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Quark mass effects are included in the construction of an effective Lagrangian with bilocal pion
and kaon fields. We discuss the appropriate Schwinger-Dyson equations and the choice of pseudo-
scalar particle wave functions in the presence of explicit chiral-symmetry breaking. Identifying the
pseudoscalar-mass terms in the effective Lagrangian, we reproduce the standard current-algebra
mass formulas for charged pions and kaons. Approximate solutions to the u-, d-, and s-quark
Schwinger-Dyson equations are constructed. The low-q' region is realistica11y modeled and the
intermediate- and large-q regions are represented by a superposition of the well-known "spontane-
ous" and "explicit" breaking asymptotic QCD solutions. We couple the W-boson gauge invariantly

to the dynamical quarks and derive formulas for the pion and kaon decay constants f and fx in

the one-quark-loop approximation. With f =93 MeV as input, we calculate the value

fx/f„=1. 13, compared to 1.16 experimentally, for a representative value AQcn 200 MeV. In ad-

dition, we comment on the calculation of the pion electromagnetic form factor.

I. INTRODUCTION

Understanding of the way in which quark and gluon
degrees of freedom can be replaced at low energy by com-
posite meson degrees of freedom has progressed
significantly in the past several years. ' Various plausible
lines of reasoning coupled with formal manipulations of
field variables, especially as implemented in the frame-
work of the functional integral formulation of the com-
posite field's Lagrangian, have allowed a discussion of the
Goldstone theorem in the context of bilocal field theory
and have illuminated the path by which QCD can lead to
the chiral dynamics of Goldstone bosons. Physical quan-
tities depend in a very detailed (often complicated) way
on the pseudoscalar-meson wave functions, which in turn
have been shown to be simple functions of the quark
dynamical mass function in the spontaneous-chiral-
breaking phase of the theory. Semiphenomenological re-
sults for zero quark mass and for nonzero u- and d-quark
masses in the SU(2)-liavor sector of the chiral Lagrangian
have been compared to experiment. However, little
attempt has yet been made to treat the quark self-mass
X(q), and, therefore, the pseudoscalar-meson wave func-
tions, in a way fully consistent with asymptotic freedom,
confinement, and explicit chiral-symmetry breaking by
quark mass terms, ' nor has the problem of handling the
strange rnesons and the large (u, d)-s quark mass splitting
within the bilocal chiral Lagrangian dynamical frame-
work been dealt with.

It is precisely these latter problems which we address
in this paper: namely, the construction of a useful ap-
proximate solution to the Schwinger-Dyson equation
consistent with asymptotic freedom and confinement of
explicitly massive quarks (i.e., explicit symmetry-
breaking solutions), and the inclusion of kaons in the
problem, with attendant asymmetries in their wave func-
tions due to the large mass difFerence between "bare" s
and (u, d) quarks.

In Sec. II we outline the model for the gluon propaga-
tor which we adopt here and briefIy review recent devel-
opments in understanding the roles of the "explicit" and
the "spontaneous" symmetry-breaking solutions to the
Schwinger-Dyson equations in QCD (Refs. 5 and 6) or,
equivalently to the quark mass renormalization-group
equations as originally formulated.

In Sec. III we sketch the derivation of the pion mass
terms in the efFective Lagrangian and show that we ob-
tain the standard current-algebra mass formula in lowest
order in explicit quark-mass-breaking factors. We follow
this with a generalization to the kaon mass term and
present our ansatz for the kaon wave function, involving
as it does the strange and nonstrange quark dynamical
masses. The kaon mass equation that results in lowest or-
der in explicit quark masses is also the same as the stan-
dard current-algebra formula.

In Sec. IV we derive the wave-function renormalization
factors for the pion and kaon from the kinetic energy
term, calculate the pion and kaon decay-constant formu-
las by introducing the gauge invariantly coupled 8'boson
in the quark-meson Lagrangian, and fix the parameters in
the model for the quark dynamical mass functions by us-
ing experimental values for m, mx, and f, with f also
used to set the scale of the long-distance part of the gluon
propagator. The outputs are m„(=md by assumption),
m„(uu ) (=(dd ) =(ss) in lowest order), and fx.
With f =93 Me V and a standard choice A&CD

=200
MeV, we calculate fr=105 MeV or fx/f =1.13. This
value compares well with fx/f =1.16 obtained from
the measured rates' I (E—+pv) and I (~—+pv) and the
value of the sine of the Cabibbo angle singe=0. 229.
Our fx/f result is also close to the value 1.15 that one
obtains from a strictly phenomenological analysis using a
chiral Lagrangian. " We find the result very encouraging,
containing as it does a large amount of detailed treatment
of the kaon structure.
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As an illustration of another low-energy parameter
which is sensitive to the dynamics of the quark binding in
the pseudoscalar wave functions, we compute the elec-
tromagnetic form factor of the pion in our formalism and
check that its normalization is automatically correct
when the kinetic energy of the pion field is properly nor-
malized. The value for (r ) so obtained turns out to be
much too small. This indicates that we ought to include
at least the hadronic vector mesons, which are known
phenomenologically to play a principal role in the
description of form factors. ' The formalism used in this
paper indeed requires at appropriate energies the in-
clusion of bound states other than just the pseudoscalars,
such as the vector mesons, and we plan to look further
into this in a separate study.

In three appendixes we present a discussion of what we
mean by the "Landau-type" gauge which we use in the
text, we outline the argument involved in choosing the
kaon wave function and approximating integrals, and we
collect several detailed formulas —the kinetic energy nor-
malization factors and the full pion form-factor
expression —which are not explicitly needed in the text.

II. THE QUARK PROPAGATOR

Extremizing the effective action of Sec. III with respect
to the translationally invariant bilocal field yields the
Schwinger-Dyson equation in the ladder approximation.
In Landau-type gauges (see Appendix A), this equation
reads, in momentum space,

X k&(q')= f G(k —q) d4k,
k —X(k )

where G, the gluon potential, absorbs all constant factors.
We decompose G(q) in a confining long-distance term

proportional to 5 (q) which is a regularization of the dis-
tribution q and was employed by Munczek and
Nemirovsky' with phenornenological success, and a
Coulombic short-distance term, including a running cou-
pling constant a, (q ) in a manner used extensively in the
literature. ' ' ' Specifically, we take

—G(k —q)=i) 5"(k —q)+, (2)
i X(k —q)

(k —q)2

where, in Euclidean space, X,(k —q) =A, (k )8(k —
q )

+A(q )8(q —k ) and A(q )=3[C2(F)/4m]a, (q ).
Cz(F) is the eigenvalue of the quadratic Casimir operator
of the color group in the quark representation and a, (q )

is the one-loop running coupling constant of QCD. The
approximation of breaking up a, into k )q and q (k
regions is standard in the literature, most recently ap-
pearing in technicolor applications, ' and is adopted here.
The dynamical mass equation now reads in Euclidean
space

where x =p and we take A(x)=A(xo) when x (xo.
Here we have defined A(x)=(mb lnx) ', b =(11K,
—2nf )/12m, with N, the number of quark colors and nf
the number of flavors. AQCQ provides our scale and the
arguments of the logarithms are understood to be made
dimensionless by an implicit factor AQCQ The Coulom-
bic part has been given an infrared transition point xo
which will be determined self-consistently within the ap-
proxirnation which we introduce later. The ultraviolet
cutoff is necessary to define the bare quark mass with the
potential chosen. This latter point has been discussed by
Miransky and also by Leung, Love, and Harden, '

among others, and it is necessary in order to define the
regularized product m ( qq ) which determines the physi-
cal pseudoscalar masses. If there is no bare mass and the
chiral breaking is purely spontaneous, i.e., ( qq )&0,
while c)"j„=limm (A)(qy~q)~=0, when the cutoff' is
taken to infinity, then the asymptotic form of the solution
for X(p ) is —1/p (lnp ) "+', where d =12/(33 —2nf )

for three colors and nf quark flavors. %'ith an explicit
breaking of chiral symmetry, one should include also a
piece with the asymptotic behavior —1/[ln(p )] so that
c)"j„=m(qy5q )&0 as the cutoff runs to infinity. ' ' '

It is our aim to include explicit chir al-symmetry-
breaking mass terms for u, d, and s quarks, so we adopt a
linear combination of the asymptotic forms
1/p (lnp )

"+' and 1/(lnp )" in our approximation to
X(p ) for p )po, while adopting a linear approximation
for p (po. We postpone further discussion of our (ap-
proximate) solutions to Eq. (3) until after our elaboration
on the choice of (bilocal) pseudoscalar-meson wave func-
tion and its application to the pseudoscalar mass terms
within our QCD-based effective Lagrangian approach.

III. PSEUDOSCALAR-MESON MASSES

A. Discussion

As developed in our earlier work, an effective bilocal
Lagrangian in terms of bosonic degrees of freedom results
from integrating the gluon and quark degrees of freedom.
Schematically we have

8',s[co]= —i Tr ln(il —co)+ —,
' Tr(coco), (4)

when there is no explicit chir al-symmetry breaking,
where co(x,y) —=y"co(x,y)y'G„(x —y) and where Tr indi-
cates the trace over discrete indices and integration over
space-time variables. The bilocal field co(x,y) has a
translationally invariant piece and we define

co(x,y) = iS(x —y)+—P(x,y) .

Minimizing 8;tr[co] with respect to S and setting /=0
yields the ladder approximation to the Schwinger-Dyson
equation

X(x) A(x)
y

yX(y)dy
x+2 (x) «y+X~(y)

y
A' X(y)k(y)dy

x y +P~(y)
(3)

S '(x —y)=(x~(i8+iS) y),
whose momentum-space version we discussed in the
preceding section. The bilinear terms in the expansion of
W ff[co ] are given in momentum space by the expression
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W",~' =— tr i f d p fd'q S(q + ,'p—)P(p,q)S(q —
—,'p)P( p—, q)+ f d'p f d'q P(p, q)P( p—, q)

The tr indicates tracing over discrete indices only.
The mass terms for the pseudoscalar fields are found by

projecting out the pseudoscalar part @5'~(p,q) of P(p, q),
the Fourier transform of the field P(x,'y) defined by Eq.
(5), and by setting p =0 in the fermion propagators,
S (q+ —,'p). One obtains then the following expression for
the pseudoscalar field mass terms:

gauge-dependent factors are absorbed in it. As in a previ-
ous paper, we assume a factorized form for the bilocal
field: namely,

4' (p q)=e(p)4(q)

Also, as in Ref. 2, we choose for the pion wave function

gr(~2) (y )—
(2m)' D q

strfd p fd q Pi, (p, q) $(q) =iX(q),

+Wp(p 'q) 4p( p 'q)

(8)

assuming u-d degeneracy. Furthermore, when there is
explicit chiral-symmetry breaking the Schwinger-Dyson
equation (1) is

where D (q) =q —X (q) in Landau-type gauges. By
definition, X(q) = m +f G (q —k)d'k .X(k)

D(k)
(12)

Pp(p, q):i f—Pp(p, k)G(q —k)d k,
where G(q —k), proportional to the gluon two-point
function in purely Yang-Mills theory, is defined so that

Using the expressions above and keeping just the first
order in m, the charged rr mass term of Eq. (8), for exam-
ple, has the form

W», [P ]= 4miN, —f f d k G '(k q) f d —t G(q —t) —f n.+(p) rr(
—p),(2')" D (t) N (2')

where n(p) =g(p)&N. The normalization factor N will be discussed in Sec. IV in connection with the kinetic energy
terms in the effective action, where it is shown that N =f 12.

We can rewrite Eq. (13) in the form

~ „,[P ]=—m „' f d x n+(x)m (x)-, (14)

with the standard current-algebra expression

m2=2 - &uu),

where a sum over colors is understood.
As mentioned above, we did not consider isospin breaking here and took m„=md. We consider the case of unequal

uark masses iI1 studyiIlg the kaon system.
As we discussed in the previous section, the product m (qq ), nonzero in the presence of explicit chiral-breaking mass

terms in the QCD Lagrangian, must be treated by introducing a cutoff in the Schwinger-Dyson equation with the
short-distance behavior governed by asymptotic freedom. The cutoff-dependent mass m (A) goes to zero as A~ ~,

2
while (qq ) =I X(x)dx blows up as A —+ ~ with the product remaining finite.

B. Explicit SU(3)-flavor breaking

Introducing Aavor breaking among the quark masses, we can study the mass, decay constant and form factors of the
kaons. For example, we write the Aavor space indices explicitly in the bilocal term:

trSQSQ =S,5,$ 'S,5,$ ' =S,/PS P '+
to obtain the bilinear charged-kaon term in the effective-action expansion

(16)

«f 'p f d'q [S.(q+ ,'p»)) 5S'(q ,'-p)l's4' +(p—q—)4 ( pq) 0-+(p q)4— (
—pq))-—

2 2'
(17)
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where P, =——
@san +, for example.

Isolating the mass term gives

4N,8"','„(K)= i f d p f d q

—
q +X„(q )X,(q )

D„(q )D, (q )
4 .(p q) 0—.(p»q) 0 ( -p—q)

+(u d, K KO, K+ K ' (18)

The wave-function ansatz which we make to generalize the case where the constituent masses are equal is, taking K
for example,

(p, q) =if (p) —,'[X„(q)+X,(q)],

which can be inverted by using Eq. (9) and the Schwinger-Dyson equation (13) to obtain P for use in the mass term, Eq.
(18). We comment further on Eq. (19) in Appendix B.

Keeping leading terms in EX=X,—X„and explicit factors of I, and m„, we have the generalization of the mass
term of the pseudo-Goldstone boson to the case of unequal quark mass constituents:

(2)
( )

d p K+(p)K ( —p)
( + )mass 4(2m )

s u + X, (q )+X„(q )
(2~) D, ( ') D ( ')

+(u ~d, K —+K,K+ ~K ), (2O)

2 ms rnum~=, (qq &, (21)

where to leading order in quark masses X is the same as
in Eq. (13). Finally, when the zeroth-order expressions
for X„and X, are used, namely, those for the massless
quark. case with spontaneous symmetry breaking, we re-
cover the standard expression

d' 4

(2~) (2m. )

d p d g (23)

4 4

ig —sinOciV, f f tr[S„+8 +(p)I-S, y5
2 (2') (2')

X()( (
—p, q)+H. c. ]

where (qq ) = (ss ) = ( uu ) = ( dd ).
Let us consider the kinetic energy normalization next,

including the m, &m„,md effects and X,&X„d effects,
since this will be needed in our next problem: namely,
the determination of fz.

IV. CALCULATION OF f and f
We need to normalize the pseudoscalar fields and cal-

culate their mixing amplitudes with the 8 boson in order
to evaluate f and fx. . Both the kinetic energy and W-~
mixing terms are generated by the quark loop expansion,
summarized now in the presence of 8 by the e6'ective ac-
tion term

with tr designating the trace over spin, S+—=S(q+—,'p)
and P

' +—' =P(+p, q ). Expanding the integ rand in Eqs.
(23) and (24), we keep the quadratic and linear terms in
the variable p to identify the kinetic energy for E and
8'-K mixing. We omit the pseudoscalar —axial-vector-
meson mixing in the approximation used here, and we
keep the terms linear in (X,-X„)but drop higher powers
of the mass-function difference. As outlined in Appendix
B, the results can be conveniently expressed in the forms

W, (K) = fd'x a„q .(x)a~i( (x) I-,'[J(s)+J(u)]I

(25)

8',„=—i Tr in[1 —S( gI. +P)],

where Tr denotes trace over spin and internal-symmetry
indices and integration over space-time variables. The
left-chirality projection operator is L =(1—y&)/2 and S
is the full quark propagator. 8'is an appropriate matrix
in liavor space for the charged weak boson. The field P
will be given by our choice Eq. (11) for the pion and Eq.
(19) for the kaon. The relevant effective action terms for
the charged kaon kinetic energy and 8'mixing are

W~~(K) = —g sin8c f d x W„+ 'd"t/i~ (x)1

2

X I —,'[J(s)+J(u)] I+H. c. ,

where

xX
J(q)= f dx — -(X —

—,'xXq),
8~ o (x+X )q

(26)

(27)
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Nz= —,'[J(s)+J(u)] . (28)

Referring to our previous work for fp identifications,
where P =m or E, we have

f = [2J(u)]'

f~ = [J(s)+J(u)]'~

(29)

(30)

These results for f and fz depend on our choices for
the pseudoscalar-meson wave functions (11) and (19)
which satisfy the requirements of the Goldstone theorem
in the limit when the explicit quark masses vanish. To
make further progress, we must examine the solutions to
the Schwinger-Dyson equations for X (x) when explicit
chiral-symmetry-breaking quark mass terms are included,
as discussed in Sec. II.

Practically speaking, we only need reasonable approxi-
mations to the solutions to Eq. (3) for the strange- and
nonstrange-quark cases. The function

X (x)=X (0)——,x &(xo)~,.
1 x

(31)
C ~/C

X~(x)= ~, z~
+ z, x ) (xo)q,

x (lnx)" "' (lnx)

with X(x) and X'(x) required to be continuous at x =xo,
reproduces main features of the low-energy behavior of
Eq. (3) as well as the well-known asymptotic behavior for
the explicit breaking case. ' Since the integrals which
determine f and f~, Eq. (29) and Eq. (30), converge
slowly, we use the value d =

—,", corresponding to six
flavors.

Our mass formulas (15) and (21) enable us to determine
for q =u and s, respectively. To zeroth order in expli-

cit mass breaking we have, for its divergent part,

N, dx
( qq ) = I Xq(x)dx =4' 4~' x (lnx) '

N, C
(lnA )

4~ d

On the other hand, the explicit mass parameter itself
depends on the cutoff as [see Eqs. (3) and (31)]

«q dy ~& 1
m (A)=

C A y(lny) " C (lnA )"

The product is cutoff independent, and using Eqs. (15)
and (21) we obtain

with q =u, s. The equal-mass, pion, case can easily be re-
trieved by setting s =d in Eqs. (25) and (26). The normal-
ized kaon wave function is then given by

K (x)=fr(x) t/N~,

where

2

~, =f m~ d,2 4~
C

(32b)

2=2 1 ~, (y)X, (y)
g =X~(0)— X—q(0) I dy,

o y +X2(y)

where, as in Sec. II, we have

a,(x)=, x &(xo)„,d
nxo

a, (x)=, x ) (xo)„.= d
lnx '

(33)

Equation (33) determines g given that X„(x) is deter-
mined by the value of f plus the continuity require-
ments, subsequently we can determine (xo), from (33).
The functions X,(x) and X„(x)are plotted in Fig. 1. We
find that in the range 0&x & 1000 (in units of A&CD) the
original integral equation (3) is typically satisfied by our
approximate solutions at the 10—20% level.

With the dynamical mass functions just described and
displayed in Fig. 1, predictions for fx. and (r ), the pion
charge radius, can be make within our QCD-based
effective Lagrangian framework. We find

=1.13 . (34)

The value for fz/f„as extracted from experiment de-
pends somewhat on assumptions about universality,
axial-vector renormalization, Cabibbo angles in mesonic
versus baryonic processes, and so forth, but a commonly
used value' sinOC=0. 229 yields fx/f„=1. 16, so we
find our result (34) very satisfying. For the pion charge
radius we find, using the expression given in Appendix C,
the value ( r ) =0.026 fm to be compared with the ex-
perimental result, ' (r ) =0.454 fm . The fact that the

TABLE I. Values for the parameters appearing in Eqs. {3)
and (31). ~, g, X, xo, and C are of mass dimension four, two,
one, two, and three, respectively. The values are given in units
of AQcD chosen to be 0.200 GeV.

where m„(A) «m, (A) allows one to neglect terms of or-
der m„ /m, in (32b).

Our functions X„and X, are not yet completely deter-
mined. With Eqs. (32) determining x.~, we have the three
parameters C, X(0), and xo to be determined by the con-
tinuity of X(x) and X'(x) at x =xo plus one more condi-
tion. We choose to use the equation for f„,Eq. (29), to
provide the needed information. The parameters are
summarized in Table I. The values for X, follow by no-
ticing that in Eq. (3) the parameter g represents
confining, purely gluonic eQects and is flavor indepen-
dent. We should have then

and

~
2'

C

(32a) 0
0.398
9.92

5.46
5.46
5.46

2{0)

2.75
2.75
2.92

8.82
8.22
7.69

14.01
14.13
9.69
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F(X„X„)=—,'[F(X„X,)+F(X„,X„)] .

The above argument is the basis for our approximations
for the kaon normalization factor and for the K-8' mix-
ing factor.

APPENDIX C

In this appendix, we offer some of the details of the
pion form-factor calculation. The electromagnetic poten-

tial A„ is coupled gauge invariantly to the quarks, and
after integrating out gluons and quarks the effective ac-
tion can be written now to include A in Eq. (22) as fol-
lows:

W&„= i—Tr in[1 —S(QA + WL +P)], (Cl)

where Q is the quark charge matrix. Expanding &q. (Cl)
to third order, one obtains the charged pion coupling to
A„ in the form

+ (ki+k24
W[rr, vr, 'A]= i

'—e f d4x A (x)f dk~dk2m+(k, )m' (
—k2)

2
e ' ' I(k, , —k2)

—= f d x A (x)jz(x) .

We use the condensed notation d k /(2n. ) =dk. We can read off the expression for the current operator:

N, (k, +k2)qjq(0)= i —e f dk, fdk2rr (k, )vr ( —k2) I(k„—k2) .

(C2)

(C3)

(C4)

The factor N is the pion wave-function normalization factor and the integral I ( k „—k2 ) can be shown to depend only
on (k& —k2)—:q, and we work in the massless quark and massless pion limit in the following formulas. The expression
f roI(q ) then is

k, k2
X l+ X l—

2 2I =4 d 1
D (l +k, )D (l)D (l —k2 )

X [—l +k —
q /4+X(l)X(l —k2)+X(l)X(l +k, ) —X(l +k, )X(l —k~)]

—2l —2l k+ X(l)[X(l —k~ )+X(l +k, ) ] (C5)

with D(p):—p —X (p) and k:—k, +k2/2. Taking the
matrix element of jz(0) between pseudoscalar states, we
identify F (q ) from the expression

2

(r ) = — f dx [E,(x)+E2(x)
6 I(0) 16~' ~ D'(x)

+E3(x)], (C8)
—e(pi+p2)"

&p~ j"(0)lp& &=, », F.(q'),
(2') (4', co2)'

(C6)
J

where D (x)=x +X (x) and the functions E, (x) are

where q =(p, —p2) here and the normalization is that
of Bjorken and Drell. The result is

D' D I 2

E, =2 X'X —4X —(X')

I( 2)F (q )=i-
N 2

(C7) E2 =x X X' D" 2(D') 20 8(D') X+ +
D 2 D 3

and one can check that I(0)= —i 2( I/N, ) = —i 2(N/N, ),
so that F (0)= 1 as it must. The integral J is given in Eq.
(27).

The charge radius, obtained by expanding Eq. (C7) in
powers of q, retaining the leading term and using the
definition

——'X'X"+ — 4D"—
12 3 D D

I

+ [XX"——,'(X') ]

(r )=— F (q)
1 d

q =0

is given by the following expression:

t

E = ———4XX' +2(X') ——'o X'X"x
D
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