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A new large-lV, selection rule governing meson-baryon scattering is established in the context
of one-boson exchange. This I& =J& rule is equivalent to the model-independent linear relations
among partial-wave amplitudes that are known to emerge from the Skyrme model.

In this Rapid Communication, we study meson-baryon
quasielastic scattering via one-boson exchange (OBE). A
new selection rule is shown to emerge in the large-N, lim-
it: The isospin of the exchanged state must equal its total
angular momentum (spin+orbital). In related papers,
this I, =J, rule is also derived using the Skyrme model'
and the large-N, nonrelativistic quark model. Ideally,
the three papers should be read in tandem, as they are in-
tended to interfere constructively.

I. xN PARTIAL-WAVE AMPLITUDES

For concreteness, we shall focus here on the case of
elastic xN scattering, although our results are, in fact,
much more general. ' Our starting point is the effective
Lagrangian of nucleons, pions, cr and p mesons:

X,a = EKE+ , g~„~o—tt tt+gp~~p„ ttx 8 z +gatv cJNN

+ 2 gpNNpp' Ny rrl+gpNNppv' Ncf

where N is the eight-component spinor (p) and
p„,=8„p„—B„p„. No explicit pion-nucleon vertex is re-
quired, as we are only interested here in the a and p ex-
change graphs (see Fig. 1 for notation). The coupling
constants g~pfpf and g~+pf multiply terms that we shall
refer to, respectively, as the vectorlike and tensorlike p-
nucleon interactions. Although we can also couple the o.

derivatively to the nucleon, such a term vanishes when the
nucleons are on shell.

We remind the reader that, in large N„ there is actual-
ly supposed to be an infinite tower of mesons in each J
channel, so that Eq. (1) might best be thought of as con-
taining implicit summations over all higher-mass re-
currences of the a, p, and n-, this will not affect our results.

In the center of mass, the invariant amplitude for the
processes depicted in Fig. 1, with three-momentum
p=

I pI = Ip'I, and with the external legs on shell, is
given by

A B,bb, ttg, g tvtvG Ur U& +iepbcrp gp Gp((Etv~+E~)(gptvtv+8mtvgptvtv)U~ y U~
(z') (&) c V

—(Z') 0 (X)

—[mtvgptvtv+[8Etvr(Etvr+E~) —4p (1 —p p')]gptvtvIUt, Up~ ) .

(2)

In this expression, p=p/p, p'=p'/p, Etv~=gmtv+p,
E~=Jm +p, and we have used the spinor equations of
motion. The cr and p propagators are, respectively, —iG
and i [g„, (p„—p„') (p—, p,')/mp ]Gp. —Of course, for
bare propagators, G p

= [2p (1 —p p')+m 2p] ', but in
what follows we will let 6 and G~ remain as arbitrary
functions of p and p p', so that we can think of them, if
we like, as representing the fully dressed propagators, with
all vertex form factors absorbed.

Our first goal is to extract the s-channel partial-wave
amplitudes (PWA's) from A. This requires projecting
out both isospin and angular momentum. The projection
onto total s-channel isospin I, =

2 or 2 involves simple
Clebsch-Gordan manipulations. The angular momentum
projection is more complicated: if we let (8,&) denote the
Euler angles of p, and represent the initial xN state by
Ip8&X), then what we are after is the spin-orbit state

I

defined by

I pJ,J,.I.&
= — g &J,~ IL, -,

'
ox&

4&

(J,)
X „"d& DJ„',~*(8e) I p8p&),

(3)

with I. the orbital, and J, =I.+ 2 the total, s-channel an-
gular momentum. The identical projection must be ap-
plied to the final xN state as well.

In order to carry out these integrals over solid angle, it
is first necessary to express all angular-dependent quanti-
ties in terms of D functions. Thus, G ~ are expanded in
Legendre polynomials Pt (p p'), which can, in turn, be
rewritten as D functions using the addition theorem

G,p(p, p p') = g (2l+1)G',p(p)P((p p') = g g (2l+1)G',p(p)D ')(8y)D~') (O'P') .
1=0 I 0rn= —I

(4a)
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Similarly, we write

—,
' U (1~ y )U =(E + )(6 — + 6 )[D ' t(e'y')D ' (erg)l

and

p p'= g D"'(ey)D"'*(e'y')
k —1,0, 1

(4c)

The D functions can then be integrated, and the resulting Clebsch-Gordan coe%cients summed, with the help of standard
identities. Finally, A must be multiplied by p/(8 Its ) to give a conventionally normalized partial-wave T-matrix ele-
ment.

The result of this calculation is

I J,L ga$$$$gaNN [G$$ (ENp+ mN ) Ga '
(ENp mN )]P L L+1

8rr s
1$

—1 /2

+ gp$$$$gpNN[Gp [E$$p(ENp+mN)+p ]+Gp [E$$r$(ENr$ mN)+p ]1
2K s

1$
—l /2

+ gp g NN ~ I (G, ' —GpL+')(ENp+mN)
Ã s

+ l~ (G' ' —G')(EN -—mN) —4E (G' —G'-')
2(L~l)+I p p Np N zp p p (5)

The ~ signs in (5) are determined by the choice of
J, =L + —,', and G'

p
=0 by definition whenever l & 0.

II. THE LARGE %c LIMIT AND THE
SKYRME-MODEL RELATIONS

We are interested in the large-N, limit of Eq. (5). This
means, first of all, treating EN~, mN, and Js, which are
O(N, ), as much larger than the other energies in the
problem, which are O(N, ), and noting that the difference
E+p ppl N . Second, we must understand the N,
dependence of the various coupling constants in (5). In
large N„n-meson vertices are known to scale like N, '
so that mesons become stable and noninteracting. Thus,—1/2
goxx and gpxx

Meson-baryon vertices are somewhat trickier. Witten's
rule of thumb" that the meson-baryon scattering cross
sections should have a smooth O(N, ) limit as N, ~ ea

would imply that the three meson-baryon couplings in (5)
should scale like N,', but this is not the case:

0 orP

Specifically, whereas gaNN and gpNN behave as expected,
gp&& N . There are several ways to see this, the sim-
plest being the universality condition gpNN =gp

All in all, in the large-N, limit, Eq. (5) can be recast
schematically as

Tl/2L l/2L =x+ —y+O(N, ),L+l —
1

2L+1

Tl/2L+ I/2L x y + O(NC )
L —1

2L+ l

T3/2. L 1/2. L =x -
4

-y+O(N. )- (6)

(7a)

T3/2, L+I/2Lx+ , y+O(N, '),
with x and y representing the N, contributions of o ex-
change and tensor-coupled p exchange, respectively. The
contribution from vector-coupled p exchange is O(N, ')
and therefore drops out altogether as N,

It follows immediately from Eq. (6) that to leading or-
der in I/N„ for each value of L & 0, our model yields two
nontrivial linear relations among the four PWA's. In par-
ticular, we can solve for the two isospin- 2 amplitudes as
linear combinations of the two isospin- 2 amplitudes:

L —1 + 3L+3
T3/2, L —1/2, L T1/2, L —1/2, L + T1/2, L+1/2, L s

3L + L+2
T3/2, L + 1/2, L T 1 /2, L —1/2, L + T1/2, L + 1/2, L ~

FIG. 1. The a- and p-exchange graphs. k and A,
' are nucleon

helicities; a, b, a, and P are isospin indices.
These are precisely the Skyrme-model relations of Refs. 8
and 9.
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III THE Is Jr RULE

In order to derive the I, =J& rule, we must cross from an
s-channel (zN~ zN) to a t-channel (zz~ NN)
description of the collision. Reference 1 explains how to
do this, sparing us the need to go into great detail. For zN
elastic scattering, the allowed values of t-channel isospin

are obviously I& =0 or 1. Furthermore, in large N„ the
nucleon, being much more massive than the pion, remains
essentially at rest during the collision, so that the total
(spin+orbital) t-channel angular momentum is likewise
restricted to J, =0 or 1. The transformation linking the s-
and t-channel PWA's for a given value of L can be shown
to be

TtJL= Z Z
I, =1/2, 3/2 J, =L+ 1/2

'1 1
' '1 1I — — J2 2 E 2 2 t

( »'+-'+'+'"(2I, +1)(2J,+1) '

Sp i Si

This is Eq. (5) or Ref. 1, applied to the case at hand.
Evaluating the 6j symbols, one ean rewrite Eq. (8) explicitly as

2(L+ 1) L 2L
TO, O, L V3(2L+1),L+1 ' ' ' ' L+1T1/2, L —1/2, L+ T1/2, L+1/2, L+ T3/2, L —1/2, L+ 2T3/2, L+1/2, L

' 1/2

1LT I /2 L —I /2 L + (L + 1 )T I /2 L + I /2 L ~ ~ (9a)

2 L(L+1)
TG, I,L (TI/2, L —I/2, L Tl/2, L+ I/2, L+2T3/2, L —I/2, L 2T3/2, L+ I/2L)

(9b)

(I +1) I L
I,G, L

3 L 1
I/2, L —I/2, L + I/2, L + I/2, L 3/2, L —I/2, L 3/2, L + I/2, L

2 2L+1, +

(9e)

L(L+1)
3 6(2L+1)

2L(L+1)
3(2L+1)

(T I /2, L —I/2, L T I/2, L+ I/2, L T3/2, L —I/2, L + T3/2, L + I/2, L )

(T1/2, L —I/2, L Tl/2, L+ I/2, L ) ~ (9d)

where, in the final equalities, we have used the large-N,
relations (7). As promised, only Tp p L, and TI, I,L, , which
have I& =J&, survive in the large-N, limit, ~hereas To1 L
and Tl p L vanish like 1/N, . This illustrates what is meant
by the I& =J& rule. In fact, the rule holds, not just for
zN xN, but for two-Aavor meson-baryon quasielastic
scattering in general. '

We should mention an important caveat, also noted in
Ref. 1 in the context of Skyrmion physics. The large-N,
analysis carried out above, which culminated in the I, =J,
rule, explicitly assumed that the meson energies are
O(N, ). This is the natural kinematic region when one
considers meson-baryon scattering. However, a t-channel
process such as xx NN can only proceed if the meson
energies are O(N, ), in which ease the above analysis is to-
tally inapplicable. In other words, although we have ob-
tained our selection rule by recasting the scattering matrix
in terms of t-channel quantities, the rule only applies in
the s-physical, and not the t-physical, region.

We should also dispel the possible misapprehension that
the I, =J, rule is somehow built into the Lagrangian (1),
since both the a and the p happen to have equal spin and
isospin. In our usage, J& is not just meson spin, but in-

eludes orbital angular momentum, so that, in the present
case, the suppression of vector-coupled p exchange (corre-
sponding to J, =0) was crucial. In addition, it can be
shown that in the more complicated process xN pN, the
I, =J, rule follows from the exchange of (inter alia) z's
and vector-coupled co's, neither of which has equal spin
and isospin. '

IV. DISCUSSION

Taken together, the present work and Ref. 1 contain
two principal findings.

(i) The model-independent linear relations among
meson-baryon PWA's that emerge as N, ~ from Skyr-
mion physics ' " also emerge, in the same limit, from
OBE. This can be turned around: The relations can be
used as a guideline for determining the N, dependence of
the various meson-nucleon (and meson-6) interaction
terms in the low-energy effective Lagrangian of QCD.

(ii) These relations, which appear somewhat awkward
when formulated in terms of s-channel quantities, can be
expressed concisely and elegantly as the I, =J, rule when
crossed to the t channel.
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In the end, the picture that suggests itself is one of com-
plemenfarity. The Skyrme-model literature abounds with
comparisons to more traditional approaches to hadron
physics: lattice and bag models, the nonrelativistic quark
model, and now, the OBE models that have proved useful
in describing hadron collisions at low momentum transfer.
None of these methodologies has a monopoly on the truth;
each has its own domain of validity, and each sheds light
on the others. Thus, the overall experimental success of
the Skyrme-model linear relations (7) can be viewed from
the OBE perspective as reAecting a lopsided ratio in the
strength of the 0(N, ) tensor-coupled versus the 0(/V, ')
vector-coupled p-exchange terms in (5). Is this a legiti-
mate conclusion in a world such as ours, with N, 3?
Yes, it is: If one trusts the phenomenological estimates
for gatv/gatv (Ref. 12) and uses the bare propagator for
G~, one can calculate from Eq. (5) that the tensor term
gives a contribution to the F-wave IV and 5 resonances
(for example) that is three to four times larger than the
vector term.

A noteworthy feature of the higher xN partial waves

—and a particularly nice illustration of complemen-
tarity —is the "big-small-small-big" pattern discussed in
Ref. 13. This describes the fact that, by and large, the
"outer" amplitudes in Eq. (6), T&/2 I &/2 L and
T3/2 L + f/2 L are much more strongly resonant than the
"inner" amplitudes T~/2L~~/2L and T3/2L ~/2L. The pat-
tern finds an appealing explanation in the Skyrme model,
based on the relative sizes of the group-theoretic factors
involved. ' An equally satisfactory explanation can be
offered in the OBE framework: witness the signs of the
coefficients multiplying y, the tensor-coupled p-exchange
term in Eq. (6); the positive signs denote a resonant, and
the negative signs a repulsive, contribution to the total
amplitude.

I have pro6ted from discussions with Eric Braaten,
Marek Karliner, Michael Peskin, and Jon Rosner, and am
indebted to Harry Lee for pointing out Ref. 12. This work
was supported in part by the National Science Foundation
Grant No. PHY-85-21588.

'M. P. Mattis and M. Murkerjee, Phys. Rev. Lett. 61, 1344
(1988).

M. P. Mattis and E. Braaten, Enrico Fermi Institute, Universi-
ty of Chicago Report No. EFI 88-66, 1988 (unpublished).

3G. Veneziano, Nucl. Phys. B117,519 (1976).
~E. Witten, Nucl. Phys. B160, 57 (1979),Sec. 6.
5Another way to convince oneself of this is to recall that, as

Sakurai showed long ago (Ref. 6), the contribution of vector-
coupled p exchange is equivalent to the Weinberg-Tomozawa
(WT) formula for the ttN scattering lengths (Ref. 7); this can
be checked from Eq. (5). But the WT scattering lengths are
proportional to [f (m, '+m~ ')] ', which scales like I//V,
in the large-/V, limit. Q.E.D.

6J. 3. Sakurai, Currents and Mesons (Univ of Chic. ago Press,
Chicago, IL, 1969), Chap. V.

7S. Weinberg, Phys. Rev. Lett. 17, 616 (1966); Y. Tomozawa,
Nuovo Cimento 46A, 707 (1966).

SM. P. Mattis and M. Peskin, Phys. Rev. D 32, 58 (1985).
A. Hayashi, G. Eckart, G. Holzwarth, and H. Walliser, Phys.

Lett. 147B, 5 (1984).
toM. P. Mattis (unpublished).
"M. P. Mattis, Phys. Rev. Lett. 56, 1103 (1986).
'2An optimal fit to the nucleon-nucleon potential requires

gttvtv/gttvrtv 0.75 ~ 0. 1 GeV ' [T.-S. H. Lee and F. Tabakin,
Nucl. Phys. A191, 332 (1972), Table 1], while assumed p
dominance of the isovector nucleon form factor gives

gpNN/gpNN 1 GeV ' [V. Barger and M. Ebel, Phys. Rev.
138, B1148 (1965)1.

'3M. P. Mattis and M. Karliner, Phys. Rev. D 31, 2833 (1985).


