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Flavor-changing neutral currents and seesaw masses for quarks
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The structure of flavor-changing neutral currents (FCNC's) which arise when one tries to give
masses to quarks through the analogue of the seesaw mechanism for neutrino masses is studied.
General conditions for the absence of FCNC's in the seesaw limit are derived. A specific model
where these conditions are satisfied by the tree-level-quark mass matrices is identified. The FCNC s
get generated in this model through radiative corrections to quark masses. These corrections lead
to a hierarchy F» &F}3&F» in typical strength I';J of the neutral-current transition between ith
and jth generations. Moreover the Aavor-changing transitions between down quarks are suppressed
compared to the corresponding transitions between up quarks. As a consequence, the FCNC's con-
necting d to s quark are greatly suppressed in conformity with observations such as E -X mixing
and the decay KL ~p+p . In contrast, the transitions between c and t quarks could have observ-
able magnitudes. The branching ratio for Z~tc could be as large as 10 —10 in the model con-
sidered here. The D -D mixing could also be in the vicinity of the present experimental limits.

I. INTRODUCTION

The observed suppression of fermion masses relative to
gauge-boson masses is attributed in the standard
SU(2)L XU(1) model to the presence of arbitrary small
Yukawa couplings. The situation is most embarrassing in
the case of neutrinos. If they are to obtain their mass in
the same way as the other ferrnions do then one would re-
quire Yukawa couplings as small as 10 ' —10 ". This is
avoided by the seesaw mechanism of Gell-Mann, Ra-
mond, Slansky, and Yanagida' where additional suppres-
sion in neutrino masses comes from the presence of vastly
di6'erent mass scales in the theory. Small Yukawa cou-
plings can be avoided this way also in the quark sector if
one introduces additional SU(2)-singlet quarks having the
same electric charges as the up and down quarks. Re-
cently, such a seesaw mechanism for quark masses has
been discussed by many authors,

An immediate consequence of the seesaw mechanism
for quark masses is . the absence of the Glashow-
Iliopoulos-Maiani (CsIM) mechanism which requires that
all the quarks with given helicity and charge should
transform identically under SU(2)L XU(l). This results
in the absence of flavor-changing neutral-current (FCNC)
couplings of quarks to the Z boson in the SU(2)L XU(1)
model. In contrast, in the seesaw models, additional
SU(2)L XSU(2)„-singlet quarks give rise to FCNC's
through their mixing with the conventional quarks. Such
couplings have to be adequately suppressed if the seesaw
mechanism is to be viable.

This paper is addressed to a detailed discussion on the
structure and magnitude of FCNC's in seesaw models.
The basic objective is twofold. First, we wish to derive
conditions under which the FCNC's are naturally absent
to the leading order in the seesaw limit. A complete ab-
sence of FCNC's need not be required in practice. From
the observational point of view it is sufficient to require
that the Aavor-changing coupling s are adequately

suppressed so as to be consistent with observations such
as K -K mixing or the near absence of KL —+p+p de-
cay. Such couplings could be present in transitions in-
volving higher generations. If this happens then the ob-
servation of such currents could in fact provide a window
into the seesaw mechanism under study. The second ob-
jective of the paper is to study a specific seesaw model
which is shown to exhibit such hierarchy in FCNC tran-
sitions. In this model, the tree-level seesaw mass matrices
do not give rise to any FCNC's. The radiative correc-
tions to masses do generate FCNC's but they are such
that one obtains a hierarchy in their structure.
Specifically one finds F,2 &F» & F23 where F;J character-
izes the strength of FCNC's between the ith and jth gen-
eration. Moreover, transitions in the down-quark sector
are suppressed compared to the corresponding transitions
in the up-quark sector. This pattern is consistent with
observations and has interesting phenomenological conse-
quences.

We proceed as follows. Section II contains a general
discussion on structure of FCNC's in a class of
SU(2)L XSU(2)z XU(1)z L models which employ the
seesaw mechanism to generate quark masses. Conditions
for the natural absence of FCNC's in such models are de-
rived in Sec. III to leading order in the seesaw limit.
These are shown to be satisfied in specific models of Refs.
7 and 8 at the tree level. The radiative corrections to
quark masses reintroduce FCNC's in these models. The
structures of these induced FCNC's is studied in Sec. IV
and V. In Sec. VI we discuss phenornenological conse-
quences of this structure. Section VII contains a sum-
mary.

II. SEESAW MODELS AND STRUCTURE
OF FCNC's

The seesaw mechanism can be naturally implemented
in the left-right-symmetric' SU(2)L X SU(2)n
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XU(1)R L
=—G model. However, the conventional' fer-

mionic and bosonic content needs to be changed in order
to implement it. In addition to n conventional quarks q,
(i = 1, . . . , n) one introduces m SU(2)I X SU(2)R-singlet
charged —

—,
'

( —,
' } quarks N (P ) (i3. =1, . . . , m) trans-

forming as triplets of SU(3), . The conventional Higgs
field transforming as (—,', —,', 0) is to be replaced by a pair of
complex Higgs fields yL z transforming, respectively, like
(—,', 0, 1) and (0, —,', 1) under G. This has the consequence
that the ordinary mass terms for quarks [transforming as
(—,', —,', 0) under G] cannot be generated at the tree level.
Instead the following seesaw form results for the
quark masses:

0 mi

m2 MH (2.1)

Here m, (m z) is an n X m (m X n) matrix while MH is an
m X m matrix. The scale of m, [m2] is determined by the
vacuum expectation value of yL [yR] and hence by the
SU(2)L- [SU(2)R-]breaking scale. Thus for equal Yu-
kawa couplings m, &&m2. The matrix MH could result
either from a bare mass term for the additional quarks or
from their couplings to G-singlet scalar fields. Thus, the
scale of MH is arbitrary. The seesaw limit corresponds to
MH &&m

& 2. In this limit, the matrix At generically
possesses n light quarks with masses =(iPL ) (q&„)h /M
and m heavy quarks with masses =M. Here h and M
correspond to typical Yukawa coupling and a typical
scale in the matrix MH. Because of the additional
suppression (pR ) /M and because of the presence of h2
instead of h, the required Yukawa couplings could be
much larger than in the standard SU(2)L X U(1) model.

The neutral-current couplings of the additional quarks
N, P are difFerent from that of the conventional quarks.
The physical mass eigenstates involve both of them with
the result that the Z couplings to light quarks are not
Aavor diagonal, in general. Let us define the original
weak eigenstate by U,

'
I R

——(u, P' )I RD,
'

L R

—:(d, N' )L R with a = 1, . . . , n +m. We shall some-
times denote them collectively by G,'L R =(—q, H' )L R
with q(H) representing u(P) or d(N). Physical mass
eigenstates are determined by diagonalizing At having the
form of Eq. (2.1) by a biunitary transformation. Thus we
have, for the unprimed mass eigenstates,

(Qa }L,R ( '4ab }L,R (Qb )L, R (2.2)

where A ", A ", respectively, diagonalize the charge —', and
the charge —

—,
' mass matrices. Explicitly,

A qL W
q

A qp diagonal (2.3)

The SU(2)L XSU(2)R XU(1)R I model contains two
massive neutral fields Z& 2. Both of these will couple to
FCNC's in models under consideration. Let us define"
the states Z, D orthogonal to the photon field:

A „=sinO 8'L„+cosO„B„, (2.4a)

Zp =cosO~ 8 Lp smO~Bp

D„=cosP W'R„—sinPC„, (2.4c)

where O is the weak-mixing angle. In terms of the
gauge coupling gL R [gc] of SU(2)I R [U(l)R L] we have
tank gc/gR ta ~ g /gI and g'=gRgc/
(gR+gc)' . The field B& appearing in Eqs. (2.4) is given
by

(2.4b)

B„=sing WR„+cosi/iC„. (2.5)

Z2„= —sinPZ„+ cosPD„. (2.6b)

Given these definitions, it is easy to work out the cou-
plings of weak eigenstate fermions f'—= (u', d', P', N') to
Z& &. We have

The physical fields Z, 2 are mixtures of fields Z and D:
Z i p

=cos/3Zp + sl nPDp (2.6a)

NC ~ g Zpp(upLq L ) qL +apL+ L Y H 'L++pRq RX qR'+apR~ RP RsinO cosO (2.7)

Here e =gLsin8 q' —(u', d ) and H'-(P', N'} as before and, for any of these fermions,

aL& =cosp(T3L —sin 8 Q' )f —
—,'sinpsin8 tang(B I.)f— (2.8a)

aR, = —cospsin 8 (Q' )f —
—,'sinpsin8 tang[(B I.)f 2cot f(T3R )f ]—, (2.8b)

aL R are obtained from aL'R by replacing cosp~ —sinp, si np~c so/3.

Equation (2.7) when reexpressed in terms of physical fields defined by Eq (2.2), contains flavor-nondiagonal terms be-
tween light quarks q, . Using the unitarity of Ag R we obtain

+FcNc g Z [(+p +p )I F'' (q Lil qLL j )+ (up up )RFPjR (qR; y qRj )1slnO~ COSO~
l+J

(2.9)
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where

(FL,R);, =—(~X ~a,')L, R (2.10)

(FL,R). =[K(1 'pp—)(1 ,'pp—)K] j,L.
, R

5ij (KL RpL RpL RKL R )j +O(pL R ) (3.7)

with i,j,k running over 1, . . . , n. As would be expected,
the FCNC's are absent if the additional quarks H do not
mix with q (so that F, cc 5"; ) or if the former transform in
the same way as q under G (so that a~=a ). The
strength F,jof .FCNC's is fixed once the matrices Ag R
are given. In the next section we work them out for the
quark mass matrices of the form displayed in Eq. (2.1).

III. CONDITIONS FOR ABSENCE GF FCNC's

In this as well as the subsequent section, we shall work
in the seesaw limit MH ))I&, mz. Moreover we shall as-
sume that MH appearing in Eq. (2.1) is invertible. The
case with detM&=0 needs a separate treatment. In the
seesaw limit, the matrix JR [Eq. (2.1)] can be brought to a
block-diagonal form by means of a biunitary transforma-
tion induced by

It follows from Eq. (3.7) that there are no FCNC-induced
transitions in the seesaw limit if both KLPLPLKL and
Kzp~p+K~ are diagonal. Conditions for this to happen
are easy to derive. Remembering that PL =m&MH ' and

pR =MH 'mz, Eq. (3.5a) implies

KLPL Izm zpLKL =K&p& m ]m ]pzKz =diagonal .

(3.8)

Hence i pLrn2m2pL (pRm imipR) commu e w~ h pLpL
(pRpR ) then FI R given in Eq. (3.7) will be diagonal and
there will not be any FCNC's to leading order in
m

&
2/MH. This can happen in a variety of ways but we

point out two important classes of models where this
happens. Consider a situation with

Pl ) =PI2 (3.9a)

2PL, APL, g

PL, R

PL, R

2PL, APL, R
+«PL', R) .

and

MH =yI, (3.9b)

(3.1)

and

—1

PL =m )MII

P~ =MH mz,
—1

—m)M~ 'mz 0 Pl( zI+0
MH

(3.2a)

(3.2b)

. (3.3)

The first term on the right-hand side of the above equa-
tion can be diagonalized by a matrix

KL, A

SL,R

with

KL™lMH 2 )KR ml
—1 (3.5a)

PLMIIP~ =mH, (3.5b)
where mi (mH) are diagonal matrices with light (heavy)
quark masses as entries KI R (P. L R) are n Xn (m Xm)
unitary matrices. The matrix 3 connecting the physical
and weak basis [Eq. (2.2)] is given by

SL~UL~

K(l —
—,'pp )

Ppf

—Kp

P(1—
—,'p p)

L, R

(3.6)

As a result, the strength of FCNC appearing in (2.10) is
given as

Here PL ~ is an n X m matrix and it is to be chosen in
such a way that ULALUR does not contain any couplings
between light (q) and heavy (H) quarks. Explicitly, one
finds, to leading order,

6M I )

mz Ma (3.10)

This can be brought into approximate block-diagonal
form by the same UL R as in Eqs. (3.1) and (3.2). But
K«now satisfy

KL(5M —m]MH m2)KR =mi—1 (3.11)

instead of Eq. (3.5a). The presence of 5M could introduce

with P, y being constants. Then m2m2 is proportional to
pL PL with the result that PLPL commute with
pLm2m zp& ~ (pLpL ) . As a consequence, the matrtx KI2

which diagonalizes pI m2m zpL [see Eq. (3.8)] also diago
nalizes pI pL and (FI );j in Eq. (3.7) are proportional to
5;.. Similarly (FR), . are also proportional to 5,. and
Aavor-changing terms are absent to leading order in Eq.
(2.9). The second class of models where this happens cor-
responds to the addition of only one heavy quark coupled
to light quarks of a given charge. In this case, m &m &

and
m2m2 are numbers and pI m2m2pL (pRm, m, pR) tnvtal-~ ~

ly commute with pI pL (pR pR ) resulting in the absence of
FCNC's as before. Recently proposed models of Refs. 7
and 8 fall in this category. The quark mass matrices at
the tree level in these models have the structure displayed
in Eq. (2.1) with I =1. They therefore do not contain
any FCNC's at the tree level in the seesaw limit. As we
shall demonstrate in Sec. V, this property is in fact more
general and even when one does not take the seesaw lim-
it, the fIavor-changing transitions are absent at the tree
level in these models.

So far our discussion assumed that there are no direct
mass terms between light quarks. These may be generat-
ed by radiative corrections as in the models of Refs. 7 and
8. The general form of mass matrices one should consid-
er then is
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now nontrivial FCNC's even if they are absent with
5M=0. But the smallness of FCNC's would then be
linked to the presumed smallness of 6M. We will see this
explicitly in the next section.

IV. FCNC's: SEESAW LIMIT

In this section we shall consider the seesaw limit and
work out the structure of FCNC's in the model proposed
by Balakrishna, Kagan, and Mohapatra. In their model,
only one additional heavy quark N or I' is added to each
charge sector. In addition, they introduce a color-triplet
SU(2)L XSU(2)z-singlet scalar field co with 8 L= ———', .
We shall explicitly consider the case of charged 3 quarks.
At the tree level, their masses are given by

0 UL h3&
0
u (4.1)U~(h, I Mp

where
I
h 3 & is a column vector with n entries and

UL z =—(yL z &. We shall restrict outselves to the case
n =3. Aid is obtained from above by changing M~ to
Mz and by changing Yukawa couplings Ih3 &. Following
Ref. 8 we shall choose equal Yukawa couplings and
hence the same Ih3 & for both JN„and , JRd. In order to
do this naturally, one needs to enlarge the gauge group to
SU(2)I X SU(2)z XU(1)H XU(1)z I as discussed in Ref.
8. This contains three neutral gauge bosons and one
should include them in the analysis of the Aavor-changing
processes. For simplicity, we have chosen to work with
the gauge group SU(2)I XSU(2)~ XU(l)~ L but we
choose equal Yukawa couplings in A, „and A, d by hand
in what follows. The results so obtained would be expect-
ed to hold in the case with three gauge bosons provided
the additional gauge boson does not have significant mix-
ing with Z, 2 considered in Sec. II.

Radiative corrections induce ' the couplings between
light quarks and change the structure of AL„ to

5M„vL a&

U~ (aI Mp
(4.2)

The 5M„and Ia & depend upon the details of the model
but have the following generic form at the ith loop level:

at the one- and two-loop levels, respectively.
In the absence of radiative corrections (5M„=O) the

FCNC's are absent as already discussed in Sec. III. With
nontrivial 5M„, Mu and pL ~pL, ~ cannot be diagonalized
simultaneously and the model contains FCNC's [see Eq.
(3.7)]. In the present case, M„ is Hermitian and so
EL =Ez ——K in Eq. (3.5a). The structure of K has been
determined ' perturbatively by expanding M„ into a pa-
rameter k which counts the loop order. We briefly de-
scribe the procedure for completeness.

The radiative corrections [Eq. (4.3)] are expressed in
terms of the column vectors Ih3 &, Ih, &= IHh3 &,

Ihz &
= IH Hh3 &, etc. We shall assume that Ih,. &

(i =1,2, 3) form a linearly independent set and construct
an orthonormal set of states from Ih; &:

3
(4.5a)

1

2
(4.5b)

Im, &+
Nl e2 e2

(4.5c)

I

~

&u gmI &u (4.6)

and

m,"=A, m" (i) (4.7)

describe the eigenfunctions and eigenvalues of M„up to
O(A, ). We expand Im &,

" in terms of eigenfunctions
IO &; = I P; & of M„at the tree level:

Im &,"=x,, "Iy, &, i~j, (4 g)

where x;. are O(A, ). Then the standard perturbation
theory up to O(A, ) gives

where e,:—($3Ih, &, e2
—=($3Ihz&, and e3=($2Ih2&.

Nl 2 are normalization constants.
The states

I P; & are eigenfunctions of M„at the tree lev-
el' and therefore describe physical states in this approxi-
rnation. In general,

a, «IH"h, &(aV, I,
0~ k ~2i

(4.3a) X lu lu
X13 X31 0 (4.9a)

0~ k (2i
(4.3b)

where H stands for the product H HH H of a-
symmetric matrices H; defining the couplings of light
quarks to color-triplet field cu at the tree level. '

In the seesaw limit, the JR„can be brought to a block-
diagonal form. The upper 3X3 block describing the
effective light-quark masses is given [see Eq. (3.11)]by

lu X luX 12 21
(M2 )

& lu lu
(M", )32

23 32 0m,
(4.9b)

(4.9c)

M„=5M„—~OIa & (aI (4 4.)

with a0=UL Ug /Mp ~ At the tree level, this has only one
nonzero eigenvalue corresponding to m, —:a0h 3 with
/l 3:( h 3 I

h 3 &. The radiative corrections in the model are
such that the charm and up quarks receive their masses

Here (M;")« =—(PkIM;"IP&&. M,." corresponds to M" at
the ith loop level and nonzero quark masses up to 0 (A, )
are given by m, = (MM& )22 and m, = —(Mo )33.

The expression for x " given above are sufficient to
determine the F;" up to O(k). We have, up to one-loop
level,
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UL

Mp

2

2
UL

(S iS i)"= (PRS R )"

(4.10)

Equations (4.15) and (4.16) completely determine
(F23 )L R of Eq. (4.13) in terms of various masses:

VL
(FP)23

K"=5+ gx
m=1

As a consequence,
2

(4.11)

The matrix K" which connects the mass eigenstates ~i )"
to the

~ P; ) basis is given by

2

h 3
V,b

0m, m,1—
0m, mb

(4.17)

with h 3=Mxmb/ULUR Mpmt I ULUR. Analogously, the
corresponding transition in the d sector is given by

UL
(FL );, =(FR );,

VR

= —(Kpi pi K ),
"

'2

h3 6;3+ g X;3"
m=1

(-Fi )23=d (FR )Z3

2
L

3
UR

V,b

m mb
0

1—
0ms m,

(4.18)

r

X 5,3+ g X,"3"

n=1
(4.12)

(Fu )seesaw
L 23

2

(Fu )seesaw
R 23

It is clear from Eqs. (4.9a) and (4.12) that up to O(P)
(FL R ),2, (FL R ),3 are zero and no liavor-changing transi-
tions are induced between the first and the remaining
generations. Only the nontrivial transition at this order
is between the second and third generations and is given
by

By carrying out this analysis further, one sees that
transitions between 13 and 12 generations are of O(A, )
and O(A, ), respectively. In the seesaw limit, one has
m, /mb =Mz /Mp. As a consequence M~ ))Mp. It
then follows that the FC transitions are more suppressed
in the charged —

—,
' sector compared to the charged —', sec-

tor. In fact, if Mp is not very difT'erent from uL then
(FL)33 may be quite substantial but Eq. (4.17) could be
misleading in this regard, since one has already used the
seesaw limit M&p))ULR. A general analysis of the
model is needed if M„ is not very difTerent from uL. This
we shall do in the following section.

VL

M

2

2 1uh 3X23 . (4.13)

x'"= '
( Ne )—

mt

mc 1

m, &2

where we have used the fact that m, = ( $2~M", ~P2 ) As a
consequence of Eq. (4.15) the strength (F33)L R is essen-
tially determined in terms of quark masses up to a nor-
malization constant %2 involving the Yukawa couplings.
This arbitrariness can also be removed if bot;h the u and d
sectors contain the same Yukawa couplings

~ h3 ) as as-
sumed here. In this case, the element V,b of Kobayashi-
Maskawa (KM) matrix is given by

(4.15)

We have explicitly added the label seesaw on FL23 to dis-
tinguish it from the exact result to be derived in the next
section. The x23 can be expressed in terms of the quark
mass ratio m, /m, which is 0 (A. ). In the present model,

Mi ——6M", =a, ii~hi)(hi~+a] QQ~h3)(h3~ . (4.14)

From Eqs. (4.9b) and (4.5) it follows that

V. FCNC's: Exact analysis

Now, we shall derive the general structure of FCNC's
for the quark mass matrices of the form (4.2) without as-
suming the seesaw limit M~ p ))UL R ~ We present expli-
cit results for the up-quark sector. Corresponding results
for the down-quark sector are obtained by M&~Mp and
by interchanging the down- and up-quark masses. The
structure of the matrix ALq R defined in Eq. (2.3) essential-
ly follows from the analysis of Ref. 8. We summarize
their results and use them to work out (Fg R); of Eq.
(2.10).

The matrices AL R satisfy

A u Vu A "=2"V" 3 "=diagonal . (5.1)

Let us first concentrate on determination of VL. The
eigenfunctions ~X, )L of the zeroth-order matrix VQL are
given by

Here VL =A, „JM„and VR =—JR„A,„are to be expanded in
powers of A, :

~L, R X ~ ~m, L, R

d1 u1 1 s c
Vcb x32 +x23 ~ 0 0

2 mb
(4.16)

0 (5.3)
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Here ~$123& are (3X1) vectors defined by Eq. (4.5).
k =3,4 and NkL =CkL + 1. CkL satisfy

NQ
u 1 1 lu(FL)23 „2 XL23+ u Xl.24

N4L
(5.11a)

UIh3CkL+MpuLh3=EO(k)CkL

MpvLh3CkL+ up h 3+Mp =Eo(k)

(S.4a)

(5.4b)

Nu
Q — 1 2Q 3L 2u(FL)13 u 2 XL13+ u XL14

(&3L)' N
(S.lib)

These equations determine Eo(k) and CkL separately.
Explicitly

m2 Eu(3) 1(M2+v2h2)[1 (1 ')1/2]

Eii(4) =
—,'(Mp+v h3)[1+(1—5)'/ ],

with

(5.5a)

(5.5b)

4ULVRA3 UL
2 2 4

(4
(M2+v2h2)2 v&

'2

and

V2=U2+ 2
R

The matrix 30L which diagonalizes V0L is then given by

CQ CQ

3L . 4L
(AOL)

10 0
N4L

(5.6)

The coefficients XL b are O(A, ) and can be determined
perturbatively. Below, we give the expressions of the
ones which are required for our purpose:

~lu 0L lk (5.8a)

Just as in the previous section, we expand the general
eigenfunctions ~a &L of VL in terms of the eigenfunctions
~x, &L of VOL [compare Eq. (4.8)]:

ia&,"=ix.&,"+ y x„",ix, &," (5.7)

a&b

(FL)12 ( 3L) ( L)23(FL)13 (5.11c)

5M", is given in Eq. (4.1). The XLk of Eq. (5.8) are then
related to the corresponding parameter x 23 in the seesaw
limit [Eq. (4.9b)] as

~lu luUR A3 mt
L2k ~u Eu(k) 23 (5.12)

mt appearing here is the top-quark mass in the seesaw
limit and is different from the exact m, of Eq. (5.5a). In
the following, we make two approximations. First, we
neglect higher powers of b, ~4(uL/uz) in Eq. (5.5). In
this case one obtains

02

P?Z
gu

(5.13)

The constants NkL appearing in the equations above are
determined from Eqs. (5.4) while XL's are given in Eqs.
(5.8). From Eqs. (5.11) it follows that (FL); (i~j) are
zero at the tree level. This is a consequence of the struc-
ture of AOI given by Eq. (5.6). Analogously (F'");J and
(FI ~);~ also vanish at the tree level. Thus, the present
model does not contain any FCNC's at the tree level even
if the seesaw limit does not hold. Moreover, (FL)23,
(FL),3, and (FI"),2 are, respectively, of O(A, ), O(A, ), and
O(A, ).

We shall now calculate (FL)," in terms of the basic pa-
rameters of the model. At the one-loop level, we have

5M", 0

0 0

~lu ~lu
Lk2 L2k

~2Q 1

Eo(k)

(5.8b)

Pal

&x, ~u",u,"'~x„&

Eo(k)

&x„/~,"~",'fx, & &x, f~,"'/x, &

(Fu)ext Cu(Fu)seesaw
L 23 L L 23 (5.14a)

where 5"==(I+u h3/Mp). Second, we neglect terms of
O(m, /Mp). With these approximations, the expression
of CkL following from Eqs. (5.4) lead to the following
(FL)23 when use is made of Eqs. (5.11a) and (S.12):

—(x„~w,"u2"'~x, &, (s.gc)

k =3,4 in these expressions. The masses m, and m„are
O(A, ) and O(A, ), respectively, and coincide with their
expressions in the seesaw limit:

m, =(x, ~w", ~x, &, m„= &x, ~u,"~x, & . (5.9)

Using Eqs. (5.6) and (5.7) the matrix AL of Eq. (5.1)
can be written as

(AL),b= 5„+ g XL", (AOL),b. (5.10)
rn =1

The expressions for the strength (FL); [Eq. (2.10)] of
FCNC's follow from Eq. (5.10). Remembering that
XL13 XL14 0 we get, to leading order in A, ,

with

Qu
CL =- 1+ (5" —I+5" )

($u I+gu2)3/2 gufiu2

(5.14b)

In Eq. (5.14a), we have added a label "exact" to FL23 of
Eq. (5.11a) to distinguish it from the corresponding ex-
pression in the seesaw limit given by Eq. (4.13).

L,R = +UL, R~3 ~P ~ ~L+~R 1. In the seesaw
limit 5L z ~ 1 and Eq. (5.14a) reduces to Eq. (4.13).

The evaluation of (FL),3 requires the analysis of the
two-loop corrections having the general form given in
Eqs. (4.3). In the model of Ref. 8 b, „a22„a2pa, and

a2 0p with p =2, 3,4 are zero. In addition, if one neglects
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the contributions of various b2 s and of a2» to A, 2 then
simple expressions analogous to (5.14) follows for other
transitions also. After some algebra one finds

0
X2u VR h3 mt 2u

Llk +u Eu(k)
(5.15a)

VL
(Fu )exact Cu

L 13 L
P

2

h 2~2u&13 ~ (5.15b)

where

V,"= g 5., + QXL," 5;, + QXL;,"
c=l

Explicitly one has to leading order

ld lu
Vcb XL32 +XL23

2d 2u
ub XL 31 +XL 13

(5.16a)

(5.16b)

(5.16c)

Vus L21 + L12 (5.16d)
Within the approximations we are working in, we have,
from Eqs. (5.12), (5.15), and their analogues in the down-
quark sector,

mu e3~2u 1+ (5.15c)
m, Nl %2e2

The parameters Xl,e3, e2 are related to the basic Yukawa
couplings h3) and H;1 of the model and are defined in
Eq. (4.5).

In an earlier section, we noticed that the unknown con-
stant N2 appearing in x23 [Eq. (4.15)] can be determined
in terms of the element V,b of the KM matrix. This can
be done in the present case also if we work in the limit
QLd~l. 5L =1+uLh3/MP = I+(vL/Uz)(m, /M~) where
m, is the mass of the top quark in the seesaw limit. It
then follows the even if MP is not very di6'erent from UL,

5L is close to 1. 5L is in fact smaller than 5L. Thus, it is
reasonable to assume 5L'"=1. In this case, AOL AQL =1
and the elements V; of the KM matrix are given by

4 r

The corresponding couplings in the right-handed sector
can be obtained by diagonalizing VR

—=JM„AL„. It is easy
to see that they can be obtained from the above (FL ); by
interchanging vL~Uz. As a result, (F~ );, and (FI ),J are
related as follows:

(FZ )13

C

CL

CL

2

FL23

2

FL 13
U

(5.19a)

(5.19b)

(FA ) 12=
2

R

CL VL

Qu2+ Qu

(FL)12 .
Qu2+ Qu

(5.19c)

N b N b
0

h2
3

ULVR
(5.21)

The MN in fact gets fixed in terms of Mp as follows:
2 1/2

M~ = —,
'

(M1v );„+ (M1i );„+4 Mp
mb

C2t is obtained from Eq. (5.13b) by interchanging UL U~.
In the 5L~1 limit Cz/CL~(5+)' . Finally we note
that the (FI ); in the down sector is obtained by replacing
Mp by MN and interchanging m u «and md» in Eqs.
(5.18) and (5.19).

It is remarkable that the strength of the FCNC's is
completely' fixed in terms of the masses and KM matrix
elements and it displays the hierarchy present in elements
V, . The only Yukawa coupling h3 appearing in Eqs.
(5.18) and (5.19) is also related to the masses. Using Eq.
(5.13) and its analogue and the d- sector one sees that

2 2
MN m,

(5.20)
Uh3 mb

As a result 6" is always close to 1. Therefore one has

lu, d X lu, d
2 23 23

(gu, d +gu, d
1 )1/2

R L

(5.17a)

with

(5.22a)

(5.17b)X2u, d 2u, d 2u, d
L13 (~2 +~u d 1)ty2 13 13

Ru, d L
Equations (5.16) and (5.17) can be used to eliminate the
unknown Yukawa couplings appearing in (FL)23 and
(FL )13 in favor of quark masses and KM matrix elements.
As a result we obtain

VR
(M1v );„—= mb

UL

2
m, —1

VI. DISCUSSION

(5.22b)

UL
FI.23

—CL
P

VL
FL 13 CL

P

2
V,bh',

' 1/2
m, m,

mb m,

Vubh',
1/2

mdm,

mu mb

Mp
FL12 2 2 (~R +~L )FL13 L23

ULh 3

(5.18a)

(5.18b)

(5.18c)

A. Phenomenological implications

In this section we briefly discuss some of the conse-
quences of FCNC's present in the seesaw model under
construction. As already noted, the strength of Aavor-
changing transitions exhibit remarkable hierarchy. The
strengths F23, F13, and E12 in both the left- and right-
handed sectors are directly proportional to the KM ma-
trix elements V,b, Vub, and V,b Vub. Furthermore, MN ls
constrained to be much greater than Mp due to the
hierarchy m, »mb Since the form. er (latter) sets the
scale of FCNC's in the down (up) sector, the fiavor-
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changing transitions among d-type quarks are suppressed
in comparison to the corresponding transitions among up
quarks. As a consequence, the violation of the CRIM
mechanism is expected to be minimal in the d-s sector
where it is already known to be very small due to the
stringent limits coming from the KL ~p p decay and
K -K mixing. In contrast, there could be a sizable
departure from the GIM mechanism in transitions in-
volving t and c quarks. This could result in an apprecia-
ble mixing among te and tc states. Furthermore, if the
top quark is light enough then the Z could decay into tc
through FCNC's with comparatively large branching ra-
tios. The mixing among u and c, although suppressed
compared to u-t and t-c mixing, could still be appreciable
and leads to a D -D mass difference which is close to
the current experimental limit. Let us now turn to a
quantitative analysis of these effects.

'10 =

B. Z~tc decay

There is no direct coupling between Z and tc in the
standard model. This could be induced at the one-loop
level. This induced coupling is very small because of the
GIM mechanism. The branching ratio of Z~tc decay in
the SU(2)1 XU( 1 ) model with three generations de-
pends'" on (mb/Mii. ) and is around 10 ' . In contrast,
the FCNC's in the present case could lead to a much
bigger branching ratio for Z ~tc.

The model under consideration has two Z bosons. We
shall concentrate on the decay of the lighter Z (namely,
Z, ) into tc The cou.pling of Z, to tc can be read off from
Eqs. (2.8) and (2.9). The (F23)I z appearing in (2.9) are
worked out in Eqs. (5.18a) and (5.19a). The actual
strength of tcZ, coupling depends upon the vacuum ex-
pectation values (VEV) of Higgs fields through angle P.
In the present case with Higgs fields Pl [yz] transform-
ing as doublets under SU(2)L [SU(2)i, ] one obtains

2 3
vJ gL tanO

(6.1)
gc

sinP=—
cosO

X(1+tan 8 5~), (6.2)

where we have used Eq. (5.19a) and the limit 5L —+l.
FL23 is given in Eq. (5.18a). x =m, lMz and we have
neglected the charm-quark mass.

The branching ratio for Z ~ tc+ tc is shown in Fig. 1

as a function of Mp/uL for various values of m„m„and
vL /uz. For m, in the range 30—60 CieV the branching
ratio is very sensitive to the assumed quark masses. The
biggest uncertainty is in the strange-quark mass and we
have displayed results for different values of rn, assuming
m& =5.3 GeV, m, =1.4 GeV, I (Z~all)=2. 8 GeV, and
sin 8„=0.226. Note that the EL23 depends on the mass

also through h3=rnbM+/uL, w. But given m, and
Mp M~ gets fixed by Eq. (5.22).

where vL/vz is assumed to be «1. Using this, one
could derive the decay width I (z ~tc )

aM,
I = (1 —x )(2+x )(Fi"~3)

4sin 20

FICx. 1. Branching ratio for the decay Z~tc+ tc shown as a
function of Mp/vL for various values of m, and m, . The labels
on various curves correspond to different values (in GeV) of
(m„m, }. 1, (0.13,30); 2, (0.12,45); 3,(0.13,45); 4, (0.15,45), 5,
(0.12,60). The dashed (solid) lines are for vz /vL =20 (15).

It is to be noted that for certain values of parameters
the denominator in FI"23 of Eq. (5.17a) becomes very
small and as a result the branching ratio becomes ex-
tremely large. However, in this region the perturbative
analysis leading to (Fl" )23 cannot be trusted since [as fol-
lows from Eqs. (4.15) and (4.16)] x23 also becomes large
for a fixed V,b. Therefore we have displayed in Fig. 1 the
branching ratios only for x&3 &1. But even in this case,
the branching ratio could be several orders of magnitude
larger than predicted in the standard model' or its su-
persymmetric extensions. ' In particular, for low m, and
vz /uL, the branching ratio reaches the observable'" value
10 —10 . A more careful analysis which retains non-
leading 0(A, ) term in V,b and xzz is needed to predict
branching ratios in the region for which x&3 = 1.

C. P -P mixing

Another distinctive feature of the model could be a siz-
able mixing among P ==u;u and I' —=u;u states. In the
SU(2)1 X SU(2)~ XU( 1 )s L model under construction,
this mixing arises at the tree level from the exchange of
neutral bosons Z& 2 between u; and u . The expression
for the effective Hamiltonian describing I' -I' mixing
follows from the Lagrangian given in Eq. (2.9). In the
limit vL «u~ one arrives at
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comparable contribution from the FCNC's if m, is -25
GeV. Moreover, even in the most favorable case of
m, -25 GeV, Mp ~UI —1 and UL, ~DR

FL&2-3X10 . This results in a KL p+p branching
ratio well below the current experimental limit &10
Moreover, the contribution of FCNC's to AL-Kz mass
difference following from the formula analogous to Eq.
(6.4) is also much smaller than the standard-model contri-
bution (see Table I). Thus, the violation of the GIM
mechanism is indeed very small in the charged —

—,
' sec-

tor.

VII. CONCLUSIONS

We have made a general analysis of the expected
FCNC's in a large class of SU(2)t XSU(2)„XU(1)~
models in which quarks obtain their masses through a
seesaw mechanism. A detailed quantitative analysis of
the strength of FCNC's is made in a specific model. It
turns out that flavor-changing effects in the charge —

3

sector are not significant. In contrast, the model studied
could accommodate fairly large FCNC's in the up-quark
sector. A particular transition studied is the flavog-
changing decay of Z to tc. This has a distinctive signa-.
ture in the form of a fat jet originating from t balanced by
a thin jet coming from e or in the form of two jets plus a
hard lepton arising from the semileptonic decay of t (Ref.
14). For a light top quark one obtains the observable'
branching ratio in the range 10 —10 . This is unlike

the three-generation standard model' or its supersym-
metric generalizations. ' Likewise, one predicts a D -D
mixing which is much larger than in the standard model
if the top quark is light. This is similar to the
SU(2)L XU(1) model with four generations in which case
one also finds fairly large branching ratios'" for Z~tc
decay and a large D -D mixing. '

We have not worked out detailed predictions for other
rare processes induced by FCNC's, e.g., rare decays of B
or D mesons. Although their rates have been argued to
be less than the current experimental limit, it could still
be more than the standard model. Also we have not
worked out the strength of FCNC's in the leptonic sec-
tor. At the SU(2)L XSU(2)~ XU(1)~ L level, this will
involve a new mass scale analogous to M& or Mz but in
some grand unified framework the leptonic FCNC's
could be related to the FCNC's in the quark sector.

In this analysis we have assumed real mass matrices
and CP conservation. The FCNC's connecting d and s
although not sufficient to account for the real part of K-
K mixing may provide a source of CP violation in such
mixing. In this case, one would expect large CP-violating
effects in mixings involving higher generations. This as-
pect is under study.
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