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The longitudinal impedance of an array of cylindrically symmetric cavities connected by side
pipes is estimated in the high-frequency limit. The expression for the impedance is obtained for an
arbitrary number of cavities. The transition from the case of a single cavity to a periodic structure
is studied. The impedance per cell decreases with frequency o as o~ !/2 for a small number of cells.

For a large number of cells the impedance decreases as @

12 or as 0~ 3/? depending on a certain re-

lation between the frequency and the number of cells. The parameter which governs the transition
from one regime to the other is found. In particular, for the infinite periodic structure there is only

the second regime and the impedance decreases as @

I. INTRODUCTION

There is a pronounced trend in the recent conceptual
designs of the next generation of linear colliders, free-
electron-laser drivers, and synchrotron light sources:
They all use many bunches with small bunch lengths.
Evaluations of the stability of the particle motion and of
the corresponding current limitations in all such devices
require an accurate estimate of the impedances! for the
high-frequency region.

There is a certain discrepancy at the present time in
the estimates of the longitudinal impedance, obtained for
different models. The optical-resonator model,? which is
applied to an infinite periodic set of thin discs, predicts a
decrease in the longitudinal impedance with frequency as
@ /2 and some numerical calculations are consistent
with this result.> On the other hand, the analytical eval-
uations of the longitudinal impedance for a single cavi-
ty*> give a quite different behavior: The impedance goes
down as o~ !“2. This dependence for a single cavity was
also obtained in a simple diffraction model.®~® 1In this
paper we find agreement with the results obtained in both
models. The observed difference in behavior of the im-
pedance obtained in the two models can be attributed to
the fact that the region of applicability for each model is
different.

Here we present an analytical evaluation of the longi-
tudinal impedance for an idealized rf system: namely, for
a linear array of M cylindrically symmetric cavities con-
nected by a pipe of a radius a. The frequencies @ under
consideration are well above the cutoff frequency of the
pipe but at the same time small in comparison to the par-
ticle Lorentz factor y:

l<<wa/c <<y . (1)

Figure 1 gives the layout of the geometry considered and
the coordinate system used. Each cell consists of a cavity
with a side pipe. The length of a cavity is g, and the radii
of the cavity and pipe are b and a, respectively. The total
length of a cell is L. At the entrance and at the exit the
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~372 for all frequencies.

system of cells is connected to semi-infinite pipes of the
same radius a. The number of cavities M is considered to
be a variable parameter. In the limit of small M =1 our
calculation gives the same result as one obtained for a
single cavity. When M is very large there are two fre-
quency regions with different behavior of the impedance.
In the asymptotic region of extremely large frequencies
the impedance decreases as o™~ !/2. For moderate (but
still very large) frequencies, which satisfy a criterion
developed in the paper, the impedance falls as @ /2. We
give the parameter which governs the transition from one
regime to another. In particular, for the infinite periodic
structure, there is only the second regime, and the im-
pedance decreases as @ 372 for all high frequencies. Such
behavior of the impedance agrees perfectly with the re-
sults mentioned above.

The crucial point in calculations of the radiation fields
for any periodic structure is an accurate description of
the interference of waves produced in different cells. The
interference pattern of a field in a periodic structure can
be built up only if the structure is long enough. Let us
consider the phase shift

Ap=k(z;—z))—wlt,~1t;) (2)

between two waves radiated by a relativistic particle with
velocity v at two obstacles with coordinates z, and
z,=z+S along the structure at the moments #; and
t,=t;+S /v, correspondingly. The longitudinal com-
ponent of the wave vector k| for a structure with a trans-
verse dimension a is related to the frequency in the fol-
lowing way:

k=w/c =(kﬁ+\/2/az)l/2 ,

where v is of the order of one. For a relativistic particle
v=c and in the high-frequency limit ka >>v, the phase
shift is of order of S /2ka?. For the interference to be of
any importance the phase shift in Eq. (2) has to be of the
order of 7 or larger. This means that for a periodic
structure with the cell length L the number of cells
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FIG. 1. Geometry and the coordinate system.

M =S /L must satisfy the following inequality:
M >m(ka)a/L) . (3)

Note that this requires a larger M if the frequencies un-
der consideration become higher. If condition (3) is
satisfied, behavior similar to that of an infinite periodic
structure can be expected. Otherwise, the impedance per
cell is close to the impedance of a single cavity. For an
accelerator with a given length or a given M the behavior
of the impedance per cell in the limit k — oo is always the
same as that for a single cavity. The condition in Eq. (3)
is necessary but not sufficient. The sufficient criterion is
given below.

In the next section the solution of the Maxwell equa-
tions, with appropriate boundary and matching condi-
tions, is represented by an expansion of the Fourier har-
monics of the field in a series of eigenmodes with un-
known coefficients. An exact infinite system of linear
algebraic equations for these coefficients is derived. The
impedance is expressed in terms of these coefficients. In
Sec. III the solution of the system is found in the zeroth
approximation. In Sec. IV an improved diagonal approx-
imation is described for a particular case of a single cavi-
ty. We demonstrate how the basic system of equations
can be simplified to make it solvable. Here we follow the
derivation of our previous paper’ and reproduce the re-
sult for a single cavity. In Sec. V the developed method
is used to derive an explicit expression for the longitudi-
nal impedance of an array of cavities with an arbitrary
number of cells. In Sec. VI this expression is used to
derive the longitudinal impedance averaged over a suit-
able frequency interval for a system with a small number
of cavities. We obtain here the first two terms of a series
in a parameter which depends on M and the frequency.
The main term reproduces the same dependence as that
for a single cavity. In Sec. VII we consider the system
with a large number of cells. We show that for an infinite
periodic structure the behavior of the longitudinal aver-
aged impedance decreases as ® /2 in agreement with the
optical-resonator model. For a finite number of cavities
there is always an asymptotic region of frequencies where
the average longitudinal impedance per one cell decreases
as 172, i.e., in the same way as for a single cavity. The
criterion for the transition from the regime »~3/2 to the
regime »~ !/? is given. In the Conclusion we discuss the
approximations used and the implication of the results
for accelerator design and for the evaluation of the total-
energy loss for a bunch of particles distributed over a
finite length.

II. THE BASIC SYSTEM OF EQUATIONS

Because of the axial symmetry of the problem, the cy-
lindrical coordinate system with radial coordinate » and
longitudinal coordinate z is appropriate. We choose the

" plane z =0 to coincide with the beginning of the first cav-

ity. For cylindrically symmetric (monopole) modes,
Fourier harmonics of the electric field generated by a par-
ticle with charge e and velocity v moving along the axis
of the system can be written as a sum of the field of a par-
ticle in a pipe and the radiation field E™ produced due
to the presence of the cavities. For the region inside the
pipe r =a, the radial and longitudinal Fourier com-
ponents of the electric field are

E,=Qve™G (r,a)+E™ 4)
E,=—iQe™G(r,a)+E™ , (5)

where k =w/c, Q =ek /mcy? and

_ Ky(ka/y)
Govl(r,a)ZKo’l(kr/”}/)+10'1(kr/‘}/)—m)— . (6)

Here and throughout the rest of this paper the subscript
o is omitted. The radiation-field components inside the
Nth cavity a <r <b, NL <z <NL +g are

EN='3 A,D.g;"(r)sin(A,Ly) 5 (7)
n=0
EY=3 (u,/b)DYg\"r)cos(A,Ey) , (8)
n=0
where

g0 () =Jo (7 /B)N () —No (7 /B) () 5 (9)

w,=b(k2—A2)2 A, =nmw/g, Ey=z—NL . (10)
Iy, Ko,15 Jo.1» No.; are the modified and regular Bessel
functions of the first or second kind of the zeroth or first
order, respectively, and D,fv are unknown coefficients for
the Nth cavity, N=0.1,...,M —1. The field com-
ponents in Egs. (4) and (5) and Egs. (7) and (8) are con-
structed in such a way that their tangential projections
are equal to zero on all the metallic surfaces: at » =a in
the pipe and r = b in the cavities for appropriate values of
z, and at z =NL and z =NL +g for arbitrary values of r
in the interval b >r >a.

Matching the radial components of the field from Egs.
(4) and (7) in the Nth cavity on the surface r =a,
0=<¢y <g defines the coefficients DY in terms of the radi-
al component of the radiation field E4. Matching the z
components of the field from Egs. (5) and (8) at r =a
gives a relation between the r and z components of the
field E™9, produced in the Nth cavity. In each region
0=¢,=g
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rad =2 Hn g,, (a) ikNL e ~ikNL [(& : rad
Er (a,2)= 2 or, | g i) O3 ab e y0G,(a,a)U, (k)+ f0d§31n(kn§)E, (a,NL+&) | . a1
[
Here where the following notation is introduced:
— [ kG

U,,(k)—fodge Ssin(A, ) (12) - g’('())( )
In each region g <&y <L " b giV(a)

E*Ya,z)=0 . (13)

~(k2—A2)"*tan[(b —a)(k?—A2)'?], (19)
The radiation field E™ satisfies the homogeneous wave
equation and has to be finite at » =0. It can be represent-

N —i
ed as a superposition of cylindrical eigenfunctions with Valg)= f 0 dfe ngOS()‘"g) : (20)
unknown coefficients 4 (q):
rad e oo iz Notice that
EMna=—[" dg 4(gs(x,r/@e, (14)
w4
e A(q)—X—J [Xr /e, (15) Vitg)==ig U @b
where and

—a(k2—g2+ie)? .

Xg=alkimq +ie) 1o | 4g%in’(g/2)(q —7,)]

An infinitely small imaginary part € is added in Eq. (16) V. (@)= (g2—A2)2 : (22)
to comply with the radiation condition. Notice that the a "

longitudinal impedance is given by the coefficient 4 (k)

In the rest of the paper we assume that b >a since
Z(k)=—ZyA(k), Zy=377 Q. (17 when b=a all C,(k)=0 identically. Consequently, all

Substituting Eqgs. (14) and (15) into Egs. (11) and (13) one 4 (.q)=0, and th.ere is no radiation produced as it should
obtains the following integral equation for the function € in @ smooth pipe.

A(q): We look for the solution of Eq. (18) in the form
M-t = C,(k) V,(q) .
Alg)= 3 n M1 itk —q)NL ZM“I = Vilg) i(k —q)NL
N0 o T8, JolXy,) | A(q) NZ:O '20 Jo(Xq)B"(q)e . (23)
k
7 U,(k)G,(a,a) The functions V, (g)e ~"L are orthogonal:
—ia [ " qdg U, T J7 dg Vi@V, (e N N =ags sy @4
”
Xei@=RNL g (g | | (18) This enablils us to obtain the following system of equa-
tions for B,'(q):
J
C, (k) k o dg' J1{xy) o "o
BNg)=—"— U, (k)G (a,a)+ iy (g )Y, (g )e! @ TREN TNIg N g1y | (25)
M==r = g UnkGiaat 33 [ 7 S5 SV g e g

The right-hand side of this equation does not depend on ¢. That means that the coefficients B¥ do not depend on ¢ ei-
ther but are functions of k only. Thus the problem of solving the integral equation (18) for function A4 (q) is reduced to
the problem of finding a solution of the system of linear algebraic equations (25) for coefficients BY. For a relativistic
particle with y >>ka, an asymptotic expansion of modified Bessel functions gives G,(a,a)=7v /ka and Eq. (25) takes the
form

g

BYN=—C,(k) [;——V* (k)+ 2 er NpN (26)
N'=0 m

where N =0,1, ..., M —1 and the following notation for matrix elements is introduced:
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VN = f‘” dq’ J(Xq
nm —® Xq JO Xq

V*( I)V q )e (g'"—k)L(N — N')

(27)

To satisfy the radiation condition Eq. (16) the path of integration in the integral in Eq. (27) must be shifted above the
negative real axis and below the positive real axis of the complex plane g. The integral can be replaced by the sum over

residues in the zeros of the Bessel function J,(v;)=

, iL(u;—k)N—N")

V,f(u,)Vm(ul)e !
N—N'_—

an - 2

—iL(u;+k)N—N")
! ulal V;(u,)Vn(ul)e !

where
[k*—(v,/a)*]'"? for v, <ka ,

i[(v,/a)*—k?]"? for v,>ka . 29)

u,=

In the sum in Eq. (28) all terms with v, > ka are exponen-
tially small. Hence, the summation over / may be trun-

cated at v, =ka. The imaginary part of the diagonal term
is
0 — 2w 2
ImD), =3 —— [V, ()], (30)
1 wa

where the summation is performed up to / which satisfies
inequality v; < ka.

The longitudinal impedance in terms of the coefficients
BNis

—1 o

Z(k)=-Z, 2 > V,(k)BNk) . &30

N=0n=0

So far the system, Eq. (26), is the exact set of equations
defining the radiation of an ultrarelativistic particle.

III. THE ZEROTH-ORDER APPROXIMATION

The system, Eq. (26), is too complicated to be solved
exactly. In the high-frequency limit we can expect that it

can be solved by the method of iterations. In the zeroth-

order approximation we neglect the second term in the
parentheses in Eq. (26):

v Gl VE(k) 32)
" wgka " )
Then the impedance per cell is
Z__ ., 5 2 Culk)
M iz, néoan(kH wgka (33)

Notice that in the zeroth-order approximation the im-

pedance per cell does not depend on the number of cells

in the array.

For large wave numbers k the impedance is a fast-
changing function of k and goes to infinity at the reso-
nance values

2

2 172

m(l+1)
— : (34)

b—a

mn

4

k

nl

which are defined by the equation C, (k,;)=0. The im-

0. Nondiagonal matrix elements are

for N>N',

(28)

for N<N',

pedance can be presented as a sum of Breit-Wigner reso-
nances with infinitely small widths. Representing C, '(k)
in the vicinity of a resonance as

C, Y (k)=R, "k —k, +ie) (35)
with
w(l+1)]?
R, = __[—2] , (36)
k,(b—a)

the real part of the impedance is given by the sum of 8-
functional terms

o -2 U +i)2

—— =8k —k,) . 37
gka k(b —a)® !

Z
Re—=—=2Z,3 [V, (
M n,l
Practically, we are interested in ReZ averaged over some
interval of wave numbers Ak. It is clear that Ak has to
be large in comparison with the difference between reso-

nance frequencies 8k:

wl
Sk =k —ky~—— . (38)
n(l+1) nl k(b _0)2
The choice of an appropriate Ak can be made in the
following way. The factor |V, (k)|? given by Eq. (22) has
a maximum value of order of (g /2)? for n =n, and rap-
idly decreases as (7 /g|ln —ng|) 2 for ns£n,, where

ke
T

nog= (39)

Here the square brackets mean the integer part of the ar-
gument. The main contribution to the impedance is,
therefore, given by mode n, which, of course, is different -
for different k. Hence, it is convenient to choose the
averaging interval as

Ak=m/2g , (40)

which for large k is large in comparison with the
difference equation (38).

For a rough estimate of the real part of the impedance
in Eq. (37) it is enough to take into account only the term
n =n,. The average impedance, therefore, is

! 132
_Z_ _ 7Tg 1 max (l+ )
<ReM> Z

—_—, 41)
©4ka Ak = k(b —a)?
where
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lnax=(b—aWVWk/mg . (42)

max

The impedance, estimated in this way with Ak from Eq.
(40), differs from Lawson’s estimate®

172
<Re£>=ﬁ
M 21

1
Vka

g

ma

(43)

only by a numerical factor of 7/3. Numerical calcula-
tions confirm that this result is independent of the choice
of the size of the interval Ak.

We conclude that with good accuracy the main contri-
bution to the impedance comes from eigenmodes with
eigennumbers

n=ny and 0<I=/ .. . (44)

This result has a very simple physical meaning. For a
pillbox cavity the eigenmode with the eigennumbers
(n,1)>>1 is characterized by the wave number

ky=[(nm/8*+(v,;/a)1"% v,=mul . (45)

The mode can be considered as a wave with wave-vector
components k, =wl/g and k;=nm/g. Interaction of a
particle with the wave gives a contribution to the im-
pedance for a frequency w if w/c =k, and the phase
shift within the time of flight through the cavity g /v is
small:

(0—kp)g/v)<m/2. (46)

For a relativistic particle and for n =n; from Eq. (39),
this condition means that I < (ka?/mg)!/? which is essen-
tially the same as given by Eq. (42).

The zeroth-order approximation does not take into ac-
count either the interference of the radiation from
different cavities or the finite widths of the resonances
contributing to the impedance. In the next section we
derive a method which allows us to improve the calcula-
tions.

IV. DIAGONAL APPROXIMATION

We start with a somewhat simpler case of a single cavi-
ty. In this particular case Eq. (26) takes the form

a iVE(k)
B,=-2cC,(k)

+3>1r° B |. 47)
n g kaz % nm~m

In the zeroth-order approximation the sum on the
right-hand side of this equation was neglected altogether.
The approximation can be improved by taking into ac-
count the fact that the main contribution to the sum is
given by the diagonal term m =n. All the other terms
give only small corrections and can be taken into account
by the method of iterations. In this diagonal approxima-
tion® we get for the impedance the expression

) |V, (k)|?
Z(k)=—iZ,S,

—, (48)
~ ka’y (k)

in which the definition
yo="Ec 119,

mg cot[(b —a)(k*—A%)!2]
NT (kZ_)\'Z )1/2

-1, 49)

!

is used. The sum in Eq. (48) is again determined mainly
by terms n =n,,.

Similarly to what is done in Eq. (33) the impedance in
Eq. (48) can be represented as a sum over the Breit-
Wigner terms. The resonance frequencies are now given
by the condition Rey (k)=0 and finite-resonance widths
are defined by ImI'%,. Evaluation of I'%, has been done
in Ref. 5. For k within the range n7/g <k <(n +1)m/g
a good estimate for T, is
172
g

2k (50)

r2n=(z‘—1)§

The resonance frequency shift given by Rel'®, is small
and the expansion around a resonance frequency k,;
takes the form

y(k)anYI(k_knl—*_l’ynl) > (5D
where
al?
R, =—— NI (52)
g (b a)lmax
- 1 12
Ynl——g\/i B ] . (53)

Hence, in the diagonal approximation ReZ is not singu-
lar, as it was in the zeroth approximation in Eq. (37), al-
though it may have rather sharp peaks if y,; is small.
That is the main qualitative feature of the diagonal ap-
proximation for a single cavity.

The ratio of the resonance width y,; to the distance be-
tween adjacent resonances 8k is small for the resonances
with ] <[ ,,:

Ynl~ l
5k 1

<1. (54)

max

Therefore, the averaging over Ak for resonances with
different / may be performed independently. Since the in-
tegral over a Breit-Wigner resonance does not depend on
its width, the result for the real part of the impedance is
the same as in Eq. (43). The diagonal approximation al-
lows us to estimate corrections, given by the next itera-
tions, and to prove that in the high-frequency limit they
are small.’>

V. GENERAL EXPRESSION FOR THE
LONGITUDINAL IMPEDANCE

Consider now a structure consisting of M cells. The in-
terference of waves, generated in different cells is crucial
to the evaluation of the impedance for the multicell struc-
ture and has to be taken into account. We describe the
interaction of a particle with each cell in the same way as



39 HIGH-FREQUENCY LIMIT OF THE LONGITUDINAL ... 965

it is done above for a single cavity. Therefore, we consid-
er Eq. (26) in the diagonal approximation for the lower
indices, retaining only terms m =n =n,, but keeping the

summation over the upper indices N'. It gives
N vy ! N—=N'pN
y(k)=—= > r, "B, , (55)
ka N'=0, N'~N
where N =0,1,...,M —1; ¥~V is defined in Eq. (28),

and y (k) is defined in Eq. (49).

It should be noticed that the system Eq. (55) is difficult
to solve numerically for the interesting case M ~ka >>1.
Indeed, the rank of the corresponding matrix is M. In
addition, the coefficients in Eq. (55) oscillate rapidly with
a typical period of 1/M. Therefore the computational
time for the calculation of the averaged impedance in-
creases with M as M.

To simplify Eq. (55) consider the behavior of its matrix
elements as given in Eq. (28). All the elements with
N <N’ contain factors which oscillate with the sum fre-
quencies u; +k ~2k. After averaging over the frequency
interval they would give only a negligibly small contribu-
tion. On the other hand, all the elements with N > N’
contain factors which oscillate with the small difference
frequencies u; —k. These terms describe the interaction
of a particle with the waves traveling in the same direc-
tion. Therefore, we may assume that

rY-N'=0 for N<N', (56)

and rewrite Eq. (55) in the form

BNy (k)=

(57)
N=o

By omitting the terms with N'> N we neglect the in-
teraction of a particle with the waves traveling in the op-
posite direction. In particular, we neglect the decay of
the modes in the cavities into these waves. Since we do
that in the nondiagonal terms, for consistency the same
should be done in the diagonal terms as well. In other
words, ImT"%, in the definition of y (k) Eq. (49) should be
divided by 2.

Equations (57) are the recurrence relations between
coefficients BY. All the coefficients can be found sequen-
tially starting with the zeroth one

vy
ka%y (k)

Notice that expression (58) gives the impedance of a sin-
gle cavity.

It is also possible to solve the system of Egs. (57) ex-
plicitly. To do that we notice that the Nth coefficient is
expressed through coefficients with indices N'<N. Al-
though we are interested in only the first M coefficients,
the procedure can be formally extended to any N. Since
the kernel Fﬁ,_N ' depends only on the differences N —N’,
Eq. (57) can be solved by applying the discrete Laplace
transformation. The discrete Laplace transforms of BY

0
n

(58)

and 'Y, respectively, are defined in the complex plane s
as

B,(s,k)=3 e MBY, (59)

= 3 e MUk, (60)

n=1

with 0 =Res >0.

Hence, the Laplace transform of a solution of Eq. (57)
is
vy 1 :
B,(s,k)=—= — . (61)
ka® [y(k)—T,(s,k)](1—e %)

The inverse transformation now gives the solution of Eq.
(57)

BN fl‘rr+a ds

c>0. (62)
—im+o 27i

e™B,(s,k),

The impedance in Eq. (31) of an array with arbitrary
number of cells M is now given by the following expres-
sion:

Ms__l

(63)

ZO el iTt+o
Z(k)=— Vv, (k)|?
41'rka2 ,,§0| | f”’ +0 k)—
Here
© 27i|V,(u;)]2 1
l§() u102 elL(k—uIH-s_
and
u=[k?>—(v;/a)*+iel'?, v,=I. (65)

The integrand in Eq. (63) is the same on two parallel
lines s =—iwm+o and s =+im+o0, — o <0 <0. There-
fore, we can add integrals over these two lines extending
the contour of integration in the complex plane s from

T,(s,k)](coshs —1) °

— o —im, then from —iwm+o to im+o and back to
— oo +i7. The integral is then equal to the sum of the
residues at the root of the equation coshs =1 and at the
roots of the equation

y(k)=T,(s,k) . (66)

Expression (63) gives the longitudinal impedance of an
array with an arbitrary number of cavities M. The next
two sections contain a more detailed analysis of the gen-
eral formula of Eq. (63) for small and large M, respective-

ly.
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VI. SMALL NUMBER OF CAVITIES

For an array with small M, it is convenient to rewrite
Eq. (63) introducing a new variable t =e ~°. That inverts
the infinite point into zero and transforms the contour of
integration into a circle with radius |¢| < 1:

0
zZ=— vV, (k) (k) , 67
27Tk[12§|,1( )2 (k) (67)
where
M
§ i dt21 t™) _ 68)
(1—=0)°[y —T,(t,k)]

Here the function T,(t,k)=T,(s,k). The only singulari-
ty inside the contour is at the point # =0. The function
. (t,k) may be expanded into series over t:

T, (t,k)=tf(t,k) , (69)
where
flek)= E oLt (70)

m=1
with the coefficients
217'1

onk)=3 =

i

IV ul)‘z —imL(k —u;) ' 71)

The integral in Eq. (68) is given by the finite double sum

2m

I(k)= z

'M*EH M—j—m |amfie)
m! I P

(72)

1
y

m =0

The same result can be obtained by solving the triangular
matrix equation (57) directly.

In particular, for M =1, I(k)=2mi/y. That again
gives the impedance of Eq. (48), and after averaging over
a frequency interval, the result of Eq. (43) for a single
cavity.

In general, for small M the main contribution in Eq.
(72) is given by terms with small j,m

1 M-—2
M+— 3 (M—m

m =0

27

I(k) _1)0m+1+"'

Suppose now that the following condition is satisfied:
2

ML | m <«<1. (74)

XI/ZE_ZF a

An estimate for o, gives in this case
2 172

; (75)

7702

. g
~(1+i) | £-
(1+3) L

2a

and from Eq. (73) we obtain

2mwiM
y

I(k)=

4 VM
|

The average impedance per cell is now given as an expan-

sion
(re| 2 =2 2|
M 27 | wka?
5 ” 1/2
T
X | 1+—— | + ..
Sk(b—a) | kL }’

(77)

in a parameter 7~M '/? /(ka)3/? which is small, provided
the condition in Eq. (74) is satisfied. In this case, the real
part of the impedance per cell is the same as that for a
single cavity. Notice that the condition in Eq. (74) is the
opposite of the condition in Eq. (3).

For large-M expansion (77) is not applicable. This case
is considered in the next section.

VII. LARGE NUMBER OF CAVITIES

All roots of Eq. (66) are pure imaginary. To prove that
it is convenient to change the independent variable of the
integrand in Eq. (63): s =it. Neglecting exponentially
small terms with [>ka/m, the function P,(¢,k)
=T, (it,k) can be rewritten as

ka/mw 7T|V |2
P,(t,k)= 3 —— |c tﬂ——ll , (78)
=0 wa 2

with real ¢,=L (k —u;)+¢t. The imaginary part of
P,(t,k) does not depend on ¢ and cancels the imaginary
part of y (k)=T9,(k). Therefore, all the roots ¢, (k) of
the equation

S(t,k)=y(k)—P,(t,k)=0 (79)

are real. The pole which arises from the term (coshs —1)
in Eq. (63) contributes only to the imaginary part of the
impedance.

The real part of the impedance per cell is now given by

the sum of residues of the roots —w=<t,,(k) <7 of Eq.
(79). For ReZ /M we obtain
7z Z, 5 F(t,,M)
L =2 — 80
Rey 2ka22| o> (3s /1), _, (80)
where the factor
2
F (e, M)= S ML72). 81)
M sin“(t/2)

is introduced.
Formula (80) has also an equivalent integral form

zZ _

M

T dtFi,ms(sink) . 82)

The impedance in this form can be averaged over the
frequency interval Ak =7 /2g [see Eq. (40)] in the same
way as is done in Sec. III for a single cavity:

Z\_ _ F(t,M)
<ReM>

Ef 38 Jok), - e

(83)
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where the second summation is performed over the roots

k,; of Eq. (79) up to I, (k) which is given in Eq. (42).
Substituting expression (49) for y (k) into Eq. (79), we

obtain the following equation which defines the roots k;:

 cotx,; = x,Re[P,(£,k)] , (84)

_a
7g (b —a)
where

X, = (b ——a)(k,z—kﬁ )2

Evaluation of the roots k,; is facilitated by the follow-
ing considerations. On the left-hand side of Eq. (84) there
is one cotangent function rapidly changing with k. On a
given interval Ak, cotx,, has a large number (~V'k ) of
branches going from + o to —oc. On the right-hand
side of this equation there is a sum of many cotangent
functions changing slowly. The period of variation of the
cotangent terms in the sum defining ReP, (¢,k) in Eq. (78)
is much longer than the considered interval Ak. It is of
the order of L or even smaller for small / (of the order of
kL). For most intervals of averaging this means that
P,(t,k) is approximately constant in the narrow interval
Ak <<k. For large P,(t,k) the roots k,, lay close to the
values which are defined by the equation x;=ml. Those
exceptional intervals where one of the cotangents in ReP,
occasionally is very large will be considered separately
below.

Hence, to find (3S/9k), —k,, it is sufficient to

differentiate the most rapidly varying term cots,; in Eq.
(79)

2(b '—a)gz 12+(lmax /§)2

_8
(BS/ak)kzkm— P 12 , (85)
where the function
al .«ReP,(t,k)
EtLk)=———r—""— (86)

g(b—a)

is approximately independent of /. Performing now the
summation over / in Eq. (83) and using the estimate
|V,|?~(g/2)* for the most important values n~n, we
get

2 172

Z 2Z, 2L ma
Re | = |)=—7— | =— e
< “I'm ]) (ka)’? | ma D(k, M), (87)
where
2
= a = dt F(t,M) |, _ arctant§
@k, M)=kmg | ;- f_,,zﬂ o 'Kl :

(88)

To evaluate function £(z,k) we notice that each root
defined by Eq. (84) lies between such frequencies for
which one of cotx,, is infinite. For our purpose it is
sufficient to estimate ReP,(t,k) for t <<1. For such
values of ¢, substantial contributions to the sum gives
terms for which L(k —u;)~t <<1. Using the estimate
|V, |?~=(g /2)* and retaining the first terms in the expan-
sions of coti; /2 in small values ¥, <1 and of u; in small

values v, /ka we obtain

1
Zo vi+2kta®/L

2
ReP,(t,k)~ ”I‘f (89)

Here the summation over / can be extended to infinity
since the terms with large / do not change the result. For
&(t,k) in Eq. (86) we obtain®

Jl(q)
t,k =92 (k 172 ) 0
&(t,k) 2L( 7g) o(d) (90)
where
kg’ 1/2
= | _<era’

qg= T o(t) ,

91)
t fort <0,

o(2)= [t—Z‘n' fort>0.
In Fig. 2 we compare the function ReP,(t,k) calculated
by using the exact formula of Eq. (78) and the approxi-
mate expression obtained by substituting expression (90)
for £ into Eq. (86). As one can see the approximate ex-
pression reproduces all the features of the exact formula.

For an infinite periodic array of cavities

Mlim F(t,M)=278(t) 92)

and, according to Eq. (82), the real part of the impedance
for such a structure can be expressed as a sum of &-
functional contributions from each eigenmode. This is
similar to a pillbox cavity, since modes of an infinite ar-
ray of cavities are stationary.

For the function ®(k, M) we obtain in this case

2wL
Sk, 0)=1——=, (93)
aV'wkg
and the average real part of the impedance per one cell is
7 27 5L 2 172
_ 0 ma —2
Re|—= |)=——5 | — — + .

< ‘M > (ka)”? |ma | | g otk

(94)

It decreases with frequency as (ka) 372

IN
I

ReP, (tk)

[gr
|

FIG. 2. Comparison of the exact, Eq. (78) (solid curve), and
the approximate, Egs. (86) and (90) (dashed curve), formulas for
ReP,(t,k):ka =100.0.
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To evaluate the impedance for finite M >>ka we split
the integral in Eq. (88) into two parts ® =&, + ®,, such
that in the first part g defined by Eq. (91) is in the region
lgl <vo1, J1(vg)=0, and in the second part v
<lgl <(2mka®/L)'"?. 1In the first integral £ is constant:
&~(a/4L)V mkg and the main contribution comes from
the interval 0<|t| <1/M, where the factor F(t,M) is
large, F~M. As a result ®;=1. In the second integral
the main contributions come from the vicinities of the
roots of J,(q): q,, =Vy,,, where £—0. Near the root g,,
the function £ can be approximated by

_alkwg)!”?

&)= v, (g —vim)=8(g—vin),

from which follows a good approximation for the last fac-
tor in Eq. (88):

1 |, arctan§ 3
g £ 1+[8(g —vi, )’

This expression had the correct behavior in the vicinity
of the roots ¢ =v,,, of £(q) and decreases as &? far from
them. The vicinity of the root ¢,, contributes to the in-
tegral Eq. (88) with the weight F(t,M)~4/Mt>. The
magnitude of this contribution decreases with m as v,2.
Therefore, the main contribution comes from the roots
q,, which are found in the region ¢ = 1. That justifies the
way the estimate Eq. (90) for & is obtained. The second
integral @, is equal to the sum of the contributions of the

roots q,,,

1

U I V7 Y 95)
2T asM | L L ’
where we used the formula®
23,7
Therefore, the factor ® for M >>ka is
oo L [kat |7z | (96)
48M | L L

For M — o0, ®=1 as is shown above. The same is true
as far as the second term in Eq. (96) is small:

372 172

1 x<1. 97)

g
X3n= 48M T

L

ka?
L

If the inequality (97) is satisfied, the real part of the aver-
age impedance decreases with frequency as (ka)*/%. For
a given large M the transition from the regime (ka)~!/?
Eq. (77) to the regime (ka)~3/2 Eq. (94) takes place in the
range

372 1/2

ka?
L

ka? g
—_— M —> 98
T <M << 7 (98)

In other words, the real part of the average impedance
per cell decreases with frequency as (ka)™3/% if

4/3 1/3
ka <M | L 2. 99)
a g
and, as (ka)~'/? for very high frequency,
ka >M ” (100)

The intermediate region is the transition area. The tran-
sition from one regime to another is illustrated in Fig. 3.
The curves represent & as the function of ka?/ML for
different values M and are obtained by numerical integra-
tion of Eq. (88) with £ defined by Eq. (90). The data are
in agreement with the analytical estimates given above.

Now we are ready to discuss two exceptional situations
which can arise in calculation of the roots Eq. (84). One,
mentioned above, happens when the function ReP, (k,?)
reaches a very large value inside an averaging interval.
Our evaluation of the roots of Eq. (84) is not valid in this
case. The value of the derivative S /dk at such a root,
however, also becomes very large. Since the derivative
enters the denominator of the expression for the average
impedance, the contribution from such roots is very
small. Evaluation of the contribution shows that the fre-
quency dependence of the average impedance stays the
same ~k ~3/2, The coefficient in Eq. (94) is defined with
the accuracy of the factor of order 1.

Another special case arises when (3S /ak)kn, becomes

s
=3
S
100
s
3
€ 50

05 10 15 20 25
ka2/ML

FIG. 3. Illustration of the transition from the dependence
© 3% to the dependence w~!”? for the real part of the longitudi-
nal impedance (see text). Function ®(k,M) obtained by a nu-
merical evaluation of the integral in Eq. (88) is plotted vs the pa-
rameter ka?/ML for different numbers M of cavities. (a) Blow-
up of the region 0<ka?/ML <0.5, (b) region 0.5 <ka?/ML.
Curves are labeled by numbers corresponding to the following:
1, M =500; 2, M=1000; 3, M =3000; 4, M =10000; 5,
M =30000.
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very small at the same point where S (k,;)=0. Atsucha
point a peak in ReZ can be produced. Such an event,
however, when both S(k,;) and (3S/3k ), , are equal to

zero, is rare and requires a realization of a special com-
bination of the system parameters. In general, these reso-
nances might restore the magnitude of the total-energy
loss to that for a single cavity. Such rearrangement of
the emission spectrum is a well-known phenomenon for
the radiation in periodic structures. We have not investi-
gated this possibility and leave this question open for fu-
ture analysis.

VIII. CONCLUSION

The explicit expression for the longitudinal impedance
of an array with an arbitrary number of identical cylin-
drical cavities connected by side pipes is obtained for the
high-frequency region y >>ka >>1. Our result is based
on the solution of the exact system Eq. (26), derived from
the Maxwell equations with appropriate boundary condi-
tions. To obtain the solution we have done two approxi-
mations. First, we have shown that there are only a few
modes in the cavities which substantially interact with a
relativistic particle in the high-frequency limit. For a sin-
gle cavity the correct result, within a factor of order of
one, is easily obtained in the diagonal approximation
when the interaction with only a single mode is taken
into account. This approximation is independent of the
number of cavities in the array. Second, we neglected the
interaction of a particle with waves traveling in the oppo-
site direction taking into account only the interaction
with waves which travel in the same direction as the par-
ticle. That reduces the infinite set of Eq. (26) to the re-
currence equations in the form of Eq. (57). They are
solved explicitly with the result given by Eq. (63). The in-
terference and phase difference of the waves, generated in
different cells, is taken into account. Since we are in-
terested only in the impedance averaged over frequency,
there is no need to calculate the exact frequencies of the
eigenmodes for the array.

The explicit expression for the impedance in Eq. (63) is
valid for an arbitrary number M of cells in the array.
Averaging this expression we obtained that the real part
of impedance for a small number of cavities decreases
with frequency as k ~!/2. For a large number of cavities
the asymptotic frequency region is divided into two. For
an extremely high frequency, the real part of the im-
pedance depends on frequency similar to that for a single
cavity, i.e., as k 1”2, For moderate (but still large) fre-
quencies satisfying the criterion of Eq. (97), the decrease
of the impedance is much faster ~k ~3/? due to the in-
terference of the radiated waves emitted from different
cavities. There is a continuous transition from one re-
gime to another in the range of values of the parameter
M given in Eq. (98).

TABLE 1. Relevant parameters of two accelerators.

N Parameter SLC TLC

1 fo (GHz) 3.0 . 11.0

2 a (cm) 1.163 0.52

3 b (cm) 4.134 1.12

4 g (cm) 2.915 0.729

5 L (cm) 3.499 0.875
6 o (mm) 1.0 0.040
7 f+ (GHz) 47.7 1.194X 10°
8 M, 12.3 1.1x10°

This result agrees well both with numerical calcula-
tions performed for a small number of cavities’ and with
the optical-resonator model.?

The fast decrease of the real part of the impedance as
k73’2 has a direct implication on the design of a short-
bunch accelerator. Indeed, had the asymptotic decrease
of the longitudinal impedance followed the law k ~172,
the main contribution to the total-energy loss would be
given by the high-frequency tail of the impedance, and
the total energy loss would depend on the longitudinal
rms of the bunch o as o~ !'”2. The situation is quite
different when the impedance falls off as k ~3/2. In this
case, the total energy loss is defined by the low-frequency
range of the impedance and, in general, is smaller than in
the first case.

The appropriate parameters for two accelerators, the
Stanford Linear Collider (SLC) and the TeV Linear Col-
lider (TLC), are given in Table I. If the total number of
cavities in the accelerator is assumed as the parameter M
of the criterion in Eq. (99), the impedance falls off as
k732 for both designs. The parameter M, however,
could be smaller than the total number of cavities for
different reasons (sectioning of the accelerator, changes in
its geometry, production errors, etc.). If that is the case,
the longitudinal impedance would fall off slower in the
frequency range around the typical bunch frequency
fo=c/2mo, and the total energy loss would be large.
For the impedance to decrease as k =372 the accelerator
should be designed to ascertain the inequality M >>M _,
where the minimal number M is

M, ~(a/o)*a/L)mg/a)'"?.

For the considered accelerators, M
row of the table.

is given in the last

g
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