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Color-singlet quark-pair transmutation: Helicity amplitudes and partial-wave analysis
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Quark-pair transmutation via two gluons is the lowest-order, color-singlet process. In this paper
the helicity amplitudes for this process are evaluated and a partial-wave analysis performed. The
amplitudes for these annihilations are infrared divergent and this divergence is removed by giving
the gluons a confinement mass. The results are generally dependent on this mass. Many of the
features are similar to those of quark-pair annihilation into two gluons. Somewhat surprisingly,
there is a large proportion of a 1+ partial wave. Threshold effects are understood in terms of
threshold effects in pair annihilation into two gluons. However, there is a "competition" effect that
depends on the ratio of masses of the initial- and final-quark pairs. For similar masses, singlet pro-
duction dominates as expected, but for very dissimilar masses, singlet annihilation of the heavier
pair competes with triplet production of the lighter pair. Some comments about the possible appli-
cations and extensions of this work are made. Obvious applications are to the Okubo-Zweig-
Iizuka-rule-suppressed decays of quarkonia. Other applications include development of a quark-
pair-creation model that differs from the usual 'Po and S, models.

I. INTRODUCTION AND MOTIVATION

Quark-pair annihilation and production are two of the
most important subprocesses occurring in hadron phys-
ics. Formation of hadron jets, as well as the production
of heavy quarkonia from two photons, proceed via
quark-antiquark production as an intermediate step. In
hadron colliders such as proton-antiproton machines,
quark-antiquark annihilation is one of the dominant sub-
processes leading to formation of the various resonances
and jets observed. Quark-pair production also occurs in
the Okubo-Zweig-Iizuka'- (OZI-i rule-allowed decays of
quarkonia, while both annihilation and production occur
in the OZI-suppressed decays.

Two phenomenological models have been developed
for description of the pair-creation process. In these
models, the created pair is in a partial wave that is deter-
mined by the mechanism of creation for the pair: S& for
pair creation from a single gluon or Pp for pair creation
out of the QCD vacuum.

Both these models have been applied, with numerous,
modifications and moderate success, to other hadron pro-
cesses. However, in both models the choice of partial
wave of the created pair is based on somewhat ad hoc as-
sumptions about how the pair is created. While both as-
sumptions may have some degree of validity, neither of
them gives the complete physical picture of pair creation.
Perhaps this is why both models appear to have problems
in describing pp annihilation, for instance.

Within the framework of QCD, the essentially nonper-
turbative S, model may be thought of as being based on
the first term in a perturbative treatment of pair produc-
tion. The next logical step should be an investigation of
two-gluon pair production. This would allow two objec-

tives to be realized. The first is the obvious extension of
the "perturbative" series, and the possible refinements
this may allow. This is quite useful since, even though
the pair-creation models may themselves be nonperturba-
tive, many features of the perturbative treatment are ex-
pected to carry over into the nonperturbative regime. A
study of the perturbative description of pair creation will
thus lead to a better understanding of the dynamics of the
nonperturbative process.

The second objective is the fact that any model based
on the two-gluon amplitudes is also valid for the regime
of perturbative QCD, and would thus be particularly
applicable to discussions of high-energy subprocesses, as
well as production and/or annihilation of heavy-quark
pairs.

In this paper, the two-gluon process, namely,
qq~gg~QQ, is studied with the aid of helicity ampli-
tudes and a partial-wave analysis. The use of helicity am-
plitudes facilitates the discussion of spin eFects, which
are significant at all energies. The threshold and high-
energy behavior are discussed in detail. The development
of a model similar to the ones mentioned above is left for
future work.

The two-gluon process, with the appropriate choice of
color factors, is the lowest-order color-singlet annihila-
tion and production process. This provides added
motivation for its study, as it is then easily and directly
applicable to decays of quarkonia, as well as to mixing
between quarkonia states. For the sake of simplicity, the
color-singlet process alone will be discussed.

Sections III—V of this paper present the detailed treat-
ment of qq~QQ. Sections VI and VII present a sum-
mary of the main results of the calculation, as well as
some comments and conclusions. Possible applications
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are also discussed in Sec. VII. Three appendixes present
some details of the helicity amplitudes and partial-wave
analysis.

II. SYMMETRIES AND SELECTION RULES

The helicity of a particle is defined as the component of
the spin of that particle along its direction of motion.
For spin- —, fermions, there are two possible helicities,
which may be denoted as +. The four possible two-
particle helicity states are I++ ), I+ —), I

—+ ), and

These two-fermion helicity states are not, however,
eigenstates of parity or charge conjugation. Such eigen-
states are easily constructed and they are

Il &=(I++ &+I ——&)/3/2 [(—1)'] ('Pll, 'P, ),
12& =(I++ ) —
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I
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14&=(l+ —
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—+&)/3/2 [(—1)'+'] ('P„'P3) .

The quantities in square brackets are the parity eigenval-
ues of the states, and the v'2 is a normalization factor.
Two of the angular momentum states to which each pari-
ty eigenstate contributes are also shown. Note that par-
tial waves such as 'P

&
and 'I'3, corresponding to

J =1+ and 3+, respectively, are not allowed for the
two-gluon, color-singlet process since charge conjugation
is even for such a process.

For the process of interest, let the initial pair define the
z axis in the center-of-momentum frame, with the final
pair at angles 8, P to this axis. The helicity amplitude

M~. , (19,$), where a is the helicity of particle A, etc. , in
a generic process 3 +8~c+D, may be expanded:

M,d ,„(0,$)=g (.2J+ 1)D„'„'*(((),0, $)T„„/4sr, —
J

where p, =a b, p'=c ——d, J 11uI, Ip'I, and

(2)

T„„,—= ( JM;cd
I TIJM;ab ) —= (cd

I
T

I
ah ), (3)

where T is the transition matrix between states with an-
gular momentum J. The D„'„'(a,P, y) are the rotation
matrices and a, P, and y are the usual Euler angles. The
T„„.are obtained from the helicity amplitudes by means
of the integrals

T„„=f dQM, „,bD„'„'($,8, —p) .. (4)

The selection rules that arise from considerations of
charge conjugation and parity may be easily derived. A
general n-gluon state is not necessarily an eigenstate of
the charge-conjugation operator, but the two-gluon states
that will be encountered in this paper, namely, color-
singlet two-gluon states, are. The charge-conjugation ei-
genvalue of these states is + 1.

For fermion-antifermion pairs the charge conjugation
is (

—1) + . For triplet (S =1) fermion pairs [states 11),
13), and 14) in Eq. (1)],L is therefore odd. The parity of

a fermion pair is (
—1) +', so that triplet pairs are always

positive-parity states in a color-singlet, two-gluon pro-
cess. Thus, the state 13) in Eq. (1) exists only for even J,
while the state 14) exists only for odd J.

On the other hand, positive charge conjugation means
that L is even for singlet (S =0) pairs [state 12) in Eq.
(1)], so that the parity is negative. In addition, since
J=L, and L is even, partial waves with J =(2n+1)
are forbidden. All other partial waves are possible.

For qq ~gg~QQ, the allowed transitions are

[(—1)'], 12& 12'& [( —1)'+'],

[( —1)'], 13& 13'& [(—1)'],

13&~11') [( —1)'], 14&~14') [(—1)'+'],

Pairs with antiparallel spins correspond to

2+ (
2 )I/23p. (

3 )1/23'
2 5 2 7

4+( 4 )1/2 3p (
s )1/2 3H

4 4

2n+ = [2n /(4n+ 1)]'/ (2n —1)2„
—[(2n+1)/(4n+1)]'/ 3(2n +1)2„.

(6)

The contributions to the positive-parity partial waves
with even J from the M+++, etc. , represent transitions
from the first set of L Sstates above [Eq-. (5)], to the
second set [Eq. (6)], while the contributions from the
M+ ++, etc. , represent transitions from the second set
of states to the first set.

Note also that the 4 X 4 transition matrix, with 16 pos-

where the notation is the same as in Fq. (1), and the
primed states are final states, while the unprimed ones are
initial states. The quantities in square brackets are the
parities of the states. Note that charge conjugation and
parity invariance forbid singlet+ triplet transitions.

The allowed partial waves may be described in terms of
the total spin and relative angular momentum of the an-
nihilating quarks. For the negative-parity partial waves,
the decomposition is

0 ='So, 2 ='D2, 2n ='(2n)2„.
The positive-parity waves with odd J are

1+=—P 3 = —Fi& 3

(2n+1) = (211+1)2

There are four contributions to the positive-parity par-
tial waves with even J. Pairs with parallel spins give rise
to the partial waves

2+ =( 3 )1/23p +( 2 )1/23/'
2 5 2

4+ —
(

s )1/2 3p +( 4 )1/2 3H
4 4

2n + = [(2n + 1)l(4n + 1)]' (2n —1)2„

+ [2n /(4n+ 1)]'/ (2n + 1)2„.
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sible transition amplitudes, of which only six are indepen-
dent, decouples into two 2X2 matrices, one for transi-
tions between states with natural parity, and the other for
transitions between states with unnatural parity. In the
former matrix, all four transitions are independent and
allowed, while in the latter, only two are allowed. This is
in contrast with the particle-particle transition matrix,
where each of the submatrices has three, independent, al-
lowed amplitudes.

In concluding this section it may be pointed out that
consideration of the symmetry properties of the helicity

states and helicity amplitudes has led to the selection
rules and enumeration of possible partial waves described
above. It is now left to investigate the energy dependence
of the allowed partial waves.

III. ANALYSIS

Figures l(a) and 1(b) show the choices of momenta for
the quark and gluon propagators. These are the same as
those of Berends, Gaemers, and Gastmans. In terms of
these momenta, and ignoring a trivial color factor of 3,
the amplitude M for qq~gg ~QQ is

y4k u(q )y (g —k+m, )ypu(q+ )U(P~ )y~(LK —k'+I )y u(P )
iM =g

(2~) (+ )( —)(&)(Q)

u(q )y (g+k+m, )y&u(q+ )U(P+ )y (8—k'+m )y~u(P )
+g

(2~) (+ )( —)(&)(Q')

where

(+)=k +2k P+P . A, +ie—, (b, )=k —2k 6+6, —m +iE,
(Q)=k —2k Q+Q —m, +iE, (Q')=k +2k Q+Q —m, + e,

P=(P +P+ )/2, b, =(P P+ )/2, —Q=(q —q+ )/2 .

A, is a gluon mass that is inserted to regularize the infrared divergences present, m is the mass of the initial quark q, and
m, is the mass of the final quark Q. The physical significance of the gluon mass is discussed subsequently.

Let

M =M, +Mb,
where

u(q )y.(g I+m—i )y~U(q+ )U(P+ )y (k —k'+~ )y u(P )

(2~) (+ )( —)(&)(Q)

is the contribution from Fig. 1(a) and

u(q )y (g+k+m, )y&U(q+ )U(P+ )y (k —lt'+m)y~u(P )

(2~) (+ )( —)(&)(Q')

is the contribution from Fig. 1(b). In the case of M„
Feynman integrals of the type

(1;k„;k„k )(I;I;I „)=
(2~)4 (+ )( —)(&)(Q)

are encountered and these are evaluated in Appendix A.
For M&, the replacement Q —k ~Q+ k must be made.

For convenience it is simplest to work in the center-of-
momentum frame. Let the qq pair travel along the z axis,
with the quark having momentum P =Pz. The direc-
tion of motion of the QQ pair is assumed to be at some
angle 0 to this axis. Any azimuthal dependence in the
helicity amplitudes is trivial and is thus ignored from the
outset by choosing the azimuthal angle P to be zero. The
momentum of Q is chosen to be

A

a

P + k q

(b)

a

FIG. 1. (a) Uncrossed box diagram for color-singlet quark-
pair annihilation. (b) Crossed box diagram for color-singlet
quark-pai r annihilation.
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q =P, (sinOX+cosOz) .

Symmetries of the scattering matrix reduce from 16 to 6
the number of helicity amplitudes that must be calculat-
ed. These are given in Appendix 8, in terms of the
Feynman integrals of Appendix A.

As written, these helicity amplitudes are quite general,
and are valid for all quark masses and aH energies. Some
special cases that are of interest are discussed later. At
this point, however, the subject of the gluon mass must
be discussed.

The presence of the gluon mass A, is well understood
analytically. The diagrams of Fig. 1 lead to Feynman in-
tegrals that are infrared divergent, and such a mass is
needed to regularize the integrals. For the purposes of
numerical calculation, this mass is kept, in the guise of a
"confinement" mass. Note that the results obtained us-
ing a confinement mass are very similar to those that
would be obtained using gluon brehmsstrahlung, as a
similar QED calculation indicates. The choice of
prescription for removal of the infrared divergences has
little effect on the results, and thus appears to be but a
matter of taste and convenience.

A comment must be made here about comparing the
results obtained with the use of a "massive" gluon, with
those that would be obtained with truly massive bosons,
such as 8 s and Z's. In arriving at the results that are
presented, A, , the gluon confinement mass, is set to zero

wherever possible. Thus, terms proportional to positive
powers of A, , such as A, , are neglected. In contrast, in the
case of bosons such as 8 s and Z's, such terms are the
leading-order contributions and cannot be ignored. Com-
parisons between the two kinds of calculation should thus
be made very carefully.

Before proceeding to describe the results of the calcula-
tion, the question of quark masses must be addressed. In
this paper, only general results are presented, and these
results are expected to "scale" with quark masses and en-
ergies. In all of the results that are presented, the total
energy of the system exceeds 2 GeV, and the heavier
quark's mass is 1 GeV. This is sufFicient to illustrate the
main features of the results.

IV. RESULTS FOR MASSLESS QUARKS

The general results for the helicity amplitudes, as writ-
ten in Appendix 8, are not very transparent. In a few
limiting cases, however, the expressions become quite
simple. This section deals with one of these limits, name-
ly, the limit of massless quarks. In the next section,
threshold effects when one quark mass is negligible are
discussed. In addition, some results for more general
cases are presented.

In the limit of massless quarks, there are only two in-
dependent helicity amplitudes, which are

iM+ + = cosOln —(1+cosO)ln +(1+cosO) ln lnlg z 1 —cosO 1 —cosO s 1 —cosO

4~ (1+cosO) 2 2 1+cosO

4
(1+cos 8)ln +(1+cosO)+2cosOln4' 1+cosO 1+cosO 1+cosO

(10)
lgiM+ 4'�(1—cosO)

2 1+cosO 1+cosO 8)21
s

1
1 —cosO

2 2 g2 1 +cosO

( 1+cos 8)ln —
( 1 —cosO) +2 cosO ln

1 —cosO 2

4~(1 —cosO) 1+cosO 1 —cosO

A, is the gluon mass. These results are also valid for massive quarks, but only for sin O)) m /E, where m is the mass
of the heavier quark.

The unpolarized differential cross section is easily obtained from the above two amplitudes, and is shown in Fig. 2
for three energies. The total unpolarized cross section is

cr =n a, [8m /9 —16Li3(1)+38/3]/8m + 152—96Liz(1)+(16' /9+16/3)ln —(40+8rr /3)ln
E

16~4 E'

and is shown in Fig. 3. Note that Li„(1) =g(n ), the Riemann g function. The form of a, used is

a, =12'/[(33 —2nq)ln(E /A )]

with n =6 and A=0.2 GeV. This is the form used for all the results presented. The various quark thresholds have
been ignored.

In obtaining Eq. (11), repeated use was made of the identity'
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Li„(z)=Li„(1)+ln(z)Li„ i(z) —ln (z)Li„2(z)/2!+ln (z)Li„3(z)/3!

+( —1)" 'ln" (z)Li2(z)/(n —2))!+(—1)" 'ln" '(z)ln(1 —z)/(n —1)!

+( —1)" ' f dz[ln" (z)]/[(1 —z)(n —1)!],
1

(12)

where

Li„(x)= f dz Li„,(z)/z
0

o' =3a, ( 3 —2Z ) l(4vrE ),
cr + =5vra, [4(10—9Z) /(729m )+16/81]/E

(14)

is the polylogarithm function, with

Li2(x)= —f dz ln(1 —z)/z .

o + =7ma, [ ( 361—144Z ) /( 746 496m ) +25 /5 184]/E

o =9vra, [(9771—4400Z ) /( 1.296 X 10 ~ )

+ 14 641/3 240000] /EThe massless quark case is one of a few cases in which
the total unpolarized cross section can be calculated
analytically. A second case is near threshold when one
quark mass is negligible. In most other limits, the cross
section must be evaluated numerically.

The partial-wave amplitudes for J ~ 4 are

These partial-wave cross sections are shown in Fig. 3
for a range of energy between I and 100 GeV, for A, =0.3
GeV. The total unpolarized cross section is also shown.
Figure 4 shows the same cross sections, but with A, =0.6
GeV. The negative-parity partial waves vanish in this
limit since the amplitudes that lead to such partial waves
are proportional to the quark masses. For the same
reason, the 0+ partial wave also vanishes in the limit of
massless quarks.

iT', , =ig (3 —2Z)/2~,

i T„=2ig ( 10—9Z ) /27~+ 4g l9,

i T, i
=ig ( 361—144Z ) /864m+ 5g /72, (13) V. GENERAL FEATURES AND THRESHOLD EFFECTS

iTii =ig (9771—4400Z)/36000vr+121g /1800,

Z =ln
A,

2

The above amplitudes arise from M+ + . The ampli-
tudes arising from M+ + are the same as those above
within a factor of +1. The imaginary parts of the above
partial-wave amplitudes are obtained from the partial-
wave amplitudes for qq ~gg and gg ~qq via the unitarity
condition. These are given in Appendix C for the general
case. The partial-wave cross sections for J ~ 4 are

The general features for the total, partial-wave, and
differential cross sections for massive quark-pair
transmutation are best discussed in three different cases:
light quarks~heavy, heavy —+light, and the case when
all the quark masses are the same. In all cases, the mass
of the heavier quark is chosen to be 1 GeV.

Figures 5 —7 show the differential cross sections for the
case when a light pair is transformed into a heavy pair.
In all of these cases are shown the unpolarized differential
cross section, as well as the angular distributions arising
from singlet and triplet quark pairs.

In Fig. 5, the energy is just beyond the threshold for
the creation of the final-state pair (m=0.7 GeV, m, =1

i00

E

4

b io-6

10—8
0

1 GeV

100

10—2

b 10-4

10
100 101

E (Gev]
102

FIG. 2. Angular distribution from massless quarks.
FIG. 3. Partial-wave and total cross sections for massless

quarks, A, =0.3 CseV.
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1PP

1P-4

1P-6
1OP 1P1

E (Gev)
] p2

~ 10-4
b

10-5
0

triplet

singlet

FIG. 4. Partial-wave and total cross sections for massless
quarks, A, =0.6 GeV.

FIG. 6. Angular distributions for light~heavy, intermediate
energy.

GeV, E=1.001 GeV). This pair is expected to be pro-
duced in the partial wave 0; S-wave spin-singlet state.
The isotropic distribution clearly shows S-wave annihila-
tion.

In Fig. 6, the energy is intermediate (E=2 GeV), and
the increased proportion of triplet annihilation is clear.
In Fig. 7, the energy of the final pair is much larger than
their mass (E=20 GeV) and triplet annihilation and pro-
duction dominate. The triplet distribution in Fig. 7 is in-
distinguishable from the unpolarized cross section on the
scale used.

A comment must be made about the comparison be-
tween Fig. 2, which shows the differential cross section
for massless quarks, and Fig. 7, which shows the angular
distribution for massive quarks at high energy. The
difference between the two sets of curves is not very strik-
ing, except in the forward and backward directions.
Massive quarks lead to a forward peaked distribution, but
not as peaked as for massless quarks.

The forward peak for massive quarks at high energy is
in fact finite, and has been found to be independent of 0,
the scattering angle, to leading order for small 9. In con-
trast, the forward differential cross section for massless
quarks is proportional to various powers of lno, the

I

highest being ln 0, as is evident from Eq. (10).
Figure 8 shows the total unpolarized cross sections, as

well as the cross sections arising from singlet and triplet
pairs. The dominance of triplet production at high ener-
gies and singlet production near threshold are clearly
seen. These cross sections were evaluated using 96 point
Gaussian quadrature methods.

Note that near threshold, for quark pairs of differing
mass, there is "competition" between singlet and triplet
production. Near threshold, for pairs with very different
masses, the light-pair annihilation is triplet dominated,
while the heavy-pair production is singlet dominated.
From the selection rules of Sec. II, a triplet to singlet
transition is forbidden, so that which mode of annihila-
tion dominates depends on how different the quark
masses are and on how close to threshold the energy is.
In Fig. 8, the ratio of masses is 0.7. Figures 9 and 10 il-
lustrate the effect of the differing mass ratios.

The threshold behavior of the cross sections is under-
stood by expanding the helicity amplitudes in powers of
vI, the magnitude of the center-of-momentum velocity of
the final-state quarks. This is most easily done when
v —1(m -0). Then, only two helicity amplitudes contrib-
ute, and they are

2 2iM++++ = —iM++ =irnm
&

2 ln —
—,'ln —w /6

1 —v '
1 —v

(8' E )+mm, ln
2

1 v
(8~E ) .

10 10-4

10-4 singlet and total

10-5-

b 10—6

10
0

I

vr/2

~ 10

b

10—10

I

vr/2

FIG. 5. Angular distributions for light quarks~heavy near
threshold. FIG. 7. Angular distribution for light~heavy, high energy.
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10

10-4

6 1O
—6

b
10

10-4

10

b
10—8

10-10

100
E (GeV)

10

1pp 10
E (GeV)

10

FIG. 8. Total cross sections, light~heavy, I /m
&
=0.7. FIG. 10. Partial-wave cross sections, light ~heavy,

rn /rn, =0.001.

These are independent of UI, and finally lead to cross sec-
tions that are proportional to ul when the phase-space
factors are included. The triplet helicity amplitudes are
all proportional to higher powers of UI. The UI depen-
dence of the cross section means that for the case of
light —+heavy, the cross sections rise from zero near
threshold and increase linearly with U, in the case of sing-
let annihilation. Note that even though the triplet cross
sections are proportional to higher powers of UI near
threshold, terms similar to the logarithmic ones in Eq.
(15) can still make the triplet cross sections quite large if
v is suSciently close to unity.

The dominant partial-wave cross sections for the case
light~heavy are shown in Figs. 9 and 10. In Fig. 9, the
ratio of quark masses is 0.7, while in Fig. 10 it is 0.001.
0 is the dominant partial wave near threshold in the
former figure, while in the latter, the 2+ partial wave
very quickly becomes dominant. This is another manifes-
tation of the competition between singlet and triplet pro-
duction near threshold, mentioned above.

The cross sections for heavy~light are shown in Fig.
11. The major difFerences between these curves and those

of Fig. 8 are observed when the annihilating pair are
nearly at rest. Again, singlet annihilation dominates (de-

pending on the quark mass ratio), and the cross section is
now proportional to 1/v, where v is the velocity of the in-

itial pair. This is well understood as being a result of the
principle of detailed balance:" the cross sections for
heavy~light and light~heavy near threshold are relat-
ed by a factor of U, where U is the velocity of the heavy
quark.

The case when all the quarks have the same mass is
special near threshold. Here, the amplitudes near thresh-
old are independent of velocities, as in all the other cases.
In evaluating a cross section, phase space introduces a
factor of UI/U. For quarks of equal masses, U, =U, and
the cross sections near threshold are completely indepen-
dent of velocities. Figure 12 illustrates this for the total
cross section. Note that, in this case, there can be no
competition between singlet and triplet annihilation near
threshold, so that singlet annihilation clearly dominates.

All of the results so far described have been obtained
with a gluon mass of 0.3 GeV. Figure 13 shows typical
results for the partial-wave cross sections, obtained with

Q
2

10—4

C10 6

b 1O-8

10 10

100
E (Gev)

102

100

10

~ 10-4

b 10-6

10

1p
—10

100
I

10
E (GeV)

1Q2

FIG. 9. Partial-wave cross sections, light ~heavy,

m/I, =0.7. FIG. 11. Total cross sections, heavy~light.
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b
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/~ 0.6 - ~

0.4
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0.2 -:0

m=.7GeV, m1=1GeV, X=.6GeV
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m=. 001GeV, m1=1GeV, X=.3GeV
m=1GeV, m1=.7GeV, X=.3GeV
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Q2 0.0
0 25
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75 100

FIG. 12. Total cross sections, m =m &.

10 ~~+
10-4

E10 6

10-8

10—10

100 10
E (Gev)

] 02

FIG. 13. Partial-wave cross sections, light~heavy, A, =0.6
GeV.

a gluon mass of 0.6 GeV. Note that singlet annihilation
is completely independent of A, ; the terms dependent on A,

disappear when the appropriate helicity amplitudes are
combined to obtain the singlet~singlet transition ampli-
tude. As a result, the partial-wave cross sections for pro-
duction of negative-parity partial waves are also indepen-
dent of k. Note, however, that the 0+ partial wave is sen-
sitive to A.. In addition, all of the cross sections are in-
dependent of A. near threshold.

In closing this section, a comment will be made about
the validity of applying the partial-wave cross sections
obtained for massless quarks to generally massive quarks.
One method of testing this validity is by investigating the
energy dependence of the ratio of the partial-wave cross
sections for massive quarks to the corresponding partial-
wave cross sections for massless quarks.

This is shown in Fig. 14 for the 2+ partial wave.
Within 10%, the asymptotic expression for the 2+ partial
wave is seen to be valid for energies greater than about
ten times the mass of the heavier quark. Within 1%, this
number increases to about 15 to 20 times the heavy-quark
mass. For many applications, it appears that the very
simple asymptotic forms of the partial-wave and total
cross sections, as shown in Eqs. (11) and (14), will suffice.

1.0

0
0.8

O
Q
N
~ 0.6-
N0" 0.4
0
0 0.2
cf

0.0
10

E (GeV)
100

FIG. 14. Comparison of partial-wave cross section with
asymptotic limit for 2+ partial wave;

VI. SUMMARY

In QCD, quark-pair transmutation Via a two-gluon in-
termediate state shows many features that are similar to
those seen in quark-pair annihilation into two gluons
triplet annihilation dominates at energies large compared
with all quark masses, while singlet annihilation tends to
dominant near threshold. The triplet contribution is
dominated by pairs with parallel spins. However, there is
competition between triplet annihilation of a light pair,
say, and singlet production of a heavy pair near thresh-
old. The dominant mode of annihilation depends on the
ratio of quark masses and on how close to threshold the
energy actually is.

In terms of partial waves, the results here are essential-
ly the same as those obtained for pair annihilation into
two gluons, except for the appearance of a new partial
wave. This new partial wave 1+ turns out to be the mar-
ginally dominant one at high energies. The asymptotic
forms obtained for the partial wave and total cross sec-
tions are valid, to within about 10%, for energies greater
than about ten times the mass of the heavier quark.

At high energies, transmutation from pairs with spins
parallel clearly dominates in any pair annihilation pro-
cess and is a result of the y„couplings. The level of the
dominance of this mode of annihilation over annihilation
from pairs with spins antiparallel is easily estimated.

For each pair involved, the cross section from pairs
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with spins antiparallel is suppressed by a factor of m /E
compared with the cross section from pairs with parallel
spins. Thus, in qq~QQ, the ratio of cross sections is
roughly l: m /E: m /E, where the l corresponds to
pairs with spins parallel annihilating into pairs with spins
parallel, the m /E corresponds to either the initial or
final pair having spins antiparallel, and the m /E corre-
sponds to both pairs having spins antiparallel.

In concluding this section, it must be pointed out that
although the unitarity condition was very useful in calcu-
lating most of the partial waves, it does not predict any
1+ partial wave, nor does it forbid it. Via this condition,
all the other partial-wave cross sections could be estimat-
ed very roughly from the real parts of the partial-wave
amplitude obtained from the lower-order processes.
However, new partial waves, the amplitudes of which
possess no real part, are still possible.

To understand how this can come about, it is necessary
to trace the steps in evaluating the full amplitude from
the unitarity condition. In the scattering matrix, the
imaginary part of the amplitude can be obtained from the
amplitudes for lower-order processes via the unitarity
condition. For the case at hand, this forbids the 1+ par-
tial wave for massless gauge bosons.

The full amplitude is then obtained from this imagi-
nary part by means of a dispersion relation. From the
form of the imaginary part of the amplitude at high ener-
gies, a once subtracted dispersion relation is needed.
Note, however, that only the helicity amplitudes such as
M+ +, etc. , need the subtraction term. %'hile the
dispersion integrals that arise do not give rise to a 1+
partial wave, the subtraction term can. In keeping with
this, the helicity amplitudes M+ +, etc., are the only
ones that contribute to the 1+ partial wave. For a gen-
eral process, such subtraction terms can give rise to
partial-wave amplitudes whose imaginary parts vanish in
accordance with the unitarity condition.

Note that there are two deficiencies introduced by ap-
proximating a process such as qq ~gg ~QQ by the "cut"
process qq~gg, as illustrated in Fig. 15. The first is the
observation that not all possible partial waves will neces-
sarily be represented by the cut process. Thus, for in-
stance, the commonly held belief that a P, quarkonium
state will not decay via a two-gluon or two-photon inter-
mediate state' is clearly incorrect, as the results of Secs.
IV and V have shown.

The second deficiency becomes apparent when the in-
frared behavior of cut amplitudes and cross sections are
investigated. For qq~gg, there is no divergence which
results from the massless nature of the gluons. For the
full, uncut process, however, there is such a divergence,
and the physical and perhaps philosophical prob1ems
presented by this are simply nonexistent in the cut pro-
cess approximation.

VII. FUTURE &HARK AND CONCLUDING REMARKS

The work described in this paper can be extended in
many directions, and can be applied to a number of
diA'erent processes. In this section, some ideas for such
future work will be briefly described.

One obvious application of the results is to the OZI-
suppressed decays of quarkonia. With the helicity ampli-
tudes evaluated, any spin efI'ects in the decays can be easi-
ly taken into account. Such an application assumes, of
course, that the decay proceeds via two-gluon annihi1a-
tion.

As hinted at in Sec. I, the results obtained may be used
in formulating a model for quark-pair production. For
light or massless quarks, this would have to be a " P j" or" P2" model, in contrast with the Po and S, models
that are popular at present. Note, however, that any
model developed would allow many other possible partial
waves. For light quarks, for instance, not only would P,
and P2 be allowed, but so would F2, F3, F4, and H4,
to name just a few. For quark pairs produced near their
pair-creation threshold, the allowed partial waves would
include 'So, 'D2, and Po.

The development of such a model is quite important
for particle phenomenology, as the two existing models
are somewhat inadequate on some points. As mentioned
earlier, both the Po and S, models allow only one par-
tial wave for pair production, and as such they are some-
what restrictive. For instance, neither model can be used
to describe the OZI-suppressed decay of quarkonia with
quantum numbers of 1+ or 0, say. Note that although
a model based on the results of this work will allow quark
pairs to be produced with quantum numbers correspond-
ing to Po, this partial wave is never a dominant one.

The amplitudes obtained here could also find uses in
other aspects of particle spectroscopy. Mixing between
mesons such as g and g' Inay be estimated from them.
The validity of such a calculation obviously hinges on the
assumption that perturbative @CD is correct at the ener-
gies concerned.

More exotic applications of these results can obviously
be found. One particular process to which they may be
immediately applicable is to the glueball production reac-
tion' ir p~PPn Previously. , this process was investi-
gated by Karl, Roberts, and Zagury, ' which provided
part of the original motivation for this work. A more re-
cent study has already been undertaken by Roberts and
Karl. ' This new study includes the pair-transmutation
description of this paper.
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APPENDIX A: FEYNMAN INTEGRALS

The Feynman integrals encountered are
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2m 4 (+)(—)(&)(Q)

which are expressible in terms of the relatively simpler in-
tegrals
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dk 1 dk 1R=
(2') (~)(Q) ' (2')4 (+ )( —)

S=

In the above,

(+)=k +2k P+E A, +—i F. ,

(b, )=k —2k. b, E+i—e,
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where P, b„, and Q are as defined in Eq. (8). The integrals
I and F to S are evaluated with the use of Feynman pa-
rametrization and dimensional regularization. '

The results for these integrals are
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In the above, v =P+ /E, v& =P& /E, and 6=(4—n )/2,
where n is the dimension of space-time. p is a mass that
is inserted to make the integrals dimensionally correct.
The final results are independent of p and 5.

Li2(x)= —f dz[ln(1 —z)]/z

is the dilogarithm function.
The integral I„ is readily evaluated in terms of the

simpler integrals above by means of the ansatz

the solutions of which are

(P, P—P, cosg)(2E I F—)+P, G P—P, cosOH

2P P, (1 —cos 0)

(P PP—, cosg)(2E I F)+—P H PP—icosOG

2P P, (1 —cos20)

(A5)

I„=/3,b.„+y, Q„. (A2)

Taking the four-vector dot product of this equation with
P band Q", respectively, leads to the pair of simultaneous

equations

Note that I„ is independent of P„.
A similar procedure leads to the decomposition

(A6)

I„.=a, p„p.+b, d„A,+c,Q„Q.+c,(Q g +g Q )

PP& —PP, c—osgy, =(F G —2—E I)/2,
—PP&cosOP| Pi y, =—(F H 2E—I )—/2,

(A3)

(A4) where

+~g v~ (A7)
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(A12)
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I„„is independent of terms linear in P~. The coefficients 13„y„a„b2, c2, c3, and e are the same as those of Berends,
Gaemers, and Gastmans' (It, Ig Kp Kt, Kg K~ and Ko, respectively). The quantity X is given by

E PP
&
cosg

ln
64~ E @ E —PP, cosO+N

APPENDIX B: HELICITY AMPLITUDES

The amplitude for the process qq —egg ~QQ, ignoring color factors, is given in terms of the Feynman integrals of
Appendix A as

iM=g u(q )y yt'y&v(q )v(P )y~y y u(P )(Q 6&I I bz Q I&+I &)— —

+m, g"u(q )y y&v(q )v(P )y~y y u(P )(A&I —Iz)
+mg u(q )y y~y&v(q+)V(P+)y~y u(P )(Q I—I )

+mm, g u(q )y ypv(q+)v(P+)y~y u(P )I

+similar terms from second (crossed) Feynman diagram . (B1)
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%ith the aid of the algebraic computation package REDUCE, the six independent helicity amplitudes are found to be
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where

U1=S X& U2:S L& U3=S Ry U3 S R

B= (E —PP, cos8 )I (E—+PP, cos8 )I',

expanded in partial-wave amplitudes

M.",b' .b(8', y )

=g (2J+1)D„*„(P',O', —P')T„"„' /(4~),
J

(C 1)

and

Y=F—2E2I .
where D„.„are the rotation matrices, p' =a ' —b',
@=a—b, and

APPENDIX C: PARTIAL-WAVE ANALYSIS
AND THE UNITARITY CONDITION

The imaginary parts of the partial-wave amplitudes
may be evaluated in one of two ways: (i) by direct in-
tegration of the imaginary parts of the helicity ampli-
tudes with the appropriate Wigner d functions; (ii) by
utilizing the unitarity condition and the partial-wave am-
plitudes of the processes qq —+gg and gg~QQ. The
latter is much simpler and gives far more transparent re-
sults.

For qq~gg —+QQ, let the direction of the qq pair
define the z axis (assuming center-of-momentum kinemat-
ics). Let the gluons for both qq~gg and gg~QQ travel
along the line defined by the polar angles 8' and P', and
let the direction of travel of the QQ pair be defined by the
angle 0.

Now, consider a general helicity amplitude, M, for
qq~gg. Let a, b be the helicities of qq, and a', b' be
those of the gg pair. Then this helicity amplitude may be

N

T„"„' = J M,"„' ,b(8.', P')D„„(P',8', P')d—Q, ' . (C2)

where

XD„, (P', 8', —P')

X TP„", /(4~), (C3)

T'„', = fM,'d ', b(8. ',, P, ', 8)D, (0,8,0)

XD„,* (P', O', —P')dO'dQ . (C4)

v=c —d, and c,d are the helicities of the final-quark pair.
The imaginary part of the helicity amplitude for

qq ~gg~QQ is obtained from the previous two by mul-
tiplying, summing over the gluon helicity states (p ), and
integrating over the gluon phase space dO'. That is

Similarly, the helicity amplitude for the process gg ~QQ
may be written

M,'d.', .b (8', P', 8)=- g(2J+1)D * (0, 8,0)
J, m

M,'d ',b(8)= . g (2J+1)(2J'+1)[T„",„' T',„' /(16~ )]D,* (0, 8,0)f dA'D„.*„(P',8', (5')D„—. ((5', 8', —P')4' J Jp» )m

2
(2J+ 1)(2J'+ l)[T„"„'T',„~, D„(0,8,0)/(16m )] 5JJ5„„.6„4K / J I 2~2J+1 "» ~

g (2J+1)T".' T'„' D,*(0,8,0)/(4ir),1

J,p'
(C5)

where the 1/(2m. ) inside the summation arises because there is no integration over one of the three Euler angles; it has
been chosen to be zero. The superscripts (1), (2), and (3) are present only to distinguish among the helicity amplitudes
for the three different processes being discussed.

The imaginary parts of the helicity amplitudes for the process qq~gg —+QQ, evaluated without use of the unitarity
condition, may be expanded

M,'3.',„(8)=g (2J+1)D„„*(0,8,0)T"„' /(4n),
J

(C6)

and comparison of Eq. (C6) with the previous expansion of Eq. (C5) indicates that the imaginary parts of the partial-
wave amplitudes for the process qq ~gg —+QQ may be written in terms of the partial-wave amplitudes for qq ~gg and

QQ as

y(3)J y(1)Jy(2)J1
&P 4~ P P &P (C7)

Using the partial-wave amplitudes of Refs. 12 and 13, the imaginary parts of the partial-wave amplitudes for
qq ~gg —+QQ for J ~ 4 are

J J
+pv +A, A, A, k

where J is the total angular momentum,
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+4vv, [125(E —Ppi )v v, ( 1 lv —21)( 1 lu, —21)

2PP, (81u —190—u +105)(81v, —190u, +105)][/11520E u u ),
&T+++ =&Sg m, pp&[15(l —v )(u +u —14)A& —2v(33v4+155v2 —21())]

X [15(l—v i ) (7—v
& ) A2 —2u&(81v, —190u &+ 105)]/28 800E u v,

iT+ ++ = &Sg mPP, [15(1——u', )(v, +v', —14)A, —2u, (33v4&+155v2& —210)]

X[15(1—u ) (7—u )A i
—2u(81u —190u +105)]/28800E3u~u7i

i T+ + =g PP) [15(1 —u )( v + v —14)A ) 2u (33u 4+—155v
2 —210)]

X [15(1 —v
&

)( u
&
+ u

&

—14)A 2
—2v

&
(33u ~&+ I SSu ~&

—210)]/28 800E2u 7u
~&

where

]+v 1+v
A

&
=ln, A&=in

v 1 U)
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