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Lattice heavy-meson decay constants and fermion universality
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The mass dependence of decay constants for vector and pseudoscalar rnesons is calculated using
both Wilson and staggered-fermion formulations in quenched lattice QCD. For low meson masses,
the agreement of the two methods is good and the determination of the vector decay constant agrees
with experiment. For pseudoscalar heavy-quark —light-quark systems, we find reasonable agreement
between the two fermion formulations as long as Ma ~ 1, where M is the meson mass.

The decay constants of 8 and D mesons provide a good
test for models of hadron structure and are also necessary
ingredients in determining other quantities such as weak
quark mixing matrix elements. Experimentally they are
not well known. Theoretically, model calculations give
vastly di6'erent predictions which disagree even qualita-
tively, ' for example, as to whether f~ and fD are
greater or less than f . Given the large discrepancies be-
tween different models, all of which claim to be motivat-
ed by quantum chromodynamics (QCD) in some way, it
is important to investigate what lattice QCD can say
about heavy-meson decay constants. Since there are now
a number of calculations along these lines, " it is also
important to examine the question of fermion scheme
dependence as an indicator of syslematie errors in such
calculations. This is the purpose of the present paper.

In lattice QCD simulations one is most often interested
in light-quark systems and a meaningful calculation re-
quires that the hadron size be less than the total spatial
extent of the lattice. At present this precludes calcula-
tions for very light quarks, although extrapolation
methods can be used to go to the chiral limit. One also
encounters a limitation at large quark mass that the had-
ron size be much greater than the lattice spacing. Al-
though one knows that systematic errors arise as the lat-
tice ultraviolet cutoft'is approached, one does not know a
priori how close to the cutofF meaningful calculations can
be done. One way to get some information about the
domain of validity is to compare calculations done with
Wilson and staggered-fermion schemes. When it can be
checked that physical observables are unchanged by the
choice of fermion regularization, we can have more
confidence that the mass is in a reasonable range. For
large dimensionless masses, where the two formulations
give different answers due to lattice artifacts, one would
have to decide in some way which (if either) of the fer-
mion schemes can be used reliably. We will see that the
agreement of the two methods with each other, and with
experiment in the vector case, is good for low meson
masses. Indeed, for dimensionless meson masses up to
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where e„ is the polarization vector, M, is the vector-
meson mass, and f„ is the decay constant.

In the Wilson case we use the continuum-to-lattice re-
placement prescriptions
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for momenta k;, energies ko, vector or axial-vector fields
J„""',and particle states In (k)). Similarly we use
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Ma =1, there is reasonable agreement between the Wil-
son and staggered-fermion calculations for the phenome-
nologically interesting case of pseudoscalar decay con-
stants of mesons consisting of one heavy and one light
quark. This upper limit is understandable since terms of
order Ma arise between different lattice-decay-constant
prescriptions. We will also see that very similar patterns
of systematic differences arise between the two schemes
in the pseudoscalar and vector cases at higher meson
masses.

We will describe only briefly the methods of extracting
the decay constants from Monte Carlo simulations since
most of the techniques are, by now, standard. The
vector-meson decay constant (in the continuum) is deter-
mined by the matrix element of the vector current be-
tween the vector meson

~
U (k)) and the vacuum (0~ states:
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TABLE I. Hadron masses and decay constants for Wilson fermions.

Mpa

0.130
0.148
0.154
0.154
0.154

0.130
0.148
0.154
0.148
0.130

, 1.47(7)
0.71(2)
0.37(2)
0.55{2)
0.99(3)

0.108(12)
0.085(9)
0.067(9)
0.076(9)
0.083(8)

1.47(8)
0.73(2)
0.47(2)

11(2)
5.3(6)
3.5(5)

Gv~(t)=g ( Vi(x, t)Vit(0)) (4a)

in the staggered case. X is the total number of points in
the lattice and X, is the total number of staggered hyper-
cubes (N, =N/16). Equations (2d) and (3d) are obtained
by comparing lattice and continuum (covariant) com-
pleteness. ' ' In the staggered case the momenta and en-
ergies are defined on the doubled lattice. These prescrip-
tions are certainly not unique. We claim only that they
are reasonable and can be used to examine the inhuence
of the systematic errors which arise in these types of cal-
culations.

In the Wilson case we use the correlation functions
(only the equal-mass case is considered for the vector de-
cay constant )

vector current. Using the somewhat complicated expres-
sion that results, one can then measure directly the vector
decay constant from

c, 2(M a)

f.
The factor of QN& with N&=4 in this expression con-
verts the four-Savored staggered lattice matrix element to
a single Aavor. ' We are not aware of previous measure-
ments of the vector decay constant in the staggered
scheme.

The pseudoscalar-meson decay constant f is deter-
mined in the continuum by the matrix element of the
PCAC (partially conserved axial-vector current):

and
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An alternative way' of getting f~ is to use the PCAC re-
lation with the divergence of Eq. (9). Then f can be ob-
tained from
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In the staggered case we measure the correlation function

g, (2t ) =g ( V, (2z, 2t, ) V, (0) ) (7a)
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where V„(2z,2t, ) is the conserved nonlocal staggered

Here V„(x,t) is the local lattice vector field and V„(x,t)
is the conserved Wilson vector current. Using these with
the lattice transcription of Eq. (1) gives

G»(t)=g(A, (x, t)P (0)) (1 la)

gp —M at
(e ~ —e
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and a similarly defined correlation function Gzz(t). The
pseudoscalar-meson correlation function is

where P (x ) is the local pseudoscalar field.
In the Wilson case, the point-split current A „(x) and

the local current A„(x) do not satisfy PCAC but, in the
continuum limit, matrix elements of A „(x) and A „(x )

can be rescaled to yield the correct axial-vector current
matrix elements. ' For the lattice calculation we con-
struct the correlation function (allowing now for difFerent
quark masses)

TABLE II. Hadron masses and decay constants for staggered fermions.

m&a

0.50
0.20
0.075
0.025
0.025
0.025
0.025

m2a

0.50
0.20
0.075
0.025
0.075
0.20
0.50

Mpa

1.647(2)
1.081(3)
0.673(3)
0.393(3)
0.553(3)
0.821(3)
1.220(3)

0.177(2)
0.151(2)
0.1o8(3)
0.070(3)
0.088(3)
0.108{3)
0.116(3)

2.O5(8)
1.31(3)
0.84(3)
0.59(7)

4.0(9)
4.4(4)
4.1(3)
3.3(3)
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Gpt(t)=g (P(x, t)P (0)) (12a)
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Then using the above continuum to lattice replacements,
the renormalized pseudoscalar-meson decay constant
fz =fz"Z~ from Eq. (9) is given for Wilson fermions by

Z„- C„-~+M a

2+Cppsinh(M a /2)
(13)

From Eq. (10) we get alternatively

(m, +m~)QCpp(M a)

4sinh (M a/2)
(14)

where I i and m2 are the quark masses. Determining the
quark masses can be problematic for Wilson fermions.
Fortunately a combination of quark mass and axial re-
normalization constant can be determined from two-
point functions. Following Ref. 17 we consider the ratio

y (V, A, (x, tg '(0))
R„-(t)=

g (a(x, tg '(o)) (15)

where

V, A4(x, t)= A4(x, t) —A4(x, t —1) .

Then

(16)

R„-(t) = (m, +m~)/Z~ .
i « t «N

(17)

Combining Eqs. (14) and (17) again gives the renormal-
ized decay constant f . A nice advantage of using Eq.
(17) (besides the fact that it is nonperturbative) is that it
does not require knowledge of ~„. Similar expressions
can be obtained by substituting A4(x, t) for A4(x, t)
above.

For the staggered case, the interpolating field for pseu-
doscalar mesons is constructed from the 7 fields at the
corners of a hypercube on the lattice. ' The correlation
function of meson fields can be expressed in terms of the
functioni3, &8

2
M (GeV/c )

FIR. 1. Vector-meson decay constant f„vs vector-meson
mass for Wilson (0) and staggered (~ ) fermions. Also shown
are experimental values (A).

cal in 7 fields. '

Gauge field configurations were prepared in quenched
approximation using the Monte Carlo method with the
Cabibbo-Marinari pseudo heat bath. The SU(3)-color
Wilson plaquette action was used with P=6.0. The lat-
tice size was 10 &20. The gauge field was thermalized
for 5000 sweeps after a cold start. Configurations were
saved every 500 sweeps. A total of 18 configurations
were constructed. The average plaquette —,'Re(TrU~)
equals 0.5936(2) in good agreement with previous deter-
minations' ' ' for the same value of P.

Masses of pseudoscalar and vector mesons are present-
ed in Table I (for Wilson fermions) and in Table II (for
staggered fermions). Parameters were chosen so that the
lowest mass Wilson and staggered pions had comparable
dimensionful masses. The meson masses are in good
agreement with previous calculations. ' ' ' When needed,
the lattice spacing determined by Hamber ' is used. For
Wilson fermions this is a '=1950(120) MeV and for
staggered fermions a, ' = 1850(60) MeV.

Tables I and II also contain our results for the decay

320

240

g~(t) =g (( —I)"X(x,t)X(x, t)X(0)X(0) ) (18a)

—M at —M a(N, —t)c(e '+e ' ' ),1«t «N
(18b) ~ 160

which involves local combinations of the 7 fields. The
pseudoscalar decay constant is calculated using the
PCAC relation. The staggered fermion analogy of Eq.
(14) is

(m, +m2)+c (M a)cosh(M a/2)f
+X&sinh M a

(19)

The factor cosh(M„a/2) arises because the pseudoscalar
meson is actually defined' by an operator which is not lo-

80

2
M (GeV/c )

FIG. 2. Pseudoscalar decay constant vs pseudoscalar-meson
mass in physical units for equal-mass quarks. Squares ( ~ ) are
for Wilson fermions, and circles () are for staggered fermions.
Experimentally, f =93 MeV.
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FIG. 3. Pseudoscalar decay constant vs pseudoscalar-meson
mass in physical units for unequal-mass quarks. Squares (0)
are for Wilson fermions with ~2=0. 154, and circles () are for
staggered fermions with m&a =0.025.

constants of pseudoscalar and vector mesons. Since ex-
perimental values are available for vector decay con-
stants, we discuss this case first. Figure 1 shows the vec-
tor decay constants, using Eq. (6) for Wilson fermions
and Eq. (8) for staggered, as a function of vector meson
mass in physical units. Also shown are the values ex-
tracted from the experimentally measured width for
vector-meson decay into e+e pairs, I ( V~e+e ). The
experimental values are for p, P, and P mesons. There is
good agreement between the lattice QCD and experimen-
tal values for small meson masses. It appears as if
quenched lattice QCD explains the decay constants for p
and P mesons. At higher masses the Wilson results are
systematically high and the staggered results are sys-
tematicaHy low compared to experiment.

A similar set of results holds in the pseudoscalar case,
shown in Figs. 2 and 3. Again, the Wilson matrix ele-
ment comes out to be systematically small relative to the
staggered one for large meson masses. [Notice the in-
verse methods of relating f, and f to their matrix ele-
ments in (1) and (9).] Figure 2 is a comparison of Wilson
and staggered decay constants for mesons with quarks of

equal mass. The Wilson results use PCAC, Eqs. (14) and
(17), and the staggered results are from Eq. (19). We have
also calculated pseudo scalar decay constants directly
from the axial-vector-current matrix element, Eq. (13),
without the use of PCAC. The two Wilson results agree
excellently over the entire range of ~ values used. This
would not have been the case if the replacement (2b) had
not been made for the continuum energy kp ~ We have
not carried out an independent calculation of the point-
split axial renormalization constant, Z~ =0.86, deter-
mined nonperturbatively at P= 6.0 in Ref. 17.

Figure 3 presents a fermion scheme comparison for
pseudoscalar decay constants of mesons with quarks of
unequal mass, with the light-quark mass held fixed and
the heavy-quark mass allowed to vary. There is good
agreement between the two fermion schemes up to
Ma =1 (which in this case means M=2 GeV) at which
point the central values di6'er by =20%. In the mass re-
gion of the D mesons, the results found for Wilson fer-
mions are consistent with those of Ref. 10 (if the different
values of lattice spacing are taken into account), and con-
sistent with, but somewhat higher than, those of Ref. 11,
although there is no attempt here to extrapolate to the
chiral limit. Notice however that the staggered results
are about 40 MeV higher at this point. If the same pat-
tern holds here as was seen in the vector case, the experi-
mental values would be expected to lie in the middle of
these two extremes.
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