propagators attached to three- and four-vertices comes en-
tirely from orie term in Xl'. For example, if we have a series of five F-type propagators sandwiched be-
tween six three-vertices (Fig. 5), they can come from the following term:

c ' (~-'I)'a-'

where C4 is some numerical coefficient.
To understand this more clearly, we have to know what the momentum space representation of various

factors like y and I are. Notice that

X=-bu~' b (12)

in momentum space corresponds to e,(q)ez(k)q„i"„"„'z(P,q, k) [shown in Fig. 6(a)]and M in momentum space' cor-
responds to 22}zq,e„(P)I'~~&',(P, q, k) [shown in Fig. 6(b)]. b ' corresponds to I/[k' —(k ~ q)'] in momentum
space. Therefore, it is clear that, if C» = 2', then the expression (11)would generate diagrams like
those in Fig. 5. [It might seem at first that C»=-2», but actually a factor of 2 appears because there are
two equivalent ways of connecting the expression (11) to external lines or parts of a diagram. ] Therefore,
we can conclude at once that a diagram such as Fig. 5 with n-1 F-type propagators could come only from
a term in X,' of the following type (see Fig. 7):

2s-3 5 . (g-lM)n-2g-1

Looking at X, in Eq. (2), we find that even though there exists such a term in it, the coefficient of this
term is —,'(n —1) instead of 2" '. So, to prove the rules, we must show that the extra q„qs term in Eq. (7)
really contributes in such a way as to generate this factor.

Moreover, according to the theorem, since the F-propagator can occur in conjunction with all types of
vertices, it certainly can accompany a four-vertex. However, if only one leg of a four-vertex has an F-
type propagator and the other three legs are either external particles or D-type propagators, using the
expression in Fig. 1(c) for the four-vertex, one can see that the corresponding diagram will. vanish, be-
cause

q a =0 and q„D„,(k}=0. (14)

Similarly, a four-vertex which has three or four of its legs attached to F-type propagators can also be
seen to vanish. However, when two legs have F-type propagators and the other two legs are either ex-
ternal or have D-type propagators (Fig. 8), the four-vertex makes a nonzero. contribution. This, there-
fore, must come from X,', only after using the extra term in Eq. (7), because the term whose momentum-
space representation corresponds to Fig. 8 is

b~ x (bp x 6 ') (14')

and clearly no such term occurs in X, as given in Eq. (2). Therefore, in general, diagrams of the type
shown in Fig. 9 (where all propagators are F-type and, respectively, r„r„r„..., r, three-vertices appear
between four-vertices} can come from the following term:

(rl+r2+ ~ +r&+2s+2) 2rl+t'2+ ~ ~ '+r&-1, g-1~ g-1M &lg-l~ g-1M &2g-l~„. g-1M &~ g-l~g-I. ~. d (15)

FIG. 7. Momentum-space representation of
2" -g(A M)".

FIG. 8. Diagrammatic representation of
~n~&

Z eycg 0&~8
(k. $)2 &u~& P2 (p ~ g)2

'
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where

Kf =b„x(b„xf). (15')

Now let us see where these terms come from. Notice that y=b&~ 801&, i.e., it contains the time deriva-
tive of the field operator. Therefore, a time-ordered product which contains two X's will, after Wick ex-
pansion, always have a term where the 8,1„'sbelonging to them are contracted. In that case, Eq. (7) tells
us that apart from the first term, the g~qa term will also be nonzero. When this extra term is taken into
account, one gets new types of terms as shown below. If we started with the time-ordered product

d'xd'yT(K(x) ~ n 'y(x) h(y)n ')((y)),

and in its Wick expansion kept only the above-mentioned extra g q& factor, we would then get the following:

(16)

Notice that the first term in Eg. (16) will have a diagrammatic representation of the type shown in Fig. 8,
where two legs of a four-vertex are attached to an F-type propagator. We call this term T(1). The second
term in Eq. (16), which we call T(2), merely gives rise to the same type of diagrams as are already con-
tained in X,', i.e., chains of three-vertices attached to F-type propagators. Therefore T(2) will add to X,'
and alter the numerical coefficients of various terms in its expansion. W'e will use this result below to
prove that the Wick expansion of the S matrix contains only terms of the form shown in Eq. (13) and Eq.
(15) and therefore substantiates the Feynman rules postulated in the theorem

Let us suppose that we have a diagram where we have n —1 F-type propagators sandwiched between n
three-vertices, the other legs of which are either external particles or D-type propagators. One typical
diagram is shown in Fig. 10. This diagram will come from the Wick expansion of the following kind of T
product, which again must come from the Dyson expansion of the S matrix:

(-g'I"-'(n —1)fd y-d'v'„d, '+T(Z, (y, )Z, (y,)" Z„(y„)g(+ 'M)" '+ 'j(*))

where the R, (y, )'s are some parts of the full interaction Hamiltonian given in Eg. (1). As remarked ear-
lier, the coefficient of the expression is different from Eq. (13). Notice, however, that in the Dyson ex-
pansion there will also exist a term like the following one:

(r, + 1)(r, + 1) ~ ~ ~ (r, + 1)

/gal

Xg XS

S
y~+ ' ' ' + rS = n-2S

x T(I,(y, )g, (y, ) ".R„(y„)T((x,) (b. 'M)"~b, 'y(x, ) g(x, ) (b 'M)"&n 'g(x, ) "g(x ) (n 'M}"'6 'g(x )).
(18)

In the Wick expansion of Eg. (18), we will have a class of terms where the y's at various points are con-
tracted in such a way that in each of their contractions, if we kept T(2)-type terms of Eg. (16), then we
would get g (b, 'M)" 'n ' g(x). To carry out the actual contraction let us take a term in which there is no
Z, (y, ). Then we will have in place of Eg. (1'l),

(17') .

and in place of (18),

~ ~ ~ ~ ~ ~ ~ ~

I

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

—I ~—

FIG. 9. Feynman diagram corresponding
to Eq. (15).

FIG. 10. A typical part of a Feynman diagram with
n three-vertices and e E-type propagators.
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rl, r2,.~ ~ ~ lS
r + "+rs=n-2

(r+,1)(r, +1) -(r, +1) f d'r, - d'r,
2s

x~(X(~,) (~ 'M}"i~ 'X(~,)X(~.} (~ 'M)"~ 'X(~.)" X(~.) (& M)"'~ X(&.)).
(18'}

Let us contract the B,b„'s from g's at various space-time points in such a way that no two space-time
points are connected by more than one contraction. Then, if we keep T(2)-type terms, we will obviously
get y ~ (d 'M)" 'b, ' }!.Now, let us count the number of ways we can do this in Eq. (18'). Notice that, in the
final result, two g's must be free and they originally must have belonged to two space-time points. The
number of ways those two space-time points can be chosen out of s points is s!/(s —2)!2! . Furthermore,
the remaining s - 2 pairs can be kept in any position with respect to each other, each position making an
equal contribution. One typical contracted term is shown below:

(6 'M)"'b '!!'(x,)!!'(x,) (4 M)"'~ 'y'(x, ) g'(x, ) (& 'M)"'~ 'X'(x, )"!(''(x,) (4 'M)"'4 '!!(x):, (19)

where heavy superior dots indicate Wick contraction between the adjacent operators, and where contrac-
tion between two X's means that the corresponding B,b„'s are contracted and only the extra term is kept.
We will always make contractions as above such that no two contractions overlap each other. So, different
combinations correspond to different terms in the Wick expansion. There are (s —2)! such combinations.
Again, since each space-time point has two g's, there will be 2' contractions possible for each position of
the various space-time points. Taking all these together, one can observe that the final coefficient accom-
panying g"!f~ (a 'M)" 'S '

g is

~

~

s!(s-2)!2' 1 ~
(s —2)!2!2' s! ~

S

(r +1)
ry+ ' ' '+rs= n 2s

rr
ry+ ~ "+rs= n-2s

(i(+1). (20)

This expression is nothing but the coefficient of x" in the following sum:

275

af(~) = 2Q (1 )2m

x'
1-2x (21)

1
2

n=2

2n 2~n (21')

Therefore, the coefficient of x" is 2" ' and this is precisely the coefficient required [see Eq. (13)g. This
proof can be trivially extended when the 2, (y, )'s in Eqs. (1'I) and (18) are also present. The only restric-
tion is that the free g's must be contracted with operators belonging to g's.

Next, let us try to show whether, using Eq. (16), one can prove that terms like Eq. (15) are also present
in the Wick expansion with right coefficients. For that purpose, let us again look at Eq. (18') and, in the
contraction of }!'ssimilar to that in Eq. (16), let us keep only T(1)-type terms. The reason why we keep
only T(1)-type terms is that we want a diagram of the type shown in Fig. 9. If we kept both T(1)- and T(2)-
type terms simultaneously, then the diagram would not be that in Fig. 9 anymore since there will be one
part where, between two four-vertices, we will have r, +~,. +2 three-vertices and we are not interested in
this. In this case, our counting will be easier if we proceed in a somewhat different manner than we did
above. Therefore, let us group the r, 's of Eq. (18') into l different groups containing, respectively,
szyp m». .., m, r, 's that are equal:

+j, +20 '''j+ gP +j. + 1+2 ''' +
]. 2. ~ ~ 0 y n+1] '' P S (22)

When we pick a term like Eq. (18 ) in the Dyson expansion of the S matrix, satisfying Eq. (22), there will
be s!/m, !m, ! .m, !different terms in the original expansion which become equal after the space-time
points are suitably relabeled. Therefore, the above number should multiply Eq. (18'). This, of course,
could have been done in the first case, when we picked only T(2)-type terms without altering anything.
After we pick up T(1)-type terms after the Wick expansion, the term will look like this (we have omitted
the numerical coefficient and coupling constants):
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Jdsx. }t ~ (g ~M)"gg &If(A jM)"2A &If ".(g &M)"sg-& }t(&) (23)

To straighten the numerical coefficient, let us notice that we could interchange the pairs of X's belonging
to any m, (i.e., with all r, 's equal) in Eq. (22), and there would be m, . ways of doing it and all would make
equal contributions to Eq. (23). Therefore, Eq. (23) should be multiplied by a factor m, !m, !m, !" m, ! .
Of course, a factor 2' must also be multiplied since each space-time point has a pair of X's. Collecting
all these, we see that the numerical coefficient

1 s!2' (r, +1)(r,+1}"(r, +1)mtm t" m1 = (r +1)(r +1) ~"(r +1)st mlitt "mt ' ' ' 2' sl (24)

should multiply Eq. (23}. This factor is different from the one in Eq. (15}. Therefore, we must collect
other possible terms which, by virtue of Eq. (16), will also contribute to Eq. (23}. We will first of all
keep r„r„...,r, fixed and concentrate on terms which, after using T(2) in Eq. (16), will contribute to r, .
Actually, the same set of steps that led to Eq. (20) for the first case, will be repeated here except that,
because of the presence of r„r„...,r„ the combinatorial factors are far from obvious. We will therefore
go through the steps again. Let us therefore break up ~, in such a way that

tj +t2+ +E$ tj 2i +2

In other words, we are considering the following terms in the Dyson expansion:

fl 1
(t, +1)(t,+1)" (t, +1)(r, +1)" (r, +1)

tg+ t2+ '+ t(='tg s(+2-
j ~+ r2+ ~ .+ rs=n-2s

(25)

d x ~ "d x,~-jT Xx ' ~ M jb Xxy '"Xx b' M ~~ Xx& Xx&+]. ' + M 2~ Xx]+z

(26)

(27)tlj "jtslj tsl+lj. ~ ~ jtsl+$2j

Of course, the r's are partitioned in Eq. (22). It might happen that the t, 's in some partition (let us say
s,.} are equal to the r, 's in one partition (let us say m, ). Then, these two partitions will be merged giving
a new partition m&+ s~ . After this is done, we have the following partitions:

Now, to get the numerical factors right, let us first divide the t, 's into partitions, each containing all t,'s
that are equal -the kth partition containing s„ t,'s:

Sg S2 ... S ~

g S).g ... Sg, mg m2 ... Wag gjmg+S)j. .. FS).

Therefore, after suitable relabeling of space-time points, it can be shown that there are

(s+i —1)!
S).ss. "Sg ).Sgqg. "'mg. "' (m~+ s, )!" m, ~

(28)

(29)

(3o)

ways of doing it. Now that we have all t, 's, we would like to keep only T(2)-type terms among them and
proceeding as in Eq. (20), we have

(31)

ways of contracting the t, 's among themselves which will give the same term. Then, of course, we will
count the number of various contractions that, after keeping T(1)-type terms, will lead us to Eq. (23).
There are obviously

terms of the type in Eq. (26) in the S-matrix expansion which are equal. So, this factor should multiply
Eq. (26). Let us then proceed with the Wick expansion. We will keep T(2)-type terms in the contraction
among t, 's and T(1)-type terms in the contraction of t, 's with r, 's and among r, 's themselves. Here again
a counting problem is involved, because the t, 's belonging to s, -type partitions are mixed with r, 's and we
have to choose s,. of those terms out of m,. +s,. such terms present in the initial T product. There are

(m, + s, )!/m, !s, !

m, tm, t "mrt

ways this can be done.

(32)
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The final coefficient of Eq. (15), therefore, is [collecting Eqs. (2&)-(32)]

j. 1 (s+i —1)!2'i! 2' ' (m, +s, )!
(s+i —1)! 2' ' sz! s,!". m, !m, !" (m& + s, )!" m, ! m, !s~!

(t~+1)(t2+1)" (t, +1)(r2+1)" (r, +1)

(33)

which is equal to

i~
g"(r, +1) ~ ~ (r, +1) g, ,

', (t, + l)(t, +1) ~ ~ ~ (t, +1) .
fj+ t2+ ''+ t]=~g-25+2

(34)

In the second sum, it must be understood that only different combinations of t„ t„..., t, must be kept. [Note
the difference between the summation over t's here and summation over r's in Eq. (20), where no such
restriction on the y's exists. In fact, if we impose the restriction of including only different combinations
in the sum, a factor s!/m, !m, !"m, !would come out and, therefore, both these sums are actually equal
if r, =n ].

Now we must sum over i, the subscript of t, and then we would get for Eq. (34)

g"(r, + 1)" (r, + 1)Q
tg, t2,...

g~+ t2+ ~ + tyler~-25+2

, (t, +1)(t,+1) ~ ~ ~ (t, +1)
Syt S2o Sp.

= g"(r, +1) ~ ~ ~ (r, +1) [coefficient of x"&+' in f(g)]
=g"(r, +1) ~ ~ ~ (r, +1)2"&.

Similarly, we can proceed for x„z„..., and our final coefficient will be

g n2f'j+ t'2+' + t'g

(35)

This is the same coefficient that occurs in Eq. (15). Therefore, we have shown that if one consistently
keeps the effect of the r! )78 term in Eq. (7), the correct vertices, i.e., those in Eqs. (13) and (15), emerge
as a consequence. This therefore completes the proof of our Feynman rules for tree diagrams.

IV. LOOP DIAGRAMS

Loop diagrams can be of various types. There
will be one type where all the propagators are D-
type. Such loops will clearly emerge from T prod-
ucts containing only

~gbpx bpgpp +4g blab~ bp& 1„,
where suitable contractions are taken. We will
not devote any time to this, since rules for such
loops are well known. There can be another kind
of loop where F- and D-type propagators are
mixed. In that case, again, we do not have any
problem because we have shown in Sec. III that a
chain of F-type propagators comes from X,' alone
and comes with correct numerical factors [see
Eqs. (21'}and (36)]. Also, we observed that the
way by which we arrived at Eqs. (21') and (36) re-
mains unchanged if the free g's at the ends are
contracted to a D-type propagator. Therefore a
loop with both F-type and D-type propagators has
always a coefficient of one. However, things are
different when a loop has all F-type propagators.

These kinds of diagrams can be classified into
three groups: (a) when all vertices in the loop are
three-vertices; (b) when all vertices are four-
vertices; (c) when both three- and four-vertices
are mixed up.

Case (a). If we have n three-vertices, one term
in the Dyson-Wick expansion that will contribute
to it is the following:

+-,'(-(;)"(n —()f d'x: (a 'M)": . (38)

However, it is easy to convince oneself that
there will be terms in the Wick expansion of (18')

(-z)("(~- )f d(»(x(*) (& ''I)" '& ')((*))

(37)

Because, in the Wick expansion of Eq. (37), there
will be a term where the B,b„'s in two X's will be
contracted and then the q„)!zterm in Eq. (7}will
make an extra contribution, and if we keep T(2)-
type terms in Eq. (16), we will get
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2'-'(s —1)!. (39)

Note that the corresponding number in Eq. (20) was
2' 's! . If we use Eq. (39) in Eq. (18'), we get the
following:

c„(-g)"Jd'x:(a 'M) (40)

where

c„=g—1
s= 1 r2o ''o rs

r l+ r2+ ~ +rs= n-2s

g(r, +1). (41)

One can see after a moment's thought that C„ is
the coefficient of x" in the following:

that will also contribute to the diagram in question
and, therefore, we have to count as we did before
arriving at Eq. (20). The terms that will contribute
in this case can be symbolically denoted by Eq.
(19}, with the change that the x's at the end are
also contracted with each other. This extra con-
traction changes the number in Eq. (20}. In fact,
the total number of ways in which the various X's
in Eq. (18') can be contracted to give Eq. (38) is

x 2)N

f("=52. (1 .)-
= --,'[In(I —2x) —2ln(1 —x)],

Therefore,

C = -(2" ' —1)
1

n

(41')

(41")

(42)

(43)

If n=2, direct computation shows that the- coeffi-
cient required is ~.

Case (b). If there are n four-vertices and all F
type propagators, the only term in the Dyson ex-
pansion that will contribute to it after using T(I)-
type terms of Eq. (16) is the following:

Since there are n powers of I, to get the correct
vertex we must divide C„by 2". To get the coeffi-
cient that should multiply the loop, as written
down following the rules of the theorem, we must
find the number of permutations of the external
legs that are equivalent. One can see that there
are 2n equivalent ways if m&2. So, the coefficient
of such a Feynman diagram is

C„—„=1- „; if n&2.2n 1

2n

"d'x. T(X(x,) & 'X(x, ) X(x ) & 'X(x.)" X(x.) & 'X(x.)) (44)

As in case (a), the total number of ways of con-
tracting the various y's, which mill give rise to
the same result, is 2" '(n —1)!. Also, as in case
(a), when we go from the Wick expansion to the
Feynman diagram, there will be 2n (if n& 2) terms
that will make the same contribution. Therefore,
on multiplying, we see that the coefficient of a dia-
gram where n&2 is unity, whereas direct compu-
tation shows that for n= 2 the coefficient is —,'. In-
cidentally, note that a similar diagram, where all
propagators are D-type instead of E-type, also
has the same coefficients as this case.

Case (c). In this case, the loop has all F-type
propagators but there are both three- and four-
vertices. This diagram will then come from an
expression of the type shown below".

2rl+r2+'''+rs gn . g-lg g-1M rig-lg g-lM r2

x n 'K" (z 'M)"' d'x. (45)

This can come from Eq. (18') if, in the Wick ex-
pansion of it, we pick up terms where all y's are
suitably contracted and T(1)-type terms are kept
consistently.

In other words, expression (45) would arise
from (18') in the same way that (23}arose from

(18') except that all possible x's are contracted.
The counting procedure also remains the same
except that, since all pairs are contracted, an
extra factor of —,

' has to be multiplied. In other
words, before Eq. (24), we said that "a factor 2'
must be multiplied since each space-time point
has a pair of y's"; instead, here the factor would
be 2' ' as can be easily checked. This factor of
—,
' goes through and, finally, Eq. (36) should be
multiplied by —,'; but, when we go from Eq. (45) to
the actual Feynman diagram, an extra factor of
2 will come from each diagram because clockwise
and counterclockwise configurations of the external
connections are the same. This, therefore, com-
pletes our proof of Feynman rules for loops. No-
tice that when any of the external legs is connected
to another part of a diagram, the counting is un-
affected.

V. THE MAIN RESULT

The results obtained in Secs. III and IV will now
be summarized in a fashion in which the ugly extra
coefficient for case (a) of Sec. IV seems to dis-
appear, if we accept a fictitious scalar loop and
we rewrite the propagator for the Yang-Mills field
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in the Introduction. For this purpose, let us for-
get the -1/2" ' factor of Eq. (48) for a while.
Then, one can see that all diagrams with both D-
and E-type yroyagators have the same weight.
Therefore, one can add the tmo types of propaga-
tore, as we did in paper I for tree diagrams, mith-
out any difficulty. Then the effective propagator
becomes

and a propagator

(47)

(48)

To see hom we get this expression for the VSS ver-
tex, note the folloming:

ge,~, 5q,-(k —q), . (49)

Also, the loop we left out had only F-type prop-
agators and out of each propagator the q„ factors
are now multiplied by the vertex as in Eg. (49).
Therefore, the propagator for the scalar field has
to be

-«oS
u'-(n q)' (50)

This then shows that if me use the V9$ vertex in
Eq. (47) and multiply any loop with the above-men-
tioned scalar vertices and scalar propagators by
a factor (-2), we recover the diagrams that we
omitted. This proves the set of rules described
in the Introduction (Fig. 1). There is no extra fac-
tor multiplying a diagram nom, except the usual
1/s„described in Ref. 7. These rules are the
same as the ones given by Fradkln and Tyutlny

who work in the radiation gauge but use a La™
grange-multiplier approach. The fictitious scalar
particle seems to appear to all orders and may be
a general charaete'ristic of theories with non-

C" (u) = D" (u)+F„",(a)

-ill, k„k„—k g(k„q„+k n„))„}t'-(}t q}2

(46}

Therefore, if the -1/2" ' factor in Eg. (43) were
absent, we could describe the Feynman diagrams
completely using this propagator and the vertices
shown jn Figs. 1(b) and 1(c). To accomodate this
extra factor, we introduce a vector-scalar-scalar
vertex (VSS)

Abelian gauge symmetry.

Vj:. MSCUSSION

In conclusion, me mould like to stress that we
have been able to obtain the noncovariant Feynman
rules for the Yang-Mills field in the radiation
gauge with any number of loops, using the conven-
tional procedure of canonical quantization. One
interesting feature of the rules is the appearance
of the fictitious scalar particles to all orders. In
obtaining the above rules, we ignored the extra
term in the Hamiltonian given by Schwinger (X,).
Even though it is possible to suggest a diagram-
matic representation of X, (the Schwinger contri-
bution), we do not consider it here since our
understanding of that contribution is far from
clear. However, we suspect that it might become
relevant when we mant to prove the covarianee of
loop diagrams.

The method presented above, though difficult,
has the appeal of being very straightforward.
Another simple and straightforward approach to
the present problem is one of taking the massless
limit of the massive Yang-Mills field. (See Wong'
and Veltman et al. '} However, it turns out that
even if the external legs have transverse polar-
ization only, the limit is highly singular and goes
like m '~", where L, is the number of loops, as
m - 0, because, unlike quantum electrodynamics,
the longitudinal modes do not decouple from the
transverse ones in the massless limit. There-
fore, if we want to understand the fictitious loops'
in the covariant Feynman rules for the Yang-Mills
field outside the framework of path-i. ntegral tech-
niques, me are left with the only choice of mork-
ing with a massless field in a suitable formalism
from the beginning and using the canonical quanti-
zation procedure as we have done. If the lower-
order calculations reported in payer I are repre-
sentative, the fictitious scalar loops do indeed
appear within our approach. Also, the tree dia-
grams can be made covariant (see I) and no extra
vertex appears apart from the usual ones. Of
course, if one believes, as Fradkin and Tyutin
seem to, ' that the Yang-Mills theory is nonanalytic
at g= 0 and therefore the perturbation expansion
ean at best be asymptotic, most of the work on
Feynman rules and fictitious loops may not really
be relevant. However, we think that, due to lack
of any better alternative, the perturbative approach
is still the most useful one from the practical point
of view and, therefore, ought to be thoroughly ex-
plored.
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