
PHYSICAL REVIEW D VOLUME 39, NUMBER 3 1 FEBRUARY 1989

Higgs bosons in a nonminimal supersymmetric model

J. Ellis*
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

and Lawrence Berkeley Laboratory, Berkeley, California 94720

J. F. Gunion
Department of Physics, University of California, Davis, California 95616

H. E. Haber
Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, California 95064

L. Roszkowski
Department of Physics, University of California, Davis, California 95616

F. Zwirner~
Department of Physics, University of California, Berkeley, California 94720

and Lawrence Berkeley Laboratory, Berkeley, California 94720
(Received 12 September 1988)

The minimal supersymmetric standard model contains two Higgs doublets which must mix via a
mass parameter whose magnitude remains to be explained. We explore an extension of the minimal
model to include a singlet Higgs field whose vacuum expectation value determines the mixing. We
study the spectrum and couplings of Higgs bosons in this extended model and compare them with
those in the minimal model. We examine a number of limiting cases analytically and also make nu-

merical studies of the extended model both with and without constraints from the renormalization-
group analysis of a parent superstring-inspired grand-unified-theory model. We establish the condi-
tions for there to be a charged Higgs boson lighter than the S'—and the circumstances under which
there is no light neutral Higgs boson. With a particularly simple set of boundary conditions at the
unification scale, the renormalization-group equations imply that one or more Higgs bosons are
light enough to be found at the CERN LEP or SLAC Linear Collider and that many supersym-
metric particles should be accessible to these accelerators and the Fermilab Tevatron; relatively few
would require the Superconducting Super Collider, Large Hadron Collider, or a TeV-scale e+e
collider for discovery. Finally, we analyze the possible production mechanisms and phenomenologi-
cal signatures of the dift'erent Higgs bosons at these machines.

I. INTRODUCTION

It is commonly agreed that the Higgs sector of the
standard model is unsatisfactory because the squared
mass parameter p of the minimal Higgs potential
V(H)= —p ~H~ +k(~M~ ) is not naturally of order m~.
Radiative corrections to p in the standard model are
quadratically divergent, being O(a/sr)A where A is a
cutoff in the loops. Therefore, even if one could find an
explanation why p was small at the tree level, one would
be left with the question why radiative corrections were
not much larger than the physical value of p . These are
the two aspects of the hierarchy problem of understand-
ing why mtt=&2p is much less than the Planck mass
fpl p] and other candidates for a fundamental mass scale
such as a grand-unified-theory (GUT) scale mz.

Control of the radiative corrections so that a small
value of p (and hence mtt and m~) becomes natural was
the primary motivation of the supersymmetric standard
model. ' A light Higgs sector (mt' «mp&) is natural in a

softly broken supersymmetric model since the quadrati-
cally divergent loop contributions cancel, leaving a finite
correction of the form 5mlt =O(a/tr)(ms —m~), where
m~ F are the masses of the bosonic and fermionic partner
particles circulating in the loops. In order to give masses
to all the quar ks and leptons, and to cancel gauge
anomalies, at least two Higgs doublets H„H2 are re-
quired in a supersymmetric version of the standard mod-
el. The physical spin-0 particles in the minimal super-
symmetric standard model are then a complex charged
Higgs boson C —,two neutral Higgs scalars S&,Sz, and
one neutral Higgs pseudoscalar P (see Ref. 3). The prop-
erties of the Higgs bosons, including masses, mixing an-
gles, and couplings, are determined by an effective scalar
potential V which contains supersymmetric terms

2

Vo= g ~F, ~
+ g [D, ]2,

1 a

where the F; are derivatives of the superpotential 8'with
respect to scalar fields P'. F, =BW/BP', and the D, are D
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in obvious affinity with the squared mass term in the stan-
dard model. The effective scalar potential also contains
soft supersymmetry-breaking terms of the general forms

i,j,k
(1.3)

where the parameters A; k are expected to be of order m;
and phenomenology requires ~m;~ =O(m~). If W con-
tains a bilinear term pH& Hz, one would also expect a bi-
linear supersymmetry-breaking term

~1 +BPH1H2+ H. C. (1.4)

where B is also expected to be of order m, . This latter
term is essential if the pseudoscalar P is to avoid being an
unacceptable electroweak axion in the supersymmetric
standard model with U„vz&0. With a term of the form
given in Eq. (1.4),

m'= . , tanP=—,U, —:(O~H, '~O),
—28@ U2

sin2 U)

and everything looks good.
Softly broken supersymmetry ensures that radiative

corrections to p are now under control so that
p=O(m~) &&mp& is technically natural, thus solving the
easy part of the hierarchy problem. However, such a
model does not provide any dynamical reason why p
should be so small in the first place. The simplest mecha-
nism that provides a dynamical source for a term of the
form Eq. (1.4) is the inclusion of an additional singlet
Higgs field X. Then, if the superpotential contains a tri-
linear term

8'H A,NH &H (1.6)

and if N develops a vacuum expectation value (N )—:x, a
bilinear H&Hz mixing term with

(1.7)

is generated. In the presence of soft supersymmetry
breaking, one would expect x =O(~m;~)=O(m~), and
hence p=O(m~) &&mp, . Just such a mechanism
operates in many superstring models based on E6 (Ref. 6)
and SU(5) XU(1) GUT groups in which the renormaliz-
able superpotential is purely trilinear, and automatically
contains a coupling of the form (1.6) to some singlet field
1V.

We should mention at this point, for completeness,
that alternative rnechanisrns for generating the term in
Eq. (1.4) have been proposed. ' If the vanishing of the
tree-level values of p and B is due to an exact global sym-
metry of the theory, then nonzero values cannot be gen-
erated by higher-order corrections. But such a symmetry

terms corresponding to the different factors of the gauge
group SU(3)c X SU(2)L XU(1)r, with couplings g„g, and
g', respectively. Most expected-terms in 8'are trilinear,
but there could, in general, be a bilinear term
8'HpH&H2 which would give

(1.2)

could be broken. If the breaking is spontaneous, it
should occur at a scale of order 10 —10' GeV, in order
for the couplings of the associated Goldstone boson to be
suf5ciently weak to be phenomenologically acceptable.
Then, once supersymmetry is broken, radiative correc-
tions could generate a Bp of order (a/vr)(ms —mg) (Ref.
8). If the breaking is explicit, a radiative generation of
Bp could still occur. Another mechanism, operating at
the tree level, would proceed via nonrenormalizable
terms in the superpotential of the form
(1/mp&)" 'P"H, Hz, where P is a gauge singlet acquiring
a vacuum expectation value at some intermediate-mass
scale (P ) =M & mp&. Yet another recent proposal'
starts from a supergravity model whose superpotential is
purely trilinear in the observable sector, but contains an
explicit mass scale M-10' —10" GeV in the hidden sec-
tor which breaks local supersymmetry. If the Kahler po-
tential mixes the hidden and observable sectors in a pecu-
liar way, then a p —(M /m p& )-m~ is generated in the
corresponding low-energy theory with softly broken glo-
bal supersymmetry. Still, the origin of H~-H2 mixing
presented in the previous paragraph seems to us the most
appealing, and emerges in several of the phenomenologi-
cally acceptable superstring-based models.

This paper is devoted to the phenomenology of the
minimal extension of the supersymmetric standard model
characterized by Eqs. (1.6) and (1.7), focusing in particu-
lar on the Higgs bosons and on their couplings. The
physical spectrum of the extended model contains two
additional neutral Higgs bosons: one a scalar and the
other a pseudoscalar. In Sec. II we discuss the general
form of the effective Higgs potential and obtain the mass
matrices for the charged and neutral spin-0 bosons. In
Sec. III we consider various limits of the extended model,
including that in which the minimal supersymrnetric
standard model is recovered. In Sec. IV we explore the
space of model parameters consistent with the fundamen-
tal requirement of a correct gauge symmetry breaking.
We emphasize that charged Higgs bosons lighter than the
W — may occur in the model (in contrast with the
minimal supersymmetric standard model), while the mass
of the lightest neutral Higgs boson can range from a few
GeV to —100 GeV. In Sec. V we perform a
renorrnalization-group analysis of the parameters in the
effective low-energy potential, assuming a simple plausi-
ble pattern of supersymmetry breaking within a possible
embedding in a superstring-inspired GUT, e.g. ,
SU(5) X U(1). We discuss the resulting restrictions on the
possible range of masses and parameters as allowed by
the basic constraints considered in Sec. IV. In Sec. VI we
analyze the couplings in the extended model, discovering
that it is possible for the lightest neutral Higgs boson to
have small couplings to vector bosons. In Sec. VII we
discuss the phenomenological signatures of the extended
model, contrasting it with the minimal supersymrnetric
standard model. Finally, in Sec. VIII we present some
concluding remarks.

II. HIGGS POTENTiAL AND MASS MATRICES

The nonminimal supersymmetric model to be studied
in the following is characterized by the superpotential
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8'=hUgu'Hz+hDQd'Hi+hzLe'Ht +AH tH2N

——'kE +.3
3

(2.1)

where gauge and generation indices are understood and
the sign of the kX term has been chosen for later con-
venience. The ellipsis stands for possible nonrenormaliz-
able terms that can be safely neglected when considering
low-energy processes if there are no intermediate mass
scales between m~ and rn p&„, as we assume here. In com-
parison with the minimal supersymmetric standard mod-
el, the Higgs mixing term 8'&pH, H2 has been replaced
by the trilinear coupling O'HA, H, H2N, where X is a
gauge singlet. We remind the reader that the form of the
superpotential is scale independent: if bilinear terms are
absent at the tree level, they cannot be generated by re-
normalization. In this paper we focus on the minimal
model of the form (2.1), namely, a model with only one
"family" of Higgs bosons Hi, H2, and X in the effective
low-energy theory. We do not discuss more complicated
specific superstring unification schemes based on E6 in
which the singlet and doublet Higgs bosons may be repli-
cated. Although such a replication is possible, we note
the existence of superstring-inspired models [such as the
fiipped SU(5) XU(1) model of Ref. 7] in which there is a
natural mechanism which leaves at low energy precisely
two Higgs doublets and one Higgs singlet.

Supersymmetric models with the structure (2.1) have
already been considered in the literature, and several po-
tential problems have been pointed out. '"

(1) If k =0, the Lagrangian has a global U(1) symmetry
corresponding to

X~Xe', HiH2~HiH2e (2.2)

which is spontaneously broken by the vacuum expecta-
tion values (VEV's) of the Higgs fields. In order to avoid
an unacceptable axion associated to this symmetry, one
has to introduce into the superpotential some additional
coupling [such as the (k/3)N coupling of Eq. (2.1)]
which explicitly breaks that symmetry.

(2) If the following two conditions are satisfied: (i)
there are renormalizable couplings between the singlet X
and superheavy chiral multiplets and (ii) supersymmetry-
breaking mass splittings inside the superheavy chiral
multiplets are of order Qmit, M, where M is some su-
perheavy scale, then the hierarchy m~ &&M tends to be
destabilized by radiative corrections. " However, there is
no reason to expect that both of these two conditions are
satisfied. For example, in a recently proposed
superstring-inspired SU(5) XU(1) model

'

condition (i) is
violated. Even in models where (i) is satisfied, it might
well be that inside superh cavy multiplets the
supersymmetry-breaking mass splittings are 0 (mii ):
only in the presence of a specific mechanism for super-
symmetry breaking can one make a definite statement.

(3) The Lagrangian associated to the superpotential of
Eq. (2.1), even after the addition of the most general soft
supersymmetry-breaking terms, has a discrete Z3 symme-
try, corresponding to a phase transformation of X of the
form X~o,'X, a =1, accompanied by suitable transfor-
mations of the remaining fields. This symmetry, if spon-

taneously broken in the vacuum, could create a serious
cosmological domain-wall problem. However, it has been
shown in Ref. 12 that a nonrenormalizable term
-N /m p, in Eq. (2.1) would prevent the density of
domain walls from becoming large enough to cause
cosmological problems, while being much too small to
impact the low-energy phenomenology of the model that
we focus on here.

Assuming that squark and slepton fields have vanishing
vacuum expectation values, we can restrict our attention
to the part of the scalar potential involving only the
Higgs fields H, —:(H, ,H ), Hz —=(H+, Hz), and N:

~HiggS ~F+ +D+ ~Soft (2.3)

I'g =
I
~I'[( IHi I'+ IH2 I') INI'+ IHiH, I']+ Ikl'INI'

—(Xk 'H, H2N* +H. c. )

—I&l'(H;H;H+*H-*+II . ), (2.4)

2 &2

VD= (H~aH2+H cJH ) + (IH2I —IH, I )

V,.rt =m~2, IHi I'+ma, IH2I'+m~lNI'

—(A. A iH, H, N+H. c. ) ( 3k'„N'—+H—.c. ) .

(2.5)

(2.6)

The absence of an explicit soft supersymmetry-breaking
term of the form given in Eq. (1.4) is a natural assump-
tion. If such a term is absent at the grand unification
scale then the renormalization-group equations' imply
that such a term is not generated in evolving down to the
low-energy scale. To fix unambiguously the notation,
H, H2—:HOHO2 HH, o =—(o', o, o ) are the Pauli
matrices, and asterisks denote complex conjugation. In
general A., k, 3&, and AI, can be complex numbers.
Redefining conveniently the global phase of the fields H2
and N one can always assume, without loss of generality,

A, A, cR+, ki, eR+ . (2.7)

In the real world, we know that CP-violating observables
are small, so the assumption (2.8) may not require large
corrections. A simple solution to (2.7) and (2.8), which
will be assumed in the following, is to take
A, , k, A &, Ak E:R. Making an SU(2)L X U(l) r gauge trans-
formation, it is not restrictive to assume

v+—= (H+) =0, v, —= (H', ) eR
One can then write

( ~Higgs ~ ~ ~neutral ~ + ( ~charged ~

where

(2.9)

(2.10)

Moreover, the requirement of no explicit CP violation in
the scalar sector gives

(2.8)
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(I'„,„„„)=&'(lxl'lv, I'+Ixl'v,'+lu, I'u,')+k'Ixl" —Aku2(uix +vix ")

+ (lv, I

—u2) +mH Iu, l +mH vz+m@xl —
A, A&uz(u, x+v*ix*)— (x +x* ) (2.1 1)

2

(v,„.„„)=lv-l' mH +x'xl'+ g (Iu, l'+U22)

2
U2X U2X

mH =A. Ai . —
A, (x +uz)+Ak

U( V)

2+ &2

(„z 2)V2 U)

&2+g (Iu I

—v ) vox
m~ =A, Ag

2 U2

U)X—
A, (x +u, )+A,k

+
8

(2.12) 2+ &2

(
z 2)Ui U2 (2.16)

(2.13)

which is equivalent to the requirement that the physical
charged Higgs bosons of the model have positive mass
squared. It will be straightforward to delineate the pa-
rameter constraints required in order that this be true.
However, we will see later that condition (2.13) does not
always guarantee that v =0 corresponds to a global
minimum. Next, we note that the presence of three
different terms in ( V„,„„,~ ) which depend on the phase
of the VEV's v

&
and x allows in principle for spontaneous

CP violation. A sufhcient condition for the vacuum to
conserve CP is

kk eR+ (2.14)

We now analyze the potential of Eqs. (2.11) and (2.12).
Note that, in contrast with the minimal case, in the
present model one has to check for the absence of
charge-breaking minima with u &0. The condition for
v =0 to be a local minimum is

2 &2

m +A, Ixl + (Iu, l
+U2)+ (Iu, l

—u ))0

Vi U2
m~=AAi +kAkx —

A, (u, +v~) —2k2x2

C+:cosf3H+ —+ sinPH (2.17)

while the orthogonal combination corresponds to an un-

physical Goldstone boson. The squared mass of the
charged boson (2.17) is given by

m&=mi'i —&'(u', +U2)+A, (A~+kx) . , (2.18)
s1li 2

which may be less or greater than m~, depending upon
the relative sizes of the last two terms. [Note that the last
term must be positive definite as a result of Eqs. (2.7) and
(2.14).] Because of their frequent occurrences, it will be
convenient to define

+2Akv1V2

Taking into account the constraint mii, =
—,'g (u, +u2),

one can then express the mass terms for the Higgs fields
in terms of the six parameters A, , k, Ai, Al„x, and tan13.

The physical charged Higgs field is given by

which we assume hereafter. If (2.14) holds, the minimiza-
tion condition on the phases of v, and x gives rise to

i/0
three equivalent vacua. Defining x—:poe ', v, =pie ', for
po, p& ER+ they are given by

do=0

as well as

U:—(Ui+U2)'

(2.19)

(2.20)

(2.21)

4o=
3

(2.15) and also

4ir

We will work in the first of these vacua: as noted above,
the degeneracy between them can be broken without im-
pacting the low-energy physics we study here.

For values of the parameters such that the minimum of
VH;gg, corresponds to v, , U2, x )0, one can use the
minimization conditions to reexpress the soft
supersymmetry-breaking masses mH, mH, mz in terms

1 2

of the three VEV's and of the remaining parameters
A, , k, A~, Ak..

—,&g'+g'.1 (2.22)

Decomposing the neutral Higgs fields into their real
and imaginary components

0&~+iH iIH', =
2

0 ~2g +™21
H

2
(2.23)

Nz + ININ=
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the corresponding mass matrices decouple. After ex-
Pressing H&r and H2r in terms of the neutral Goldstone
boson 6:co—spH, I —sinpH2I and of the orthogonal
combination of fields A = sinpH &I +cospH2I, the
squared mass matrix for the two physical "pseudoscalar"
neutral Higgs fields reads

—2S
sin2y =

+(T—R) +4S
T —R

cos2p =
&(T R—)'+4S' '

and eigenvalues

(2.27)

2

UiU2
Xu ( A z

—3kx)
mp p

=
—,'[(T+R)+-+(T—R) +4S ],

where

(2.28)

UiV2
Au ( A z

—3kx) A A z +3k Akx+3Aku, u2

(2.24)

and the solution of its eigenvalue problem is a matter of
elementary algebra. We first note that the resulting ei-
genvalues IP and mP are guaranteed to be positive.

1 2

This is because both the determinant and the trace of JMz
are positive given Eqs. (2.7) and (2.14). It is most useful
to write the results in terms of the entries in

A, Ay ViU2 kA yXU
T+R = +3k(xAk+Au, u~)+

X V)U2
(2.29)

S=ku(Az —3kx) .

The angle y may be chosen between 0 and n according to

0,—,S&0, T&R,

S&0 T&R'77

4'2
R S~'=— S T S&0, T&R,3' (2.30)

Let us define the matrix U to be that which transforms
from the A -Xr basis to the diagonal mass basis P, -P2..
i.e.,

377

4
S&0, T&R .

P)
P2

=U
Xr

(2.25)
In terms of the original H, r-H2r-Xr basis, the two Physi-
cal pseudoscalar states are given as

Writing Pi=
cosy sinp

cosy cosp, p2 =
siny

—siny sinp
—siny cosp

cosp
(2.31)

UP

we find

cosy siny
—siny cosy

(2.26)
Limiting cases of the pseudoscalar states are considered
in Sec. III, and exact numerical results in Sec. IV.

The squared mass matrix for the "scalar" neutral
Higgs fields H, ~, H2~, and X~ takes the form

g V i AyXU2 —A~x+ (2k —g ) u,
2A, V iX —kx —2 X

—A~x+ (2A, —g )
g V2 3 yxUi
—2 2

U2
Vi

2XU2X —kx —3X (2.32)

2A. U i x
U 2

—kx —A X V)
2XU2X —kx —A X

Vi

4k x —kA&x A&U, V2

It is not useful to present analytic results for the diago-
nalization of this matrix. We refer the reader to Sec. III
for certain limiting cases and to Sec. IV for numerical re-
sults.

As a general point of notation, for both the pseudosca-
lar and the scalar Higgs bosons, the components of the
eigenvectors in the H, -Hz-X basis will be denoted by P'

and 4,', respectively, where i = 1,2, 3 indicates H &,H2, N,
o. =1,2 denotes P„P2, and a =1,2, 3 denotes Si,S2 S3,
the mass eigenstates of Eq. (2.32). It should be noted that
we label the S, and P in order of increasing mass. It
will also be convenient to define a two-component
charged Higgs eigenvector



39 HIGGS BOSONS IN A NONMINIMAL SUPERSYMMETRIC MODEL 849

sinp

cosp (2.33)
the system in general and, second, they provide checks on
the numerical analysis which we later perform.

Since we are assuming that the Higgs sector conserves
CP, U is a real orthogonal matrix. Thus, for instance,

ReH ) S]
ReH2 = u2 + —(U ) S2

1

ReN x S3

(2.35)

or in component form

1ReH, =v, + —(S',S, +A&$2+ $3$3 )
2

so that C'+, / =1,2 denotes the two components given
above. Finally, we define the matrix U as

gl1421 431

U = (2.34)

+31 +33 +33

A. Limit of x »ul, vz (A, , k fixed)

We may diagonalize the scalar mass matrix [Eq. (2.32)]
perturbatively in the parameters v, /x and uz/x. In the
formulas we present below, we shall assume that 3& is of
O(x). In particular, our formulas break down if Ai in-
creases faster than x as x gets large. Among the three
scalar mass eigenstates, S, , S2, and S3, we find that S&
and S2 are dominantly H, and Hz (with ms & ms ) and

S3 is dominantly N, in the large-x limit. In this limit, the
tree-level (squared) masses are

ms mzcos 2P
1

+~ v sin 2p [~—
—,(k+ &z/x)sin2p]

(3.1)

1
ReH2 =uz+ —($1S1+$2$$+'$3$3),

2

ReN =x + —($,$, +$2$~+ eV3S3 ) .
1

2

(2.36)

This eigenvector notation will be useful in specifying the
couplings of the Higgs bosons to other particles and
among themselves.

2
OlS

2

2AxA~
+(mz —A. v )sin 2P

sin2

k v (k+ Ax/x) cos 2P

2XA ~4k-
x sin2P

2 2

ms =4k x —kA„x+ [A, ——,'(k+2 x/x)sin2P]

(3.2)

III. SPECIAL LIMITING CASES

The specific predictions of the model described in the
previous section depend on the physical mass eigenstates
of the Higgs-pseudoscalar and -scalar mass matrices.
The pseudoscalar mass matrix is 2 X 2 and can be easily
diagonalized; the corresponding masses and eigenstates
have been given in Eqs. (2.28) and (2.31). The scalar mass
matrix is 3 X 3, so no simple analytic expressions for the
masses and the eigenstates can be obtained. Neverthe-
less, there are various limiting cases in which the Higgs-
scalar masses and mixing angles can be evaluated pertur-
batively. In this section, we examine three limiting cases:
(i) x »vl, uz, with A, and k fixed, (ii) x ))u„u2, with A,x
and kx fixed (and nonzero), and (iii) x «u, and uz. Case
(ii) is of interest, since in this limit the minimal supersym-
metric model with two Higgs doublets and no Higgs sing-
lets is obtained. This allows us to examine the nature of
the deviations from the minimal supersymmetric model,
due to the singlet Higgs field. It should be emphasized
that not all of these limits may be numerically relevant to
models which emerge from renormalization-group analy-
ses. Moreover, unlike the case of E6-based models,
where x is related to the mass of a new Z' gauge boson
and is therefore likely to be larger than v

&
and v2, the pa-

rameter x in our model is not so constrained, and small
values of x as in our case (iii) become possible. The ana-
lytic results obtained in this section are useful for two
reasons. First, they provide a guide to the behavior of

A, v (k+ Az/x) cos 2P+
2A, A~4k-

x sin2P

(3.3)

A.vcosP sinP
2 [2A, —(k + Az/x)sin2P]

4k x

U = —sinP cosP
—gv (k+ Az/x)cos2P
2kx

sin2P
S

U32
S

(3.4)

where

S ~V [2A, —(k + 2 z /x)sin2P]cosP
2k

(k+ Az/x)cos2PsinP

—2k
sin2P

(3.5)

The corresponding mass eigenstates, in this approxima-
tion, are conveniently summarized by the matrix U [see
Eq. (2.34)]:
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[2A.—(k + 2 z/x)sin2P]sinP
2kx 2k

In this minimal model, two parameters —tanP and one
Higgs-boson mass —are sufficient to fix the remaining
Higgs-boson masses and scalar Higgs mixing angle. The
Higgs-boson mass relations in the minimal model are

(k + A z/x)cos2P cosP

—2k
sin2P

(3.6) c=mp+m~,2= 2 2

m,', = ,'(m,'-+m,'+ [(m,'+m,')'
(3.11)

and terms of 0(1/x ) have been dropped. Note that
these forms imply that S3 is mainly ReN —x at large x.

Results for the Higgs-pseudoscalar masses are
—4m m cos 2P]' ) (3.12)

(3.7)
2Ax A~

t72p =3kx Ak, mp
1 sin2P

and the mixing angle y of Eq. (2.27) has the limit

y —+~/2, implying that P] is mainly ImX, while P2 is a
mixture of ImH& and ImHz. Thus, like 53, P& tends to
decouple from nonsinglet matter fields. This decoupling
for these two Higgs bosons implies that they would be
essentially impossible to produce or detect in the large-x
limit.

By examining the above equations, we may make a
number of useful remarks. First, we note that ms is not

1

obviously positive. This imposes a certain constraint on
the parameters of the model, in order that the vacuum be
stable. To give an example, suppose that v, =vz (so that
cos2P=O). Then ms ~ 0 implies

1

m +m =rn +mS1 S2 P Z (3.13)

E6-based models, in which the "low-energy" electroweak
group is larger than SU(2)I XU(1)r, inevitably contain
extra SU(2)I X U(1) r-singlet Higgs scalars. '4 ' Note
that the latter transform nontrivially under E6, unlike the
X field in our model which is a singlet under the full

gauge group. In models with an extra low-energy U(1),
Eq. (3.11) is typically violated in the following fashion:

By convention, we take ms ~ ms . Furthermore, there is
1 2

only one pseudoscalar in the minimal model, which we
denote by P. The above relations imply that the Higgs-
boson masses are restricted such that (i) ms &m~, (ii)

1

ms &mzlcos2131 &mz (iii) ms ~ mz a d (iv) mc ~mw.
1 2

Furthermore, Eq. (3.12) implies the sum rule

Ag
k ~ k+ —X for v, =v2 . (3.8)

2 2+ 2 g2 2+O mz

mz
(3.14)

mc &2Ax (k +2k) for v& =vz (3.9)

(where we have displayed only the leading term in x).
For v, &vz, the expressions become much more compli-
cated but similar conclusions can be drawn.

A second condition can be derived by requiring that
ms ~0. To leading order in x, we obtain Ak ~4kx.

3

Note that in the limit of large x, all other scalar and pseu-
doscalar mass squares are positive. However, even if the
symmetry-breaking vacuum is stable, we must check that
it is a deeper minimum than the symmetric vacuum.
This condition imposes a second independent require-
ment on our parameters. The general condition works
out to be

If Az is of 0(x) then we deduce that Az &2xk. This in
turn imposes an upper bound on the value of the
charged-Higgs-boson mass:

Trials TrJRz+ TfJRp (3.15)

where the traces are taken over the scalar, pseudoscalar,
and the neutral-vector-boson mass matrices of the ex-
tended model.

We now investigate the extent of the sum-rule viola-
tions in the nonminimal model described in Sec. II. Us-

ing the exact forms for the pseudoscalar and charged-
Higgs-boson masses given in Eqs. (2.24) and (2.32), we
can write

I 2 TIJg2 +I 2 g2V2
V)V2

X

where Z' is the new gauge boson resulting from the extra
U(1) and is presumed to be heavier than the Z. On the
other hand, the sum rule given in Eq. (3.13), when ap-
propriately generalized, remains true

X v x +(Av, v~
—kx ) ~ XAv, v~x+ —,'kA„x

—3k (kv, v ~+ Akx ) . (3.16)

+ —,'mzv cos 2P . (3.10)

In the limit of large x, this second condition reduces to
Ak ~ 3kx, which is a slightly stronger requirement than
the one previously obtained.

Next, we examine relations among the Higgs-boson
masses imposed by supersymmetry. First, we recall mass
relations which have been obtained in other supersym-
metric extensions of the standard model. ' In the minimal
supersymmetric model, there is no singlet Higgs field X.

Even if we drop terms of 0 (1/x), we see that Eq. (3.11) is
violated. The extent of the violation bears some resem-
blance to Eq. (3.14), but there are important differences.
First, there is no Z' in our model, which means that the
large-x limit need not be the relevant one. Second, even
if we substitute the trace of the pseudoscalar mass matrix
for m~, corrections to Eq. (3.14) in our model are of
0 (x). Nevertheless, such corrections are still small com-
pared to Tr&, ~ which is of 0(x~) in the large-x limit.
The conclusion in our case is clear: the charged Higgs
boson can be lighter than the 8' unlike the case of the
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minimal model, where it is strictly heavier than the 8'.
Second, in our model (unlike the E6-based models), the

neutral-boson sum rule [Eq. (3.15)] is violated:

2XA~x
3'

mzsin2P
(3.20)

Tracks =mz+Tr& p+4k(kx —A&x —Au, vz) . (3.17)

Not surprisingly, the sum-rule violation is entirely due to
the parameter k. Furthermore, there is no upper limit to
the mass of the lightest scalar Higgs boson. In contrast
with the minimal model, where S& is necessarily lighter
than the Z, we see that in the present case, ms can be ar-

1

bitrarily large, as long as

2k
3k+ Ax/x

sin2 ) (3.18)

If this condition holds, then ms increases without bound
1

as A, increases. Of course, in order for the latter to be
consistent with Eq. (3.18), k must also increase at least as
fast as X. Although this behavior is mathematically pos-
sible, it is clear that any perturbative analysis will break
down if k or k are too large. Furthermore, the condition
of perturbative unification restricts the size of A, and k to
be no larger than —1, as we shall see in Sec. V. Such a
condition would therefore lead to an upper bound for
ms of 0 (mz)

(Here, we employ the notation of Ref. 3, where—ir/2 a ~0.) By choosing Ax and kx appropriately, we
can arrange for any value of a we please (subject to the
restriction just noted). Thus, this particular limit is
indeed precisely equivalent to the minimal model. If a
low-energy Higgs sector were to be observed, it would be
important to check for deviations from the sum rules pre-
dicted by the minimal supersymmetric model. It is in-
teresting to note that although the sum-rule violation [see
Eq. (3.17)] was proportional to k, the deviation from the
sum rul'e exhibited by the subset of particles S„Sz, and
P, is proportional to I, . The reason for this is that for
A, =O the latter set of Higgs fields decouples exactly from
S3 and P2 and the sum rule is then precisely obeyed.

C. Limit ofx &(u&, v2

The limit of small x is perhaps more interesting in that
it seems closer to the typical result which emerges from
the renormalization-group analysis (see Sec. V). We now
exhibit the Higgs-boson masses, keeping terms through
0 (x). The tree-level (squared) masses are

B. Limit of x ))v, , u 2 ( A,x, kx fixed)
ms =

—,
' mz 1 — +2A, A i x sin2a,cos2

cos2e
(3.21)

We have noted above that the sum rules of the minimal
model are violated in any model which contains a gauge-
singlet Higgs field. We can only restore the sum rules of
the minimal model by taking the limit of our theory in
which x~00, X, k —+0, with Xx, kx, A&, and A& held
fixed (in which limit A x is also fixed). As in the previous
large-x case, S& and S2 decouple from S3 and P] and
decouple from one another, with S3 approaching
ReX —x. The two pseudoscalars have masses as given in
Eq. (3.7). However, unlike the previous large-x limit with
A, , k fixed, both these masses remain finite (as does ms )

3

when Ax and kx are held fixed as x —+ ~. Which mass
corresponds to P, and which to P2, depends on the rela-
tive magnitude of the two masses (which is not fixed in
this limit). However, it is always the Higgs pseudoscalar
with mass 3kxAA. which approaches ImX. For the pur-
pose of discussion, let us assume that it is this pseudosca-
lar which is the heauier of the two. By our naming con-
ventions, we must then call this pseudoscalar Pz (Ref.
16). In this case, the angle y defined in Eq. (2.26) has the
limit y —+0. Then, the S3 and P2 would be impossible to
produce or detect at accelerators in the limit being con-
sidered. It is easy to verify that in this limit, S&, S2, and
P, satisfy all the equations [Eq. (3.11) and (3.12)] of the
minimal model; i.e., the sum rules are restored. In addi-
tion, we may compute the S&-S2 mixing angle e in this
limit:

1+ cos2~R
2 cos2e

—2A, 3&x sin2e „ (3.22)

2
fPl g 3

L

A, A&u sin2P 2A, A&x+
2x sin2P

—kA~x, (3.23)

(2A, u —mz)sin2P
sin2e =

[mzcos 2P+(2A, v —mz) sin 2P]'~

mz cos2P
cos2e =

[mzcos 2P+(2A, u —mz) sin 2P]'

(3.24)

(3.25)

Note that unlike in the large-x limit, the sign of e can be
positive or negative (i.e., we may take —ir/2 ~a ~ir/2).
The corresponding eigenstates can be read ofF from the
mixing matrix U given below:

—sine+ C cose cose+ C sine

U = cose+C sine sine —C cosa

—2x sinP
u sin2P

—2x cosP
u sin2P

2x cos(a+P)
u sin2P

2x sin(a+P)
v sin2P

(3.26)

where e is the S&-Sz mixing angle in the limit where
x =0. Explicitly,

—(1+y)sin2Psin2e =-

+1+y —2y cos4P

where

(3.19)
where we have defined C to be

2A, A&x cos2a sin[2(P —a)]
mzsin4p

(3.27)
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It is also useful to give the pseudoscalar masses in the
small-x limit:

m P)

m P~

18k,k +0(x ), (3.28)
sin2P

A, Azu sin2P 2A, A&x
+2lku sin2P+ . +3kAkx

2x sin2

+0(x ) . (3.29)

Note that as x ~0, mP =ms .
2 3

Regardirig the field content of the Higgs-boson mass
eigenstates, it is important to note that in this small-x
limit, S3—+ReN —x and P2~Im¹ Thus, in this limit
S3 and P2 decouple from ordinary matter and will not be
easily produced or detected. This is clearly analogous to
the situation found in the large x, fixed A. , k limit, except
that there it was the lighter pseudoscalar P, that decou-
pled.

If we check the mass sum rules as before, keeping only
the Higgs bosons S„S2,and P„ then the correct result
through 0 (x) is TrAis =mz. Thus, unlike in the case of

the minimal model, we find here that two scalars are
lighter than the Z. [Curiously, if we define the trace to
sum over all scalars and pseudoscalars, including the S3
and P2 states whose masses are growing like 1/x, we find

Tracks =mz+TrJlf p
—4kAkx, (3.30)

which approaches the sum rule of Eq. (3.15) as x~0.]
The charged-Higgs-boson mass satisfies

2A, A &x
m2 =m2 —X2v2+

sin2P
(3.31)

Thus for small x, the charged Higgs boson is strictly
lighter than the W, so long as large values of A& are not
considered. (In any case, our small-x expansion breaks
down if Ai is too large. ) Alternatively, one can use Eq.
(3.31) to set an upper bound on A, at a given value of A 1
and x:

2A&xmw
Av &m +

u S1112
(3.32)

We can get more detailed bounds on the light scalar
masses by examining Eqs. (3.21) and (3.22). We find

s ~-, mz+2 ( $ 2

1 2

&2mz A ix
(3.33)

+2mz ~ 1x, mz, m 11
2 2

— z- ~ms ~ 1+ cos 2P+ 2 —1 sin 2P-
mz

1/2

(3.34)

The upper bound for ms [for which there is no 0(x)
2

correction] results from the upper bound on I, given in
Eq. (3.32). There is also an upper bound on A, coming
from the requirement ms ~ 0:

1

2A&xmz
A, v ~mz+

u sin2
(3.35)

2&2 A1xmz ~
cos2P

~

A, u «2mzcot 2P+
u sin 2P

(3.36)

The two conditions on A, given in Eqs. (3.32) and (3.36)
are in danger of being incompatible. This leads to restric-
tions on the other parameters of the model. Thus, at
sinall x, Eqs. (3.32) and (3.36) are consistent only if

2

cot 2p~ — +0(x ) .
m pr 2

mz
(3.37)

For example, in the tang) 1 sector this is equivalent to
tanp ~ 2.09 up to corrections proportional to x.

However, this is clearly weaker than that of Eq. (3.32).
Finally, we note that the requirement that the asym-
metric vacuum be the global minimum (in particular, that
it be a lower minimum than the symmetric vacuum) leads
to a lower bound for A, . From Eq. (3.10), keeping terms
up to 0 (x), we find

IV. MASS-SPECTRA WITHOUT GUT-SCALE
BOUNDARY CONDITIONS

In this section we shall give a sampling of the Higgs-
boson mass spectra, subject to only the most basic re-
quirements on the theory. The first requirement is that
the vacuum expectation value of the potential, ( V„,„„„),
be negative at the symmetry-breaking extremurn. This
implies that the symmetry-breaking configuration defined
by Eq. (2.16) is at least preferred over the local extremum
where the vacuum expectation values of all Higgs fields
are zero. ' The second requirement is that this
symmetry-breaking extremum be a local minimum of the
Higgs potential, Eq. (2.10). This is guaranteed if all
Higgs bosons have positive squared masses. Finally, one
should require that there be no color- and charge-
breaking minimum that is preferred over the color- and
charge-conserving minima we examine. We shall first
survey the possible local minima without this require-
ment. %'e shall then discuss the constraints coming from
including it in a simplified form, neglecting intergenera-
tional mixing and considering only the potential terms in-
volving the third-generation squark doublet Q and singlet
U ' (with the other squark singlet D ' set to zero). Even
with these simplifications, color-breaking restrictions will
depend on the parameters h, Ah, m&, and m —,associated
with the colored degrees of freedom of the scalar poten-
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tial. Here, h is the top-quark Yukawa coupling, Ah is the
corresponding soft supersymmetry-breaking parameter,
and m& and m —,give the soft supersymmetry-breaking
mass terms for the fields Q and U ', respectively. For fur-
ther details, see Appendix A. Additional restrictions
might or might not be present depending upon the pre-
cise values of these parameters.

Turning now to the noncolored degrees of freedom, the
parameters at our disposal are A, , k, r, tanP, Ai, and Ak.
It is not possible to present a full exploration of the entire
parameter space, and we impose the following restric-
tions on their values.

(1) We will focus on values of A, and k that are favored
by the renormalization-group equations to be discussed in
the following section. There are two classes of such
values. First, it is easily demonstrated that there are fixed
points for A, and k. If the GUT scale values for A, and k
are of order 1 or larger, the low-energy values of these
parameters will tend to be quite near their fixed-point
values:

k=0. 87, k =0.63 . (4.1)

The second class of values is that obtained by imposing
special boundary conditions at the unification scale.
These tend to be characterized by substantially smaller
values of A, and will be considered in more detail in the
next section. The corresponding mass spectra will turn
out to be much more restrictive than those obtained for
the values of Eq. (4.1), and will be discussed in Sec. V.

(2) Next we discuss values of r [defined in Eq. (2.21)].
Since x&0 does not break any gauge symmetry, the pa-
rameter r =x/v is not constrained by neutral-current ex-
periments. We shall consider three choices for our sur-
vey,

I =0.1, 1.0, 10, (4.2)

although the latter choice will turn out to be quite dis-
favored in the renormalization-group analysis.

(3) The value of tanP is largely determined by the top-
quark mass. %'e shall see in the following section that
the renormalization-group analysis of radiative
symmetry-breaking always leads to tanP values that are
larger than 1. This result is not peculiar to the particular
model that we are discussing; it appears to be a general
feature of all phenomenologically viable theories that in-
corporate low-energy supersymmetry and radiative
breaking of the electroweak symmetry. ' For the purpose
of illustrating the mass spectra, we shall take tanP=1. 5
at each r value. To give a feeling of the sensitivity to
tanP, we shall also consider tanP=4 at r =1. We also
note that at r =0. 1 there are no allowed solutions once
tanP~ 3.3.

(4) Turning to the remaining parameters, we first note
that, at fixed A, , k, r, and tan/3, a choice for Ai deter-
mines the mass of the charged Higgs boson mc. The
remaining parameter Ak does not enter into m& but must
be specified in order to fix the masses of the Higgs scalar
and pseudoscalar. Our procedure will be to explore the
allowed range of mc for the A, , k, r, and tanP values

specified earlier, (using mc to fix the value of Ai) and
scan over all allowed values of A~. As mentioned in Sec.
II, the Higgs pseudoscalars are guaranteed to have posi-
tive mass squared, and the allowed range of Ak (recall
Ak )0 in our phase convention) will be determined by
imposing

(v„,„,„., ) &0, I,' &0. (4.3)

Typically, there is a restricted range of m& over which
solutions are possible. Within this range Ak =0 is always
an allowed value and the maximum value of A& is deter-
mined by failure to satisfy one of the constraints of Eq.
(4.3). As Ak increases from 0, if ( V„,„„„))0 is encoun-
tered before m& &0, then there is a lower bound on I&,

1 1

whereas in the converse case the lower bound on mz is 0.
1

Our results are presented in Figs. 1(a)—1(d). A number
of features of these results are worthy of comment. First,
we note that the tanP=1. 5 results plotted are not very
different from those obtained at tanP=1. (The smaller
value of tanP yields slightly lower minimum and max-
imum mc values for r =1 and 10.) The graphs indicate
that at small r =0. 1 there is never a nonzero lower bound
on mz, whereas at r =1 and 10, there are regions of m&

1

where ms cannot be zero. At tanP=1. 5, mc =0 is al-
1

lowed for r =0.1, but for r =1 or 10 there is a significant
lower bound on mc. At r =1 the lower and upper
bounds on m& increase significantly in gbing from
tanP=1. 5 to tanP=4. In the following section we shall
find that extreme values of r are disfavored for the sim-
plest grand unification boundary conditions at IpI.
Thus, the r ~ 1 results might be regarded as most in-
teresting. For such r values, all Higgs-boson masses lie
below 1 TeV for reasonable values of tanP.

Nonetheless, it is interesting to see how closely the
r =0. 1 and r =10 numerical results correspond to the
r~0 and r~ ao cases, respectively, studied in the previ-
ous section. We will only mention a few interesting
points. Consider the r~0 limit. First, we observe in
Fig. 1(a) that m~ and m~ are, indeed, approximately de-

2 3

generate, as anticipated from the r~0 limit discussion.
We also see from Fig. 1(a) that, for moderate tanP,
mc =0 is allowed but that m& cannot exceed —m ~.
This again agrees with our limiting case analysis. Also
Fig. 1(a) reveals that ms is always (mz, that ms is of

1 2

order mz, and that mz is quite large, in agreement with

Eqs. (3.33), (3.34), and (3.23), respectively. However, in
one respect we are rather far from the strict I" ~0 limit.
The fixed-point value of A, that we are considering is
quite a bit larger than the r~0 upper bound of —,'g im-

plied by Eq. (3.32), with x =0. The reason for this is that
the term proportional to A&x is not small, since A& is
large. Thus, our r =0. 1 results are not in a domain
where the strict perturbative approach of Sec. III is ap-
plicable. For example, for the plots of Fig. 1(a) we typi-
cally find A& —500 GeV, implying that the A&x term of
Eq. (3.32) is as large as the "leading" mii, term. Indeed,
if no upper bound on A& is imposed, there is no upper
bound on A, in the I" ~0 limit.
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Turning to the large-r limit, we note that by combining
Eqs. (2.18) and a bound on mc of the type found for
tanp= 1 in Eq. (3.9), we predict that the charged-Higgs-
boson mass should lie within a rather definite range of
values. For instance, at tanP=1 Eq. (3.9) predicts an
upper bound on mz of -3600 GeV, for the fixed-point
values of X and k and for r =10. We see from Fig. 1(c)
that this is rather close to the tan/3= 1.5 numerical result.
Similarly, the rough limit of Ak 3kx obtained from Eq.
(3.10) is found to be approximately correct in our numeri-
cal scan at r =10. Finally, we observe from our figures
that there are indeed two rather massive scalar Higgs-
boson states, and that only S& can be relatively light at
large r, in agreement with Eqs. (3.1)—(3.3).

Let us now return to the question of whether or not
there are minima of the scalar potential that break charge
and/or color and that are lower than the local minima we
have examined above. Consider first the question of
charge breaking in the sector of the scalar potential not
involving colored fields. Any one of the local minima as-

sociated with the curves plotted above has completely
determined values for all the parameters appearing in the
scalar potential of Eq. (2.2). We may then search for
charge-breaking minima that have a lower value of
VH gg

This occurs if the vacuum expectation v a1ues ap-
pearing in Eq. (2.13) can readjust themselves in such a
way that VH;, is more negative while at the same time
the (negative) IH term overtakes the other terms, and

2

the coefficient of Iv I
in Eq. (2.12) becomes negative.

Indeed, we find that this does occur for some of the local
minima solutions plotted earlier. The effect on the mass
spectra is not, however, very marked. The primary result
is the elimination of the lowest charged-Higgs-boson
mass solutions for a given value of r. For instance, for
the fixed point A, and k values, at r =0.1, mc values
below —5 GeV are eliminated, while at r =1, mc values
below —170 GeV yield a preferred charge-breaking
minimum. We expect the solutions with m& near 0 in the
r =0. 1 case to be modified by Coleman-Weinberg' loop
corrections in any case. In addition, we find that the
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FIG. 1. Maximum and minimum masses for the neutral Higgs bosons as a function of the charged-Higgs-boson mass I&. For m~
values outside the range plotted there are no allowed solutions satisfying Eq. (4.3). We have taken A, =0.87, k =0.63, and (a) r =0.1,
tanp= 1.5; (b) r = 1, tanp= 1.5; (c) r = 10, tanp= 1.5; (d) r = 1, tanp=4.
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Color —Breaking Boundary
tanP=1. 5, r=1, A=0.87, k=0.63, m~=220 GeV, A„=303 GeV
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FIG. 2. Color-breaking boundary in AI, —
m& space. For de-

tails see text.

charge-breaking minimum is generally only 10—20%
below the charge-conserving local minimum, so that tun-
neling would be slow. Therefore, in our coupling con-
stant plots to be given later, we will retain all solutions
with charge-conserving local minima.

We now consider including the colored degrees of free-
dom, as discussed in more detail in Appendix A. We will
assume that the colored fields are all parallel in color
space. Any conditions that we obtain in order to avoid
color breaking will therefore by only necessary and not
sufficient. However, we note that the SU(3) D term (see
Appendix A) tends to prefer the parallel configuration.
Of course, a full renormalization-group analysis within
the context of the model and with definite grand
unification boundary conditions is required in order to
determine the various parameters associated with the
colored degrees of freedom of the scalar potential relative
to those we have already considered. Examples of such
scenarios will be considered in the following section.
Here, we confine ourselves to picking a particular local
minimum among those found earlier, and computing 'the

boundary in Ah —
m& space (for fixed h) which separates

the region where color breaking is preferred from the re-
gion where the particular local minimum being con-
sidered is the true global minimum. We have chosen to
examine the local minimum specified by the following pa-
rameters: r =1, tanP=1. 5, A, =0.83, k =0.67, me=220
GeV (corresponding to A& =88.4 GeV), Ak =303 GeV.
In addition, we shall choose h =0.5; this is in the general
range given by the renormalization-group solutions con-
sidered later. We have also chosen to take m —,=m&.
The boundary is given in Fig. 2. Typically, when color
breaking is preferred, the colored field vacuum expecta-
tion values u and u' (of the left- and right-handed stop
fields) are nonzero and roughly equal. The only other

large vacuum expectation value for 'these minima is U2,

which increases as one moves along the upper (color
breaking) side of the boundary in the direction of larger

Not surprisingly, it is these three vacuum expecta-
tion values that occur in association with the hAI, term
in V„«, as given in Appendix A. Various suggestions
have appeared in the literature as to what types of con-
ditions guarantee that color breaking is not preferred.
Our results do not appear to correspond to any of these
previous suggestions. They appear to follow more along
the lines of the considerations given in Ref. 21; as shown
there, additional subtleties associated with negative
mass-squared terms in the soft supersymmetry-breaking
potential, and spontaneous symmetry breaking, invalidate
the naive bounds.

V. RENORMALIZATION-GROUP ANALYSIS

In this section we consider the constraints imposed by
the renormalization-group equations (RGE's) on the pa-
rameters of the scalar potential. First, we point out the
existence of infrared fixed points for the superpotential
parameters A, and k, which can be taken as upper bounds
on their possible experimental values. Then we make a
more detailed analysis of the parameter values which lead
to an acceptable pattern of electroweak symmetry break-
ing and sparticle masses, assuming that supersymmetry
breaking can be parametrized at the grand unification
scale by a universal gaugino mass term, with the other
soft supersymmetry-breaking terms generated by radia-
tive corrections. These preferred parameter values are
then used in the general formulas of Sec. II to make
specific predictions for the Higgs-boson masses within the
ranges allowed by the general analysis of Sec. IV. Very
stringent constraints on the sparticle masses and on the
top-quark mass are also obtained.

The renormalization-group equations for our model
can be trivially obtained from Ref. 13 and will not be re-
ported here. Let us only stress again our earlier remark
about linear and bilinear terms in the soft
supersymmetry-breaking potential: examining the struc-
ture of the renormalization-group equations for such
terms one can check that, if they are absent at one scale,
then they must be zero at every scale, provided there are
no linear or bilinear superpotential terms. In employing
the renormalization-group equations, we make the usual
approximation of neglecting intergenerational mixing and
the Yukawa couplings of the light quarks and leptons,
keeping only A, , k, the top Yukawa coupling h and
their soft potential counterparts. It is consistent to
neglect the bottom-quark Yukawa coupling as long as
tanP ((m, /mi, . The parameters that we evolve are
therefore the gauge couplings gz and the gaugino masses
Mz [A =3,2, 1 corresponds to SU(3)z, SU(2)~, and
U(1) r, respectively], the Yukawa couplings h, X, k and the
corresponding trilinear scalar couplings and soft scalar
masses, AI, , 3&, Ak and m&, m —„m~,mH, m&. It is

l 2

customary to assume the following boundary conditions
at the unification scale M~:
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gl N2 g3 =gU ~

M, =M, =M, =M, ,

k=k
2 2 — 2 2 2m — =m-, =mH =mH =m&=mU,U'

1

Ah Ag Ak = U

(5.1)

In our renormalization-group equations, we distinguish
between two different regimes. We call MsUsY the typical
scale of the dominant soft supersymmetry-breaking
terms. For reasons to be discussed below, we will assume
that MU »mU, AU. Hence, we can identity MsUs& with
the gluino mass m—:M3, and we must have

MsUsY =m ~ 140 GeV to avoid unacceptably small slep-
ton masses. For renormalization scales Q between MsUsv
and Mz we use the supersymmetric one-loop
renormalization-group equations, which are known to be
a good approximation when MsUsv « Q. A precise
treatment of all the diFerent particle thresholds around
and below MsUs~ would be very complicated. To simpli-
fy life, we compute all the soft supersymmetry-breaking
parameters and minimize the effective potential at
Q =MsUsv. To establish the connection with the low-
energy values of the gauge couplings and of the top-quark
mass, we use nonsupersymmetric renormalization-group
equations between m w and Msvsv (Ref. 22).

We note that, in the supersymmetric one-loop approxi-
mation, the evolution of the dimensionless couplings is
not affected by the soft supersymmetry-breaking parame-
ters. This allows us to identify nontrivial infrared fixed
points for the Yukawa couplings A, and k, corresponding
to the initial values AU, kU~ 00. For Q =MsUsY —mw
we find

X=0.87, k =0.63 . (5.2)

These values can be taken as upper limits on k and k, as
was already done in Sec. IV.

In the following, we will restrict ourselves to a particu-
larly simple choice of boundary conditions:

MU~0, mU, wU=0, (5.3)

so that supersymmetry breaking can be described in
terms of the single parameter MU. While (5.3) seems to
be favored in some superstring-inspired supergravity
models, the main motivation for assuming (5.3) here is
its simplicity. We note that we must choose MU to be
positive in order to generate positive A& and Ak values
(as required in our conventions) beginning with the
boundary condition AU=0. If we recall from the intro-
duction, Eq. (1.7), that the effective p parameter corre-
sponding to that of the minimal supersymmetric model is
positive in the conventions of this paper, we see that the
renormalization-group equations with boundary condi-
tions (5.3) imply that the gaugino mass and the eff'ective 1M

parameter must have the same sign. This is to be con-
trasted with the minimal supersymmetric model where,
in general, one must also allow for p to have sign oppo-
site to that of the gaugino mass.

g2(mii, )
m~ (v, +v2)=81 GeV .

2
(5.6)

Then we compute the complete spectrum of the model,
and we verify that the following phenomenological con-
straints are satisfied.

Constraints on slepton masses. We require

m )0 to avoid a EL&0 vacuum,

m, m )25 GeV as required by e+e data

( Ref. 25 ), (5.7)

(m2 +m )'/ )47 GeV as required by UA1 data

(Ref. 26) .

Constraint on chargino masses. Denoting by g,+ the
lightest chargino eigenstate, we require

m + )25 GeV as required by e e data
1

(Ref. 25) . (5.8)

We now describe in detail our renormalization-group
analysis. Using as physical input the values a, (m~) and
a3( m ii ), we compute the unification mass Mx, the
unification coupling aU: gU—/4' and sin 0~(mii, ) as a
function of MsUsv. For instance, for a, (m 11.)

=1/127. 9, a3(mii, )=0.115, and MsUsv =200 GeV we
find

1M~=1.4X10 GeV, aU=
24. 9

(5.4)
sin 011,(mii, )=0.231 .

Then, for any given set of boundary values (hU, XU, kU),
we compute all the relevant parameters at the scale
Q =MsUsY. After checking that our phase conventions
A, A & & O, kAk )0 are satisfied, and that A, , k )0 in order
to avoid spontaneous CP breaking, we perform a comput-
er search for a global minimum of the neutral Higgs po-
tential (2.11). Then, we include charge and colored de-
grees of freedom in the scalar potential (as described in
Appendix A) and check that the complete effective poten-
tial does not have minima of lower energy which break
color and/or electric charge. Moreover, we keep only
minima which satisfy the following conditions:

x, v 1,v2+0,
(5.5)

X V) V2

( 2+ 2)l/2' ( 2+ 2)1/2'
( 2+ 2)1/2

1 V2 X V2 V)

This allows us to give masses to all quarks, leptons, and
Higgs bosons and prevents instabilities with respect to ra-
diative corrections and/or small variations of the renor-
malization scale Q =MsUsv. Up to this point, the pro-
cedure is independent of the primordial gaugino mass
MU, which can be factorized out of the renormalization-
group equations and of the effective potential ~ We then
fix MU by requiring
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ASP constraint. This experiment puts a combined limit
on the masses of the charged sleptons and of the lightest
neutralino, denoted here by g, . A sufficient condition to
avoid any conflict with the ASP data is

Allowed Parameter Region Boundaries

kU = 0.01 c

I(a)
0.15

[m +(6m o) j' &65 GeV (5.9)

Constraints on squark and gluino masses. To avoid any
conflict with the limits imposed by UA1 and UA2 data,
we require

0.10

0.05
m &70 GeV, m )70GeV.

g q
(5.10)

Moreover, in order to avoid instabilities in the effective
potential we impose 0.16

cI
0, 17

I I I I I

0.18

m, m (500 GeV . (5.1 1)

75 GeV ~ m, ~ 93 GeV . (5.12)

Of course, one has to keep in mind that this prediction is
a consequence of the boundary conditions (5.3) and could
be slightly weakened when taking into account threshold
effects, higher-loop corrections and uncertainties in the
input parameters a, (mii ) and a3(m~). Also, the al-

Two important consistency tests on the spectra are the
following. After computing the top-quark mass, we veri-

fy that the condition tan/3((m, /mb is satisfied and that
45 GeV (m, (200 GeV, as required by UA1 (Ref. 30)
and neutral-current data. ' After computing the gluino
mass I (from MU through the renormalization-group
equations) we verify that MsUsv —m . Both tests are

g

satisfied by all our solutions. Since the typical gluino
masses are between 140 and 260 GeV, our results are
given for MsUsY =200 GeV.

After observing that the properties of the electroweak
vacuum are mainly determined by hU and A, U, while a
wide range of kU values is allowed, we have used for our
searches an array of (h~, A, U) values, for the three
representative values: (a) kU=0. 01; (b) kU=0. 1; and (c)
k~= l. The region of the (hU, A, U) plane which gives va-
cua satisfying all the constraints is given by the area in
Figs. 3(a)—3(c) labeled by the large capital A. The solid
line delimits the regions where charge- and color-
conserving vacua satisfying Eq. (5.5) can be obtained.
For values of hU that are too small and/or for values of
A, U that are too large, one is unable to satisfy Eq. (5.5),
while values of hU greater than -0.18 tend to generate
charge-breaking minima: as we will see, this puts strong
constraints on the top-quark mass. The regions denoted
by the letter 8 are excluded by the constraints (5.7) on
the slepton masses, and the regions denoted by the letter
C are excluded by the constraint (5.8) on the lightest
chargino mass. The constraints (5.9), (5.10), and (5.11)
are weaker and do not restrict further the allowed region.
Typical ranges of variation for the most relevant parame-
ters, corresponding to allowed solutions, are collected in
Table I.

A number of comments are in order. As apparent
from the restricted range of acceptable hU (or h) values,
the allowed range of m, is strongly constrained

Allowed Parameter Region Boundaries

I I

(b)
0.15

I I I

I
I I I

I
I I

kU = 0. 1

A.v

0.10

0,05

c

I

0.16 0, 17

hv

0.18

Allowed Parameter Region Boundaries

0.30

0.25

(c)
kv = 1.0

I I

I

I I I I

I

I I

0.15

0.10

0.16 0.17

hv

B

I I

0.18

FIG. 3. Region of the (hU, A, U) plane allowed by the different
constraints discussed in the text. The region within the solid
outline corresponds to hU, A, U values that give charge- and
color-conserving vacua, which also satisfy Eq. (5.5). Within this
region the constraint on the slepton masses, Eq. (5.7), removes
regions labeled by the letter B (outlined by dashes) and the con-
straint on the lightest chargino mass, Eq. (5.8), removes the re-

gions labeled by the letter C (outlined by dots). The remaining
fully acceptable solution region is indicated by the large capital
A. Three representative values of kU have been considered: (a)
kU=0. 01; (b) kv=0. 1; and (c) kU=1.
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lowed minima correspond to relatively light sparticle
masses

m ~260 GeV, m ~240 GeV,
q

m + ~64 GeV, m o ~36 GeV,
1 1

(5.13)

TABLE I. Typical ranges of parameters and masses for the
allowed solution regions of Fig. 3, obtained assuming that gau-
gino masses are the dominant source of supersymmetry break-
ing at the unification scale.

Parameter

hU

~U
h

k

kU =0.01

0.16-0.18
0.01—0. 14
0.48 —0.52
0.058—0. 15

0.01

kU =0. 1

0.16-0.18
0.03—0. 16
0.48 —0.52
0.077—0. 18
0.096—0. 10

kU =1.0
0.16-0.18
0.08 —0.29
0.48 —0.53
0.11-0.28
0.51—0.54

Ap (GeV)
W, (GeV)

{GeV)

160-310
19—38

0.03—1.3

160-310
18-38

0.13—1.5

160-310
18-37

0.94—2.9

m ~37 GeV, m ~85 GeV, m ~57 GeV .
L R

These results should give encouragement to physicists at
the Fermilab Tevatron collider, CERN LEP, and SLAC
Linear Collider (SLC). To reemphasize, the demand that
the renormalization-group evolution yield an acceptable
scalar particle sector (with the observed electroweak sym-
metry breaking, and no charge or color breaking) has led
to a highly constrained spectrum for all the remaining
particles of the model.

Passing now to the Higgs sector, on which the present
analysis is focused, we see that many Higgs bosons are
light enough to contemplate searches for them at LEP
and SLC. Note, however, that all our solutions corre-
spond to squark and gluino masses safely above the range
of values which should soon be excluded by the CDF ex-

A. =O. 128, k =0.097, r =0.64, tan/3=2. 04, (5.14)

periment at the Tevatron. Furthermore, the lightest
mass generated by the renormalization-group equations
for the scalar S, is 4.6 GeV (Ref. 32), so that it escapes
the CUSB limits. Moreover, 5

&
can contain a

significant N component, so that its couplings and possi-
ble radiative corrections to its mass can be considerabla y
weaker than in the minimal case. Also S2 and the light-
est pseudoscalar I', can be significantly lighter than the
Z. The charged Higgs boson is never lighter than the 8',
but never heavier than the Z: this depends on the fact
that relatively small values of A, (A, ~ 0.28) are favored by
our solutions. The phenomenological prospects in exper-
imental searches for these Higgs bosons will be discussed
in detail in the following sections. Two more comments
on our results are in order. First, our solutions never al-
low r to be substantially larger than 1 and, indeed, r (1
is favored (see Table I): this is related to the fact that

2x &)U&, U2 requ&res m& to be negative and large, which
can never occur if the singlet N can have only the small
Yukawa couplings A. and k. Second, the lightest super-
symmetric particle (LSP) can be either the sneutrino v or
the neutralino g &. the first possibility is favored for high
values of A, , the second for small values of A, . The lightest
neutralino g, is in general a full mixture of II„H&, X,
W3, and B, with a dominant H2 component.

A few final observations are appropriate before closing
this section. We have seen that the assumption of the
boundary conditions (5.3) implies X~0.28 (substantially
lower than the fixed-point value), r «1.7, and k ~0.54.
It is interesting to ask to what extent the
renormalization-group restrictions on the remaining pa-
rameters are stronger than those imposed by the general
constraints of Eq. (4.3). In order to explore this question
we have focused on a representative solution of the
renormalization-group equations. For the initial values
AU=0. 171, A, U=0. 1, kU=0. 1, we obtain, at MsUsv =200
GeV,

m, (GeV)
tan13

76-93
1.4—4.4

0.28 —1.7

76-91
1.4—4.2

0.34—0.67

75-89
1.4—4.2

0.25 —0.40 Max-Min Higgs-Boson Masses vs
tanP, r,h, k=2.04, 0.639,

Charged-Higgs-Boson Mass
0.128, 0.097

m, (GeV)

m, (GeV)
m (GeV)
--, (GV)

(GeV)

m + (GeV)
X

m 0 (GeV)
Yl

140-260
110-240
6.1 —37
46-85
32-57

' 25-63

4.8—27

140-260
110-240
4.0—36
47-85
33-57
25-63

5.9—32

140-260
110-240
1.8—36
47-85

33-57
25-64

10—36

103

102

mpi, mpp

'''I''''I''''I''''I''''I'
mat, msa, mss

m, (GeV)
mp (GeV)

1

mp (GeV)

ms (GeV)

m, (Gev)

ms (Gev)
3

81-89
4.7—9.3
23-44
4.6—17

12-40
93-95

82-90
21-33
27-49
5.5 —20

30-48
93-95

83-90
28-52
49-94
5.8 —25

60-85
93-98

100 s i « I

80 82.5 85 87;5 90 92.5
l»ill»i&l &&

80 82 5 85 87 5 90 92 5

FIG. 4. Higgs-boson mass spectra as a function of m&, for
the parameter choices of Eq. (5.14): A, =0. 128, k =0.097,
r =0.64, tanP=2. 04.
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TABLE II. The Higgs-boson and sparticle masses for a
representative solution of our renormalization-group equation
constraints: A, =o. 128, k =0.097, r =0.64, tanP=2. 04,
Aq=28. 6 GeV, Ak=0. 7 GeV (corresponding to hU=0. 171,

A, U =0.1, kU =0.1, and MsUsz =200 GeV).

In order to obtain Feynman rules, the couplings quoted
below should be multiplied by i; the appropriate com-
binatoric factors are already included.

A. HVVcouplings
Particle

Si
S2

Mass (GeV)

15
38

Particle Mass (GeV)

23
67

When CI' is conserved, the Higgs pseudoscalars have
no VV couplings. The VV couplings of the scalar Higgs
bosons are

S3

P) 31

m
R gs ~+ ~ =gmit, (cospS,'+sinpS, )g~

a

(6.1)
P2

m

m-
1)

m-

39

83

204

177

130

229

m +
X2

m-o
X)

m p
X2

m-o
X4

m o
X 5

123

23

33

36

78

120

gs zz = (cospS,'+sinpS, )g"',
cos8~

where a =1,2, 3 for S„S2,or S3, respectively, and p and
v are the Lorentz indices for the two vector bosons. Note
that the sum of the squared couplings is equal to the
standard-model result, due to the orthonormality of the
S, states.

B. Hqq
' couplings

A&=28. 6 GeV, Ak =0.7 GeV . (5.15)

All the Higgs bosons have couplings to quark-
antiquark pairs. The couplings are summarized by the
following formulas. First, for neutral Higgs bosons we
have

The Higgs boson and sparticle masses obtained for this
solution are given in Table II. To investigate how restric-
tive for the Higgs-boson masses the A, , k, r values of Eq.
(5.14) are, we now ignore the specific results of Eq. (5.15)
from the renormalization-group equations and scan in
m~ and Ak in the manner of the earlier analyses of the
fixed point A, , k values. In Fig. 4 we display the mass
spectra of the pseudoscalar and scalar Higgs bosons for
the values of A, , k, r, tanp of Eq. (5.14), but with no restric-
tion on A& and Ak. From this figure, it is clear that
the small values of A, and r generated by the
renorrnalization-group equations in the above special case
allow only for a very narrow range of possible Higgs-
boson masses in contrast with the large A, values explored
in Sec. IV.

—gm„
, g2m S1 tip a ""8'

l fsgflZ„
2' ~

P'.
sinp

gmd el~ l p 5gmd P
, gcosP ~ 2m cos/3

(6.2)

C. HMVcouplings

where u and d are generic up- and down-type quarks,
a =1,2, 3, and 0.=1,2, for the Higgs scalar and pseudo-
scalar, respectively. For the charged Higgs boson, we
find

g „- + = [ (m„tanp+ m„cotp)
2 2m 8'

+(mdtanp —m„cotp)y5] . (6.3)

VI. HIGGS-BOSON COUPI. INGS

In this section we discuss the various couplings of the
Higgs bosons that are of primary phenornenological in-
terest. In particular, we shall be interested in the extent
to which the phenomenology of the present model devi-
ates from that of minimal supersymmetry and E6 string
based models. The latter models have been explored in
detail in Refs. 3, 15, and 34.

We will explore four basic classes of Higgs-boson cou-
pling: (a) couplings of a Higgs boson to vector-boson
pairs; (b) couplings of a Higgs boson to quark pairs; (c)
couplings of a Higgs boson to another Higgs boson and a
vector boson; and (d) self-couplings of the Higgs bosons.
We shall employ the formulation discussed in Ref. 34,
which makes use of the Higgs eigenvector notation H (j )
(j =1,2, 3 for M„Mz, and X components, respectively).

+g
g + ~ = g

(p —p')"(S,cosp —4,'sinp) . (6.4)

For W C+(p')P (p) (a=1,2) we have

lg
g + + = g (p —p')"(p cos/3+ p'sinp) .

a

For ZS, (p')P (p) (a =1,2, 3, ca=1,2) the coupling is

lg
gz~ p

= g
(p —p')"(p osp+p'si p)2 cos(9~

X (4,cosp —4,' sinp) .

(6.5)

(6.6)

Once again, we can use the eigenvector notation to suc-
cinctly summarize these couplings. We adopt the con-
vention that all momenta and particles are incoming. We
will use p to denote the Lorentz index of the vector bo-
son. For JF C+(p')S, (p) (a =1,2, 3) we have
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Finally, for ZC+(p')C (p) and yC+(p')C (p) we ob-
tain

g cos20w

cos
(6.7)

g„+,—=e (p —p')" .

D. HHH couplings

1. Limit ofx »vi, v2 (A, , k fixed )

We use the explicit form of the Higgs-scalar mixing
matrix given in Eq. (3.4) to compute the Higgs-scalar
couplings. From the formulas given in the previous sub-
sections, the couplings of interest are easily obtained.
Consider first the couplings involving vector bosons. In
the large-x limit we find

In summarizing the Higgs-boson self-couplings, it will
be convenient to establish a notation closely related (but
not identical) to that in Ref. 34. Using the pseudoscalar
and scalar eigenvector matrices P~ (a=1,2) and eP,
(a =1,2, 3) where j can take on the values 1,2,3, and the
charged Higgs eigenvectors C+, C', l = 1,2, of Eq.
(2.33), we define the symbols

g& gj gk
a, b, c perms

(6.8)

1R w c+s.~RzP s 0
22 1

x

c+s, 'Rzp, s, —A,v(k+ Ax/x)cos2P

2kx . —2k
sin2

1R +,Rs zz 1+0
x

1R + R + Rzp s = 1+0
2 2 2 2

(6.10)

(6.1 1)

(6.12)

(6.13)

In H,b„a,b, c can take on values from 1 to 3. In II,&z, a
can take on values from 1 to 3, while 13,y range from 1 to
2. Finally, in II,+, a can take on values from 1 to 3. It
should be noted that in the above definitions, all sums are
to be performed regardless of whether or not some of the
a, b, c,p, y, or i,j,k are equal. For example, in the case of
all scalars II,z3=6$,$zS3 and II„,=6(S, ) . Because the
expression for the Higgs-boson trilinear self-couplings are
somewhat lengthy, we defer them to Appendix B. Con-
tributions to the self-couplings arise from all the terms of
the scalar potential of Eqs. (2.3)—(2.6).

E. Results for couplings in special limiting cases

In Sec. III we considered several limiting cases of our
model. In this section we discuss results in these same
limits for some of the Higgs couplings of interest. At
large x, simple expressions for all couplings are possible,
while at small x we shall focus only on those involving
vector bosons, since the quark couplings do not take an
especially simple form. In quoting results for the quark
coupling s we factor out the common expressions

igm~/(2m— ir) or —gys/(2mii ) which appear in Eq.
(6.2). For the vector-boson couplings, as given in Eqs.
(6.1) and (6.4) —(6.6), we present the results by retaining
only the factors in brackets in the above equations. We
will denote the relative coupling strengths so obtained by
the symbol R . , where the subscript will indicate the
particular coupling considered. For example, we define

1
Rs w+w —~Rs zz 0

2 2 x
(6.14)

R ~+~—&Rs zz 2
v [2A, —(k + Az/x)sin213]

S3 w w 3 4k 2x

(6.15)

For the quark couplings we obtain

S uu' Sdd (6.16)

(6.17)

Rs dd, RI, dd
——tanp . (6.18)

2. Limit ofx »v„vz (Ax, kx fixed )

We remind the reader that the pseudoscalar state P,
not appearing in the above equations is that which decou-
ples from nonsinglet fields, as does S3 as seen, for exam-
ple, in Eqs. (6.12) and (6.15). Additional amusing phe-
nomenologicgl points can be inferred from the above for-
molas. For example, at an e+e collider, at large r the
S& would be produced only via 8'8' or Z*—+Z+S&,
while S2 and P2 would be produced via Z'~P2+S2.
Note also that the couplings of S2 and P2 to down quarks
are enhanced relative to the standard model, while their
couplings to up quarks are suppressed, when tanP) 1.

gs w+w =g w s w+w
a a

g t pgw c+s: 2(p p )"
w c sa a

l P5gltl „
g —= RP uu 2~ P uu

w

lg
gzs. t.=,g (p p')"Rzs p— —

(6.9)

As already discussed in Sec. III, this limit is such that
S&, S2, and P& play the role of the two scalar and one
pseudoscalar Higgs bosons of the minimal supersym-
metry model. As expected, they have exactly the same
couplings as found in Ref. 3 for the two scalar and one
pseudoscalar Higgs bosons of the minimal supersym-
metry model. On the other hand, S3 and P2 are com-
pletely decoupled and will not be detectable. The above
remarks assume that it is the heavier pseudoscalar (P~)



39 HIGGS BOSONS IN A NONMINIMAL SUPERSYMMETRIC MODEL . 861

which is nearly pure ImN in this limit, as discussed above
Eq. (3.19). On the other hand, if the parameters should
be such that the lighter pseudoscalar (P, ) is nearly pure
ImN, then we must interchange the roles of P& and P2,'

P2 would play the role of the minimal model pseudosca-
lar and P, would decouple. All couplings involving a sin-

gle P2 would then turn out to have the opposite sign from
the convention employed in Ref. 3, due to the fact that in
this case y~~/2. However, this sign is purely a phase
convention, and has no physical consequences.

3. Limit ofx ((v„vz

Once again we use the explicit form of the Higgs-scalar
mixing matrix appropriate to this case, Eq. (3.26), to
compute the Higgs-boson couplings. We find the follow-
ing results in the small-x limit:

W C S)' ZPIS)

4z(, A &x cos2a sin (P—a )
-cos(P—a) 1—

mzsin4P

(6.19)

R w c+s,RZP1S3
2x cot2P (6.21)

R +,Rs zz

-sin(P —a) 1+
4A, A&xcos2acos (P—a)

mzsin4P

(6.22)

SWW —~SZZ
2 2

4A. 2&x cos2a sin (P—a)
-cos(P —a) 1—

mzsin4P

(6.23)

S W+W (6.24)

As expected, we see that S3 decouples in this limit, as
does the P2 state not appearing in the above formulas.
They will be hard to produce and detect.

Of course, the above limiting cases are rather special
and we shall see that typical results are often such that
the vector-boson coupling strengths are shared among all
the Higgs bosons, and that none of the latter are com-
pletely decoupled. For this purpose we must turn to a
numerical study of the Higgs-boson couplings.

R w c+s, 'RZP, s,

4zi, A&x cos2a cos (P—a)——sin(/3 —a ) 1+
mzsin4/3

(6.20)

F. Numerical results for coupling constants

Among the above couplings it will be useful to present
some results for those that are critical to Higgs-boson
production at hadron or e+e colliders. At a hadron
collider, the two most important production modes are
gluon fusion via a heavy-quark loop (sensitive to the qq
couplings of the Higgs boson) and IV+ IV fusion to the
Higgs boson (dependent upon the VV coupling). At an
e+e collider, e+e —+vv+H via 8' 8' fusion and
associated production via e+e —+Z*~Z+S will yield
a usable cross section for a Higgs boson with sizable VV

coupling s, while pair-production modes such as
e+e ~y*~C+C and e+e ~Z*~S+P must be
used for the remaining Higgs bosons. Thus we first ex-
amine the VV couplings of the various neutral-scalar
Higgs bosons, S;. The magnitude of gzzs relative to

i

gvt,H, defined as Rt,vs in Eq. (6.9), is plotted as a func-
SM t

tion of mc in Fig. 5(a) for some of the representative
choices of tanP, r, A, , and k considered for the mass plots
given earlier. In particular, we focus on the two fixed-
point value cases characterized by tang= l. 5 and
moderate r, r =0. 1 and r =1. In analogy to previous
plots related to these cases, at each I& a maximum and
minimum value for a given coupling is given as obtained
by scanning over the values Ak consistent with Eq. (4.3).

We see that in the fixed-point cases the heaviest scalar
Higgs boson S3 tends to have VV couplings that are
~ 20/o of the standard-model value. This implies its pro-
duction cross section will be ~ 4% of the standard-model
value at the same Higgs-boson mass, for any production
mode requiring the VV coupling. Results for the lighter
two scalar Higgs bosons are more dependent upon the
charged-Higgs-boson mass (and hence exact scalar mass)
and upon the precise k, I", and A, case considered. We see
that it is possible for one of the two light scalars to have
most of the VV coupling, but that they might also share
relatively equally the VV coupling strength. It is clearly
possible for the lightest scalar S, to be weakly coupled
(unlike the minimal supersymmetry case), but this is not
preferred for cases generated by the full renormalization-
group analysis.

Turning to the quark couplings, we present results for
the uu and dd couplings of both scalar and pseudoscalar
Higgs bosons in Figs. 5(b) and 5(c). The values of tan/3, r,
A, , and k are the same as those considered in Fig. 5(a).
Clearly, there is a large amount of variation in the possi-
ble coupling strength relative to that found in the stan-
dard model. Generally speaking, every scalar Higgs bo-
son is strongly coupled either to down quarks or to up
quarks. However, it is the top-quark couplings which are
most relevant in production via gg fusion at a hadron col-
lider and in Higgs-boson decay. The figures show that it
is possible to have substantial suppression in this cou-
pling. Turning to the two pseudoscalars, we observe that
qq couplings of P2 are generally quite weak, while P, has
roughly half the standard-model strength in the coupling
squared. Only that pseudoscalar which is strongly cou-
pled to quarks will have a substantial gg fusion cross sec-
tion at a hadron collider.

In Fig. 5(d) we plot the value of Rzsz„defined in Eq.
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(6.9). A value of Rzsp —1 results in an e+e ~Z*
~S +P cross section of order 0.1 unit of Rz, =o /o. z„ in
the absence of phase-space suppression. We see that P& is
likely to be strongly coupled to the Z and at least one of
the scalars, whereas P2 is generally weakly coupled for
these moderate r values.

The dependence of these results on tanP is quite
significant. Only the VV coupling is fairly independent of
tan/3. In general, for increasing tanp values the dd cou-
plings are greatly enhanced at the expense of the uu cou-
plings and large changes in the ZSP couplings also occur.

As a further illustration of the relative coupling
strengths, we present results for the explicit
renormalization-group solution of Eqs. (5.14) and (5.15),
i.e., with A z (and, hence, Ic ) and A k fixed at the precise
values determined by the renormalization-group equation
evolution. These appear in Table III. Note that the VV
coupling is shared quite equally among the three Higgs

Channel

R vvs

uus, uuP

Rdds, ddt

Rzs, s
Rzp s

Sl

0.56
0.35
1.45
0.1

0.42

S2

0.6
0.42
1.36
0.09

0.36

S3

0.57
0.97

—1.1
0.2
0.8

Pl

0.12
0.49

P2

0.48
1.98

scalars, that all have somewhat suppressed couplings to
uu and somewhat enhanced couplings to dd, and that
ZP, S; couplings are very weak. The P, would thus be
very dificult to produce at a e+e collider. In contrast,
the light masses for all the S;, combined with their hav-

TABLE III. Coupling strengths, as defined in Eq. (6.9), for
the renormalization-group solution specified in Eqs. (5.14) and
(5.15), and already considered in Table II.

Scalar-Hig g
solid:

s-Boson Couplings to VV
S, ; dashes: S2, dots: Sa

Higgs-Boson Couplings to dd
solid: S, ; dashes: Ss, dots: Ss, dotdash: P, ; dotdotdash: Ps

tanP=1. 5, r=. l
h. =.87, k=.63

125 & i i i

I

& I I i

I

» & &

I

& s

tanP=1. 5, r=1
X=.87, k=.83

tanP=1. 5, r=.1
X=.87, k=.63

2 5 r i i s

I

1 I I I

I

I I I I

I

I I I 4

I

I

tanP =1.5, r= 1
X=.87, k=.63

1.00 2.0 .
—

n 075

o.5o

l 5 m-r

1.0

0.25 0.5

0 00 I I I I I

0 20
s

40 60 80

Il
i ~ s s I &'i' » t t I i & I

150 200 ' 250 300 350 0.0
0 20 40 60 80 150 200 250 300 350

mc (GeV)
(a) m(. (GeV)

(&)

Higgs —Boson Couplings to uu
solid: St; dashes: Sa; dots: Ss; dotdash: P, ; dotdotdash: Ps

Z Couplings to S+P
solid: S, ; dashes: Sa; dots: Sa

1.25

1.00

0.75

ip

o.5o

0.25

tanP=-1. 5, r=.1
A.=.87, k=.63

tanP=1. 5, r=1
A.=.87, k=.63

1.25

1.00

"„- O.75

0.50

0.25

0.00

1.25

1.00

"- O.75

& o5o

0.25

tanP=1. 5, r=.1
A, =.87, k=.63

tanP=1. 5, r=1
X=.87, k=.63

J I

I

I I I I

I

I I I I

I

I I I I

I

I

0.00
0 20 40 60 80 150 200 250 . 300 350

mc (Gev)
(b)

0.00 k. l. I. T. r. 1 c .I J. L . t .I. J

20 40 60 80 150 200 250 300 350

m0 (GeV)
(d)

FIG. 5. The magnitude of the relevant S; and P; couplings, relative to the standard coupling strengths as defined in the text, as a
function of mc. The values X=0.87, k =0.63, tanf3=1. 5, and r =0.1, 1 are considered. For each value of mc, maximum and
minimum values of the couplings are plotted, obtained by scanning over values of Ak which satisfy the constraints of Eq. (4.3). The
following couplings are considered: (a) VVS; couplings (i =1,2, 3); (b) couplings to uu; (c) couplings to dd; (d) ZS;P~ couplings
(i = 1,2, 3, j = 1,2).
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ing at least —,
' the maximum possible VVS; and Z*~ZS;

squared couplings, imply large production cross sections
in e+e collisions. For S„Sz, and Pz LEP and SLC
would be appropriate machines. For instance,
Z ~S

&
l + l and Z ~Sz l +l decays are kinematically

allowed and are proportional to the square of the ZZS;
coupling. As a result they would occur at roughly —,

' the
SM rate. The small Pz mass and large S;PzZ couplings
also imply substantial branching ratios for the decay of a
real Z to S,Pz and SzPz. The S3 would be best Produced
via e e ~Z*—+ZS3', a new generation of e+e collid-
ers, with &s R 300 GeV, would be most appropriate. At
a hadron collider, real Z decays would be a significant
source of S,Pz and SzPz pairs. In addition, gg fusion
would yield substantial inclusive cross sections 'for the Si,
Sz, and Pz, and be a Primary Production mode for S3.
Another possibly useful source of Si z 3 production would
be via 8'*~8'S, z 3. Regarding P„ the absence of VV
couplings and its weak coupling to tt imply that it is very
weakly produced, just as in e+e collisions. Obviously,
the weak P& couplings are due to the fact that it has a
large ImN component. We defer discussion of the
charged Higgs boson- and of the decays of the Higgs bo-
sons for this special case to the following section.

To summarize, we have focused in this section on ex-
amples in which the value of r is moderate. Results at
large x && v&, vz are somewhat different, especially for the
pseudoscalars. However, moderate to small r is strongly
preferred by the renormalization group. We have seen
that the larger parameter space of the present model, as
compared to the minimal supersymmetric extension of
the standard model, allows for greater structure in the
Higgs-boson couplings. For example, the lightest scalar
Higgs boson is not always the one with strongest VV cou-
plings. Correspondingly, the cross sections for Higgs-
boson production exhibit considerable variety. General-
ly, we find that some Higgs bosons will be very difficult to
produce (in particular, either P, or P2 tends to have a
large ImX component and would be unobservable) while
others will be relatively easy to make.

VII. HIGGS-BOSON DECAYS
AND BRANCHING RATIOS

In the previous section, we have explored the couplings
of the Higgs bosons of the theory to other Higgs bosons,
vector bosons, and quarks. These are the couplings that
are crucial for production of the Higgs bosons as already
outlined. They also lead to important Higgs-boson decay
modes to final states such as quark plus antiquark, vector
boson plus lighter Higgs boson, a pair of vector bosons,
and a pair of lighter Higgs bosons. However, in consider-
ing the decays of the Higgs bosons, we must also include
the additional channels involving the supersymmetric
states, in particular decay modes containing two neutrali-
nos, a neutralino and a chargino, two charginos, or a pair
of squarks or sleptons. The relevant couplings are easily
obtained from the diagonalization procedures for the
Higgs-boson, chargino, neutralino, squark, and slepton
mass matrices that have already been discussed or re-

ferred to in previous sections. We will not give explicit
expressions here; they may be found in Ref. 34, expressed
in terms of the Higgs-boson, neutralino, and chargino
eigenvectors. (Note that the neutralino and chargino
mass matrices and states are identical in the E6 case con-
sidered there and in the present case. )

However, there are several crucial points regarding
these latter channels that will allow us to simplify our
branching-ratio analysis. First, in the model considered
in this paper, we have seen that squark masses are never
less than —100 GeV and more typically a factor of 2 or
so higher. In contrast, there can be very light neutralinos
and charginos, and even the heaviest neutralinos and
charginos are lighter than the squarks. Thus, except for
the heavier possible Higgs bosons in the fixed-point pa-
rameter cases investigated in Sec. III, squark decays are
not allowed, whereas a significant number of neutralino-
chargino channels are. Even for the heavy Higgs bosons
with mass & 250 GeV, for which squark channels might
be allowed, the neutralino-chargino channels will be dom-
inant. This same remark also applies for all Higgs-boson
masses in comparing channels with a pair of sleptons
(which can be relatively hght in our model) to channels
containing a pair of neutralinos or charginos. This is due
to a feature of the squark-slepton versus chargino-
neutralino couplings to Higgs bosons. The typical
squark-squark coupling to a Higgs boson is proportional
to gm ~ or gmz leading to a partial decay width
I (H~qq)-g m~/m~. In contrast, the fermion trace
associated with Higgs-boson decay to a neutralino or
chargino pair state brings in Higgs-boson-mass factors
yielding a partial decay width I (H ~gg)-g m~. Thus
the neutralino and chargino channels will have a natural
enhancement factor of order m~/m~ relative to squark
and slepton final states. As a result, if both types of de-
cays are kinematically allowed, and since the relevant m~
values are significantly above m~, the Higgs-boson de-
cays into squark and slepton pairs are not an important
contribution to the total decay rate. This was illustrated
in the case of the minimal supersymmetric model in Ref.
3. Thus we have dropped the squark and slepton chan-
nels from our analysis.

We will illustrate the range of possible Higgs branch-
ing ratios in the fixed-point cases of Eq. (5.2) with
tanP=1. 5 and r =0. 1 or r =1.0, denoting them by their
r values in what follows. We remind the reader that in
each case we will present results obtained by varying over
all Ak and mc values that give an acceptable symmetry-
breaking minimum. We have adopted a gluino mass of
m =200 GeV and a top mass of 70 GeV. Note that the
value of m, in combination with the stated vacuum ex-
pectation value parameters and k, k choices, completely
fixes the chargino-neutralino mass matrix and couplings.
This is because a choice for m determines as well the
SU(2)L and U(1) gaugino masses via the renormalization-
group equations. We present our results in Fig. 6, which
is divided into six parts, one for each of the Higgs bosons
S, , Sz, S3, P„Pz, and C+. In each Part we have used
the value of mc to specify where in mass space (see Fig.
1) for a given Higgs boson we are. Each part contains
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two windows corresponding to the two difterent cases
outlined above. As in Fig. 1, at fixed mc we have varied
the remaining parameter Ak over the entire range al-
lowed by the requirement of an acceptable local scalar

field minimum. Thus, for each channel plotted we give
the maximum and minimum branching ratios, obtained
in the course of the AI, scan, as a function of m~. The
channels considered are (1) the sum over all qq quark-
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FIG. 6. The branching ratios for the different Higgs bosons as a function of mz. At each m&, maximum and minimum values of a
given channel's branching ratio (as obtained by scanning over allowed Ak values) are given. See the text for a detailed description.
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antiquark pair channels —dominated, of course, by the
heaviest allowed quark-antiquark pair, (2) the analogous
sum over all ll lepton-antilepton pair channels, (3) the
sum over all HH Higgs-boson pair channels, (4) the sum
over all VH Higgs-boson plus vector-boson channels, (5)
the sum over all VV vector-boson pair channels, and (6)
the sum over all gy neutralino and chargino pair chan-
nels. Combined, these comprise the bulk of allowed de-
cay modes. Fortunately, not all the above channels ap-
pear in the case of any one Higgs boson. Those that are
present are indicated on a given figure along with the
curve legend.

We will make a few general observations regarding the
content of these figures in the case of each of the Higgs
bosons.

S,: For all choices of r, the S& can be very light, in
which case its decays are dominated by qq and ll chan-
nels. The particular channel or combination of channels
is determined by the precise value of ms . For ms )2m&

1

the bb channel is dominant, with ll being small. For
2mb )mz )2m„2m, the ~+~ mode is dominant with

1

the cc mode also significant but suppressed relative to
standard-model expectations by mixing-angle factors. If
mz (2m the ss mode dominates; this possibility, how-

1

ever, is disfavored by our renormalization-group analysis.
An exception to this dominance by qq and ll occurs for
r =0. 1 when ms )2mc (recall that the charged-Higgs-

1

boson mass can be very small in this case). When al-
lowed, the S

&

—+ C+ C mode becomes dominant. At
r =1, neutralino-chargino modes may enter and in cer-
tain mass regions even be dominant.

S2. In the r =0. 1 case we see that S2 decays are dom-
inated by bb or HH final states, with the latter being
dominant when allowed. Regarding the latter, at low mc
( 840 GeV) the C+C mode is allowed and dominant.
At higher mz this mode is forbidden; but provided the
Ak parameter is chosen so that ms is small, S2~S,S,

1

will be the dominant decay. At r = 1, the decay possibili-
ties are much more complex. We see that 8'8'and ZZ
decay modes can be very important for some Ak choices
at a given mc, but that at the same m& it is also possible
to choose A k so that HH modes (mainly S,S, and, when
kinematically allowed, P, P, ) are dominant. In addition,
in the central region of mc the S2 mass drops below 2m ~
and bb decays become very important. Finally, we see
that neutralino-chargino decays (mainly y &+/, ) emerge
as a significant component of the S2 decays.

S3. At r =0. 1 we are not far removed from the small x
limit in which the S3 tends to decouple from nonsinglet
particles. However, there remains a large coupling to
neutralinos and charginos. Thus the yy modes dominate
with y,+g

&
being the most important component. We

see that this channel is followed closely by VV and then
HH. The HH modes are P, P, , S&S&, S&S2, and C+C
At a lower level we find VH decays where the latter is
ZP, or W —C (in ratio 1:2). At r = 1, we see a large
selection of modes, including tt, HH, VV, and gy, the
latter two emerging mainly at higher mc (and, hence,
mz ) values.

3

TABLE IV. Branching ratios of the various Higgs bosons to
a variety of interesting channels, for the special
renormalization-group solution of Eqs. (5.14) and (5.15). See
Tables II and III for the masses and couplings of the states in-
volved.

Channel

Il
HH

0.92
0.08
0
0

S2

0.81
0.03
0.16
0

S3

0.13
0.005
0.82
0.05

p)

0.96
0.04
0
0

P2

0.96
0.04
0
0

c+

0.01
0.006
0
0.99

P&.. At r =0. 1 only bb decays are important, or 7 7

where bb is forbidden at the lowest P, masses. At r =1
we see that P& decays are dominated by a combination of
tt and gy modes, although at low mc the VH modes
enter significantly.

P2.. At r =0. 1 we have a situation closely analogous to
that for the S3 at this same r value; the P2 has suppressed
couplings to all but the chargino-neutralino modes,
which are dominant. Among these the g +y modes are
the most important. The next most important channel is
VH, including 8'—C+, ZS„and ZS2. At a still lower
level we find HH modes, dominated by S3P, . At r =1 tt
and yy modes (largely g+g ) are dominant except at
low mc values where VH modes ( W~C is often the
largest, but ZS„ZS2, and ZS3 can be substantial also)
become crucial.

C+: At r =0. 1 only cs decays are important. At r =1
the primary channel is tb with y+y modes becoming
significant at large m&.

It is also useful to tabulate the predicted branching ra-
tios for various channels in the representative
renormalization-group solution, with parameters as de-
tailed in Eqs. (5.14) and (5.15). In particular, for this
table Ak and mc (which determines Az) are fixed. The
masses of all the particles for this particular
renormalization-group solution were given in Table II.
The couplings appeared in Table III. The branching ra-
tios for a variety of interesting channels appear in Table
IV. We see that among the neutral Higgs bosons, bb is
the dominant mode except in the case of S3 where HH
modes are dominant. For the S3, among the HH modes
the P2P2 mode is the largest with a branching ratio B of
0.38, followed by S&S, with B-0.19. The S3 also has
some yg decays, with total 8 -0.05. None of the neutral
Higgs bosons are heavy enough to have any VH or VV
decays. In the case of the C+, its mass is too small to al-
low the tb mode, and, as a result, its decays are dominat-
ed bye &+

Let us briefly consider prospects for detecting the
Higgs bosons in the special renormalization-group case,
given the branching ratios described in the previous para-
graph and the production cross sections outlined in the
previous section. Consider first e+e collisions. Detec-
tion of the S& 2 Higgs bosons at an e+e collider would
be straightforward, either in Z —+S& zl+l decays or
Z ~S

~ 2P2 decays. In the latter case, one would search
in final states containing two bb pairs; backgrounds
would probably not be a problem. S3 production via
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Z*—+S3Z would require a &s ~ 300 GeV machine; the
dominance of S3 —+HH modes would lead to Zbbbb final
states, which would probably be detectable. P, is essen-
tially hopeless because of its small production rate.
Detection of the charged Higgs boson would also not be
straightforward. Even though the y*~C+C cross sec-
tion at a e+e collider with &s ~ 300 GeV (Refs. 36 and
37) would be of order —,

' unit of R „the y,+y, decays for
both the produced charged Higgs bosons would make
direct mass reconstruction impossible (the y, would be
the LSP). Turning to a hadron collider, we first consider
detection of Z —+S, 2P2 events. Unfortunately, the bbbb
final states would presumably have large QCD back-
grounds, so that discovery in this mode might prove
difficult. A detailed study is required. The S3 scalar
Higgs boson definitely falls into the category of
"intermediate mass" approaches. Its mass is such
that only the production-detection mode of 8'*
~ 8'( ~l v)S( ~bb ) could be employed. While
current studies of this mode have yielded optimistic re-
sults for a Higgs scalar with a mass above mz and with
full standard-model VV couplings, it is likely that the
reduction in cross section by a factor of -3—4 for the S3,
combined with its mass being near that of the Z, will
make this Higgs boson more difficult. The P&, which has
no VV couplings and is weakly coupled to quarks, will be
essentially impossible to observe at a hadron collider.
The most useful charged-Higgs-boson production mode
would be gb ~C+t, followed by a trigger on the specta-
tor t quark. ' The y &+g

&
decay might provide a

sufficiently clean missing energy trigger to allow detec-
tion; a detailed study is needed.

In summary, Higgs-boson decays in this theory are
complex and many channels must be examined before
one can be certain of discovering or excluding a Higgs
boson of any given type in any given mass range. In ad-
dition, even though the generally expected Higgs-boson
masses are fairly modest, the most useful production
cross sections are often not as large as in the correspond-
ing standard-model Higgs-boson case. The most uniform
example of this latter statement occurs at small r, where
the S3 and P2 tend to decouple from nonsinglet particles
including the standard model quarks and gauge bosons.
Thus, we typically find that one or more of the Higgs bo-
sons will be difficult to detect at both an e+e collider
and a hadron collider.

VIII. CONCLUSIONS
We have argued that a supersymmetric model in which

a singlet Higgs field is present, in addition to the two
Higgs-doublet fields that are absolutely required, provides
an attractive solution to the p-parameter naturalness
problem of the minimal supersymrnetric model. We have
also noted that such a singlet field is present in most
superstring models with low-energy X = 1 supersym-
metry, including the attractive SU(5) XU(l) four-
dimensional superstring model. We have then proceed-
ed to explore the implications of such a theory for the
Higgs-boson sector, assuming that only trilinear cou-
plings enter into the superpotential (as is automatically
the case in the simpler superstring approaches). The

physical Higgs bosons of the theory comprise three sca-
lars (S„S2,and S3 ), two pseudoscalars (P, and P2), and
a charged Higgs pair (C—). While there are, in principle,
a number of parameters that need to be specified in order
to determine the theory, we have found that the
renormalization-group and grand unification constraints
impose surprisingly stringent restrictions on the allowed
range of these parameters, especially if the entire source
of supersymmetry breaking at the grand unification mass
scale M~ is from a common gaugino mass, MU (Ref. 23).
The resulting phenomenology for the Higgs bosons is
complex, but with many regularities. For instance, as in
earlier investigations of other X = 1 supersymmetric
models, ' ' ' we find that there is always a light scalar
Higgs boson with mass ~ 150 GeV. The introduction of
the singlet field allows us to have charged-Higgs-boson
masses lighter than mii (unlike earlier models) but the
corresponding parameter choices are not preferred by the
renormalization-group analysis. In general, several of the
other Higgs bosons will be fairly heavy, but always below
1 TeV in mass except in extreme cases. Despite the gen-
erally modest mass scale for the Higgs bosons, we have
seen that detection of all of them will represent a formid-
able challenge —production cross sections can be small
and decays can be complex or subject to large back-
grourlds.

For the allowed renormalization-group solutions where
supersymmetry is broken only by the gaugino mass MU
at Mz, we have solved for the masses of all physical par-
ticles. The constraint imposed by requiring that the vac-
uum structure be that observed in nature (i.e., no charge
or color breaking, but standard electroweak symmetry
breaking) is very powerful indeed. Only a very narrow
range of choices for the basic trilinear couplings of the
superpotential yield allowed solutions. The predicted
range of masses of all the physical particles is very small,
and appears in Table I. We find a top-quark mass be-
tween 75 and 93 GeV, a gluino mass between 140 and 260
GeV, and light charginos, sleptons, and sneutrinos. In
addition, all Higgs bosons have mass below 100 GeV,
with the lightest scalar certainly accessible at LEP and
SLC. Indeed, if there is any truth to this general ap-
proach the next few years should provide an abundance
of new and exciting physics, in particular allowing our
first experimental probes of the Higgs-boson sector that is
at the basis of electroweak symmetry breaking. However,
in exploring the Higgs-boson sector, we have seen that it
will be necessary to consider a variety of different decay
channels, with, in particular, channels containing lighter
Higgs-boson pairs, a vector boson plus a lighter Higgs
boson, or neutralino-chargino pairs. The resulting final
states should all be explored more thoroughly with re-
gard to important backgrounds and experimental cuts.
Overall, this study makes explicit the fact that we must
not rely on studies conducted purely in the context of the
standard model in assessing the ability of new colliders
and detectors to study the Higgs sector.
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APPENDIX A: POTENTIAL INCLUDING TOP
AND BOTTOM SQUARK DEGREES OF FREEDOM

In this appendix we give the full scalar field potential,
after including top (both left and right) and bottom (left
only) squark fields through the superpotential coupling
hQU'H2 and the associated soft supersymmetry-breaking
terms. We have made the approximation that all the
colored fields are parallel in color space. We shall discuss
later the justification for this approximation and describe

I

the generalizations that would be required to include full
color degrees of freedom.

We begin by listing the sirnplifications that may be
made by employing the gauge and phase degrees of free-
dom of the scalar fields. Our notation for the squark sca-
lar fields is Q for the top-bottom doublet ( U, D ), and U '
for the top squark singlet field.

(1) SU(2)L transformations may be used to set v+ =0.
(2) The phase of the N field may be chosen so that

krak ER+.
(3) The phase of H, can be chosen so that k A z ER+.
(4) The phase of U ' can be chosen so that h Ai, H R+.
(5) The phase of H2 can be chosen so that v2 H R
(6) The phase of Q can be chosen so that

u —= ( U) ER+.
(7) Finally, it turns out that the above conventions im-

ply that the phases of v and d =—(D ) enter only in the
combination v *d, so that we may choose d ER+.

The most general form for the vacuum expectation
value of the resulting potential is given below.

& 2

(V "')= (
—lv, l

—lv I
+v +—'u +—'d —4lu'I )

8 2 3 3 3

2

( VD
' ') = [( v, I

+ Iv I
+v2+u +d ) —4(lv, v2+ Iv, I

d +v2u + Iv I
u )+4ud(v*, v +v, v *)],

( VsU(3) )
~

( 2+d2
I

cl2)2gs6"
& V~&= ~'[(lvil'+lxl'»2+(lvil'+lv I')lxl']+h'[(u'+d')lu'I'+(lu'I'+u'»', ]

+k Ixl —kkv2(v, x* +v*, x ) —Ah[u(v, xu'*+v", x*u')+d(v xu'*+v *x'u')],
& V,.r, &

= ~H, (lvi '+ lv I')+~H v2+~~lxl'+my'(u'+d')+~U, lu'I' —~~2(vix+vix*»2

krak
(x +x* ) —hei, v2u (u'+u'"),

(Al)

(A2)

(A3)

where we have taken X, k, h relatively real in order to
avoid explicit CP breaking. This does not, however,
guarantee that there is no spontaneous breaking of CP. If
u, d &0 then there is no choice for the signs of A, k and A, h
that guarantees that the potential minimum occurs when
all fields have zero phase; the phase-dependent term in
( VD

' ') enters with the wrong sign in comparison to all
the other phase-dependent terms which would be mini-
mized for zero phase if A,k, k,h HR+. However, we shall
only explore color breaking for A, k, A,h ER+, since we are
only interested in assessing whether minima of the pure
Higgs potential, found subject to this constraint, are true
global minima.

As stated earlier, the above potential has been written
in the approximation that all the colored fields (u, d, and
u') are parallel in color space. We will not explore the
complete color space degrees of freedom because of the
greatly increased complexity of analysis that would re-
sult. We argue that this is a good approximation when u,
d, and u' are of the same order as v], v2, x. Since g, is
much larger than k or k for the solutions that we have

obtained using the unification boundary conditions of Eq.
(5.1), the largest single term in the potential is ( VD

' ').
An examination of the full color structure of this term re-
veals that it is minimized for configuration in which u, d,
and u' are all parallel in color space. More generally,
however, we must regard any restrictions that we discov-
er on our potential parameters, through requiring the
u, d, u'=0 at the global minimum, as being necessary but
not clearly sufhcient.

The procedure followed as part of the
renorrnalization-group investigation of Sec. V was the fol-
lowing. Given a set of parameters obtained by evolving
from the grand unification scale M~ down to MsUsz, be-
ginning with initial choices for A. U, kU, and hU and the
boundary condition (5.1), we required that the resulting
low-energy parameters yield a global minimum of the
complete potential such that all the neutral Higgs fields,
and only the neutral Higgs fields, acquire nonzero vacu-
um expectation values. This required examining not just
the Higgs potential, but rather the complete scalar field
potential as delineated above, including the colored fields
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Q and U '. Overall there are 11 degrees of freedom after
making use of all independent phase rotations and
SU(2)I XU(1)„gauge transformations. They are v„v f,
v2, x, x*, v, v *, u, d, u', and u'*, where u =(U),
d =(D), u'=( U'). As noted above, u and d can be
taken to be real, but the potential form is such that there
is no simple set of choices for the relative signs of the po-
tential parameters which guarantees that the other VEV's
are real. (Only in the subspace where either d or v is
zero is this possible. This contrasts with the case where
the colored field VEV's are ignored. ) Thus, for a given
set of low-energy parameters, we have numerically
searched the 11-dimensional VEV space for all local
minima of the full potential, and determined which is the
global minimum. If the global minimum is not of the
desired type we discard the solution.

Our procedure in practice was to first consider the sca-
lar potential without including colored degrees of free-
dom. We then searched for solutions starting from the
boundary conditions (5.1) such that at the potential
minimum the requirements of Eq. (5.5) were met and
charge breaking (v &0) was not present. Once such a
solution was obtained we then turned to the full scalar

potential, including colored degrees of freedom as
specified above, and determined whether there was a
color breaking (u„d, or u'&0) minimum of still lower
energy. We found that this never occurred, i.e., the re-
quirements of Eq. (5.5) and v =0 for the scalar potential
without colored fields already selected solutions that did
not break color once the colored degrees of freedom were
included. This is the case because the values of m& and
m —,generated by the renormalization-group equations
are quite substantial in comparison to the other mass pa-
rameters of the low-energy potential. As a result,
nonzero values of the colored field VEV's are disfavored.
Of course, if we choose to ignore the results of the
renormalization-group equations and allow m&, I—„and
A& to take on arbitrary values, then color-breaking mini-
ma can result, as we saw in Sec. IV.

APPENDIX 8: TRILINEAR HIGGS SELF-COUPLINGS

In this appendix, we summarize results for the trilinear
Higgs self-couplings using the II symbols defined in Eq.
(6.8). The results are

—2

—[(11."~',—II.'~, )v, + (11.'~, —II."~', )v, ]+ (II."~',+ lI."~',+ 112~,)+ II."~',

2

(B1)

[(II2 +II ")v +(11' +II' ) +(11 +II,b,')x]+Akv'2( —
—,'II3s, v, —

—,'II,„",v —II,b,'x) .
V2

2

[(II.",' —ll.",' )v, +(II.'" —11.",' )v, ]S,C+C

2

4 2
2

2&2
a+—

(B2)

(B3)
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