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We point out that the putative Skyrme soliton in a simple chiral model of pions (without the
Skyrme term) can be stabilized against collapse by quantum fluctuations. This leads to a reason-
able “zeroth order” description of the nucleon in terms of the single (pion decay) constant Fy.

I. INTRODUCTION

It is presently believed that QCD at very low energies
can be described by an effective chiral Lagrangian con-
structed out of the low-lying meson fields. The leading
term is

F?
L=-— —S—fTr(a‘,Ua,lUT)d% : )

where F,=132 MeV is the pion decay constant and U'is a
2x2 unitary unimodular matrix describing the pion fields.
Of course, the full effective Lagrangian is expected to
have many relevant terms but in the present paper we
shall limit our attention to the “zeroth order” model given
simply by (1). A well known' but remarkable feature of
the pure mesonic chiral Lagrangians based on (1) is that
they admit classical field configurations that describe the
nucleon. Skyrme noticed many years ago that such a clas-
sical configuration in (1) is unstable with respect to col-
lapse. To solve this difficulty he introduced a complicated
term involving four derivatives of U which leads to a clas-
sically stable finite-energy soliton. However, this ap-
proach has some disadvantages when one considers more
realistic and complicated chiral Lagrangians (e.g., includ-
ing vector mesons or other higher-derivative pion terms)
which give a better description of the low-energy mesonic
sector. For one thing it is very hard to reliably extract the
coefficients of the various possible Skyrme-type terms
from experiment. A six-derivative term is likely, for ex-
ample, to play a big role in classical stabilization, but a
negligible role in low-energy mesonic scattering. Further-
more, if additional mesonic degrees of freedom are includ-
ed the very task of checking classical stability becomes an
onerous one. For these reasons and for its own elegance
we shall investigate the quantum stabilization of the nu-
cleonlike field configuration in (1).

Actually, quantum stability is really what we might ex-
pect from our experience with other physical systems.
The s-wave state of hydrogen is a well-known example.
Classically, a static s-wave solution in the potential

= —e?/r should collapse to the origin. However, in the
quantum theory such a collapse would energize the kinetic
term P?/2m (P, is a suitable radial momentum) and
quantum fluctuations would lead to an effective term of
order of magnitude 1/2mr2 The effective energy
(1/2mr?—e?/r) then is minimized for E = — me*/2, for-
tuitously the same result as the proper Schrodinger equa-
tion treatment.
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II. COLLECTIVE-COORDINATE LAGRANGIAN

In order to demonstrate a stabilization mechanism simi-
lar to the hydrogen-atom example we clearly must intro-
duce a collective variable which measures the size of the
pion cloud. For this purpose it is convenient to adopt a
particular shape for the profile function F(r) which ap-
pears in the Skyrme ansatz U =expliX: tF(r)]. We will
consider two reasonable? choices,

z(1—r/R), r=R,
F(r;R) = 0, r>R, (2a)
F(@r;R) =nexp(—r/R) (2b)

and regard R as a dynamical variable. As we will discuss
later, the key aspect of these choices is their short-range
nature. Granted this, one might expect the “correct”
choice to be the one which minimizes the nucleon’s mass.
In addition, we must take account of the usual’ “angular”
collective coordinates A(z) describing the spin and isospin
degrees of freedom. Thus, our final ansatz for U is

U=A@)expliz- tF(r;R@))1ATQ) , 3)

where AT(t) =4 ~'(z). Substituting (3) into (1) yields
the collective-coordinate Lagrangian

Leg=ax?—bxP+ix2Tr(44"), )

wherein we have set x=R*? in order to put the first term
in standard form. The coefficients a, b, and X are given for
each profile choice in Table I. Notice that the usual3
“moment of inertia” A=x%.. The Lagrangian (4) will
have the same form for any profile choice, only the values
of a, b, and & will differ.

For orientation, let us make a very rough estimate using
the uncertainty principle in analogy to the hydrogen atom
discussion above. Neglecting the third (angular variable)
term in (4) we are led to ask for the mean value X for
which the effective energy

1
4ax?

is minimized. This yields a ground-state energy Egnq
=(6¥4/~2a"*) [37¥44+3141=0.89 GeV [0.71 GeV] for
the profile (2a) [(2b)] and a mean “size” R
=(3/4ab)'*=0.56 fm [0.40 fm].

It is clear that both the mass and size of the nucleon
ground state seem to be in the right ballpark.

+bx 3
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TABLEI. Collective Lagrangian parameters.

Profile a (GeV?) b (GeV?) A (GeV?d)
choice
32 2
(2a) A 6048 (z+73/3)F2=0.235 2B |z _ 1| o010
3 3 2r
32
(2b) *Fr _0.180 0.269 0.128

III. SCHRODINGER EQUATION FOR THE BARYONS

The construction of an appropriate Hamiltonian opera-
tor from (4) involves the slight subtlety that the last term
contains x as well as the angular variables. The Lagrang-
ian is of the general form ¢&;g;;(£)E;, where the &;
comprise the dynamical variables. The standard pro-
cedure* for quantizing this object is to replace it by

-1.9 | -1 5.0
(\/g) aé, glj \/g_aéj},

where g =det(g;;). In (4) the nonangular factor in Vg is
proportional to x * so we have the Hamiltonian operator

-1 9 | 598
H 4ax3 Ox [x Ox

IT+1) )

+bx23+ ~2
2x %

wherein the “angular coordinates” have been quantized in
the standard® way leading to the last (““centrifugal”) term
involving the isospin eigenvalue I. The integration mea-
sure in x space should be vVgdx =x3dx. We remark that
one can gain some intuition about the significance of the
first term in (5) by introducing a new wave function
¢=x2y. Then ¢ obeys a differential equation with just
the ordinary second-derivative term but containing an ex-
tra repulsive potential term 3/(16ax 2).

Now we shall describe the results of a numerical solu-
tion of the Schrodinger equation Hgp=FE¢. First let us
consider /=0. This is really not an allowed solution
(since! 7=J must be half integral to represent the nucleon
states) but should roughly correspond to the hedgehog
mass in the usual approach to the Skyrme model. We find
that the ground-state solution which vanishes at the ori-
gin® has an energy of 0.96 GeV for the exponential profile
(2b) and 1.21 GeV for the linear profile (2a). It is
reassuring that the two values are similar to each other.
To proceed we shall restrict our attention to the exponen-
tial profile (2b). That choice, as can be seen from Table I,
gives a much larger (and more realistic) value of the re-
duced moment of inertia A because it does not completely
cut off the “pion tail” which is very important for rota-
tional properties.

In the I=J= % case the three lowest-lying solutions are
at 1.14, 1.47, and 1.74 GeV. They should be compared to
the experimentally observed particles N(940), N(1440),
and N(1710). The wave functions in the size variable x
are shown in Fig. 1. It should be stressed that we have no
adjustable parameters in this model once a particular
profile shape is assumed. All masses and other dimension-
al quantities are scaled by the constant F,. If we were to

artificially lower F, to 82% of its experimental value the
nucleon mass would be correctly predicted. For compar-
ison, the usual treatment of the Skyrme model requires3
that F, be lowered to 69% of its value to fit the nucleon.
Actually, we prefer to keep F, at its experimental value
and attribute the mass discrepancy to effects which have
been neglected. One might speculate that the neglected

(a)

x(fm )

(b)

x(fm3/2)

(c)
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FIG. 1. Arbitrarily normalized wave functions for the I= 4
states at (a) 1.14, (b) 1.47, and (c) 1.74 GeV plotted against the
variable x.
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effects are related to the “core” of the nucleon rather than
to its surrounding pion cloud which is described by the sol-
iton. From this point of view one might expect that the
more extended structures (higher radial states) should be
more accurately described by the present model. Indeed,
our mass predictions are better for the N(1440) and
N(1710) than for the nucleon.

The solutions for the three lowest-lying =% states
have masses of 1.46, 1.72, and 1.96 GeV. These should be
compared to the experimental states A(1232) and,
presumably, to A(1600) and A(1920). It is also encourag-
ing to note that our predicted A-NV mass difference is 0.32
GeV, in good agreement with the experimental value 0.29
GeV.

IV. STATIC PROPERTIES OF THE NUCLEON

It is well known? that the simplest version of the
Skyrme model (including the Skyrme term) predicts fair
but not excellent values for the static properties such as
the isoscalar electric and magnetic charge radii (r2)}2,
and (r®}f%=o as well as the axial-vector-coupling con-
stant in neutron decay g4. Our zeroth-order model gives
very similar predictions. We can understand this feature
by noting first from Fig. 1(a) that the nucleon wave func-
tion is peaked at a size parameter R = 0.67 fm and that
the corresponding moment of inertia A is (see Table I)
about 4.6 GeV ~!, both of which are similar to usual?
Skyrme model values. In carrying out the computations
of the static properties in the present model it is necessary
to take expectation values of the appropriate operators
with respect to the wave function y(x). For example, the
isoscalar electric-charge squared radius is computed from
the isoscalar density B(r;x) = — (2/z) F'sin*F as

r¥;=0 =j;wx 3dx vlz(x)j;wr 2dr B(r;x)

=4wa BBy 2(x)dx , (6)

where & =2[¢drr2e ~"sin?(ze ~"). We find (r»}2,
=0.58 fm (0.72 fm) and, similarly, {r?)}}%=0=1.00 fm
(0.81 fm), g4 =0.65 (1.23). The experimental values are
in parentheses.

V. CHOICE OF PROFILE

Although not a rigorous statement, since we are ex-
tracting out of the infinite number of degrees of freedom
in the field theory (1) only four variables, we might still
expect the “correct” profile choice to be the one which
minimizes the nucleon mass. Here we would like to argue
that the class of profiles F under consideration should be
restricted to short-range ones. In particular, we consider
it reasonable that F fall off at large distances perhaps even
faster than 1/r2, which is the expected value based? on the
classical Yukawa theory. A pion mass term, of course,
will enforce a faster falloff in the Yukawa theory too. We
will discuss also the unreasonable possibility of a r ~%?2
falloff which plays a role for technical reasons.

There is an important physical reason for restricting the
profile to be short range; namely, the collective quantiza-
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tion procedure being employed corresponds to the implicit
assumption that the motion of each part of the nucleon
system is instantaneously correlated with all other parts.
This clearly violates relativity in a serious way if the sys-
tem is too large (e.g., possesses too long a tail). A related
example of this concerns the rigid rotational motion of the
soliton. The rotational speed of a point near the “center
of the soliton™ is classically JR/A = 0.75J, where J is the
angular momentum, R is the mean size, and A the moment
of inertia. Clearly the nonrelativistic approximation is
highly dubious for the J = 3 states and terrible for the 3
states. This suggests that the I=J= 3 states predicted by
the Skyrme model should be disregarded (they should
presumably fall apart before reaching the speed of light)
and the predictions for the I=J= 3 states be taken with a
grain of salt. As far as the collective radial, or “breath-
ing” modes are concerned, we would expect a serious
violation of causality if the size of the profile, in natural
units, were to be appreciably larger than a characteristic
time scale or inverse-mass scale of the system. Taking
this mass scale to be F, suggests that profile sizes much
larger than 1.5 fm are not reasonable.

To see where the mentioned r ~? falloff comes from it
is helpful to record explicit expressions for the Lagrangian
parameters a, b, and A with an arbitrary profile:

a=xF2 " n*lF())2dn, (7a)

b=nr? [ nz[(F')2+—22—sin2F]dn, (7b)
n

s _4n o (T 22

A 3 F,,j; n?sin’Fdn , (7¢)

where n=r/R and F' =dF/dn. We see that both g and A,
but not b, will diverge if F(n) does not decrease faster
than n ~%2 for large n. If one imagines tacking on a tail
which behaves for large 1 as n ~ /27 where € is a small
positive number, to a given profile it is possible to recap-
ture a result reminiscent of the classical collapse. To see
this, consider the /=0 “hedgehog” solution. From the ar-
gument in Sec. II we learn that the hedgehog energy is
proportional to (b3/a)'/*. This result actually follows
from dimensional analysis applied to the Schrodinger
equation. In the present case b is finite but @ o 1/¢ so the
energy can be reduced as low as desired. Similarly, the
mean size R (1/ab)'/* can be reduced as much as
desired. However, as we have stressed above, the relative-
ly slow n ~ /2% falloff is unphysical. A similar unphysi-
cal lowering of the soliton mass can be induced by adding
small wiggles to the profile at large n. Another extreme
possibility corresponds to F(n) falling very quickly at the
origin. But (7a) and (7b) show that this would increase b
more than a so the energy of such a configuration would
be large.

Clearly it is interesting to pursue further the problem of
“fine tuning” the profile function. This may help when a
pion mass term, which results in an addition to L.y in (4)
of —mx?, where m=4nF2m?2[§n?sin’Fdn, is included.
For the profile (2b) this term somewhat worsens the pre-
dictions for the first three /=% levels to 1.22, 1.64, and
1.99 GeV, respectively.



V1. DISCUSSION

Perhaps our main result is that stabilization against col-
lapse of hedgehog-type configurations of chiral fields is
naturally provided by quantum fluctuations in a collective
variable which describes the size of the pion cloud. This
suggests that it may be artificial to demand classical sta-
bility or even stationarity for realistic (and complicated)
chiral models. This may simplify the program of develop-
ing a detailed low-energy chiral Lagrangian.

In effect, the somewhat ad hoc Skyrme term has been
traded for the reasonable physical assumption that the nu-
cleon is a compact object (i.e., short-range profile).

It also seems quite striking that the pressure due to the
quantum fluctuations is of just the right strength to ex-
plain the mass and size of the nucleon. This is highly non-
trivial since the nucleon mass is about 7 times that of F,,
the only mass scale in the model, rather than being of the
order of F,. Furthermore, the model does not contain any
other parameters.

There are evidently many directions for further devel-
opment and understanding of this approach. As discussed
in Sec. V, the fine tuning of the required short-range
profile should be further studied. This aspect is in pro-
gress. It would be nice to include the effects of vector
mesons.® Furthermore, since the relevant collective vari-
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able is related to scaling properties of the theory, it would
be interesting to investigate generalizations’ of the
Skyrme model which mock up the QCD scaling behavior.

Finally, we should mention that attempts were made in
the literature to stabilize the Skyrmion by rotations® rath-
er than by quantum fluctuations. In addition, collective
variables associated with radial modes have been previ-
ously used to discuss’ nucleon excited states like the
N(1440).
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