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Deuteron as a toroidal Skyrmion: Electromagnetic form factors
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The minimal-energy solution in the baryon-number-two sector of the Skyrme model is a toroidal-
ly shaped soliton, and its ground state can be identified with the deuteron. A stringent test of this
identification is provided by the electromagnetic form factors, since they probe the internal struc-
ture of the soliton. These form factors are calculated in the semiclassical approximation and are
found to be in qualitative, although not quantitative, agreement with the form factors of the deute-
ron.

I. INTRGDUCTIC)N

Most attempts to apply the Skyrme model to nuclear
physics have focused on extracting from the model a
nucleon-nucleon potential. ' A nucleus with atomic num-
ber B would then arise as a bound state of B nucleons in-
teracting through this potential, just as in conventional
approaches to nUclear physics. An alternative possibility
is that nuclei in this model arise in the same way as the
nucleon itself: namely, as quantum states of solitons. '

A nucleus of atomic number B would be identified with a
static soliton solution with topological charge B. The
structure of this soliton would be determined by the non-
linear interactions between the meson fields which appear
in the effective Lagrangian, and it might bear very little
resemblance to a collection of B individual B=1 solitons.

There are many opportunities for this soliton approach
to fail. First, there might not be a stable localized soliton
solution with topological charge B. It is possible that the
only stable solution could consist of B individual solitons
at infinite separation. Second, even if there is a stable lo-
calized soliton, it might not have a quantum state with
the correct spin and isospin quantum numbers of the nu-
cleus. The quantum numbers of the soliton can be deter-
mined by semiclassical quantization and depend sensitive-
ly on the symmetries of the solution and on its structure.
Third, the electromagnetic properties of the soliton might
bear little resemblance to those of the nucleus. Finally,
the dynamical behavior of the nucleus as measured by
scattering with pions, nucleons, etc. , may not be repro-
duced by the soliton. Unless this soliton approach to nu-
clear physics is fundamentally correct, we should expect
it to fail miserably under most of these tests.

The simplest case in which this approach can be tested
is the two-nucleon system, in which there is a single
stable nucleus, the deuteron, and also several unbound
but identifiable states. In Ref. 3 we studied the minimal-
energy B=2 soliton of the Skyrme model and showed
that it passes many of the tests described above. That a
stable B=2 solution exists was first pointed out in Ref. 4,
and the solution was first calculated by Verbaarschot,

Walhout, Wambach, and Wyld and by Kopeliovich and
Shtern. The symmetries of this solution are such that its
ground state is the unique state with the spin, isospin,
and parity quantum numbers of the deuteron. In Ref. 3
we pointed out that its first excited state has the quantum
numbers of the almost bound 'So state of the deuteron,
and some of its other states can be interpreted as un-
bound Nb, and b, b, states. (Because of the limitations of
our calculational method, we were unable to predict
which of these states should be bound. ) We also calculat-
ed the static electromagnetic properties of the deuteron,
including its charge radius, its magnetic moment, its
quadrupole moment, and the transition moment for pho-
todisintegration of the deuteron via its excitation into the
'So state. The sign and order of magnitude for each of
these quantities was consistent with the known properties
of the deuteron. We believe that these qualitative
successes provide striking evidence in favor of the soliton
approach to nuclear physics in the Skyrme model. It is
reasonable to expect that by using a more accurate
effective Lagrangian and a more accurate approximation
of the quantum field theory, one could obtain a quantita-
tive description of the deuteron.

One can argue, however, that none of the properties
considered in Ref. 3 really probed the internal structure
of the B=2 soliton. In particular, the shape of the soli-
ton in the Skyrme model, as measured either by the
baryon density or the energy density, is roughly toroidal.
The deuteron is identified with a quantum superposition
of the classical toroidal solutions, with a wave function
that corresponds to isospin I =0 and total angular
momentum j=1. This novel and counterintuitive model
of the deuteron bears very little resemblance to the con-
ventional model of the deuteron as a loosely bound state
of a proton and neutron. The toroidal structure would
not reveal itself in any static property; it could only be
probed by scattering some particle off the soliton with
momentum transfer comparable to the inverse radius of
the toroid.

The simplest probe to use is an electron, in which case
the momentum is transferred by a photon. We will there-
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fore calculate the electromagnetic form factors of the
deuteron in the Skyrme model using the semiclassical ap-
proximation. As was the case for the static properties,
we do not expect to reproduce the form factors of the
deuteron at the quantitative level. We are primarily in-
terested in their qualitative behavior. In particular, we
wish to determine whether the toroidal structure of the
soliton is evidenced by any unusual behavior of the form
factors which would be incompatible with those of the
deuteron. We will follow the notation of Ref. 3, repeat-
ing only as many formulas as are necessary to make this
paper self-contained.

The minimal-energy solution Uz(r) in the B=2 sector
of the Skyrme model can be brought to the form

—i)z3 ie(p, z)—z2/2 ip(p, z)~3

lii3k3;jj 3l3 , p'&. This state can be represented by a wave
function which is the product of the following three fac-
tors:
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where D'( 2) is a Wigner D function.

The symmetries (1.4) imply constraints on the Hilbert
space generated by the states lii3k3',jj 313,p&. The al-
lowed states are of the form

ie(p, z) &/2 iP 3Xe ' e
lii3zjj 3

—2i(;p &
—( —1) ~lii3 hajj 32—v; p &, (1.7)

where the functions F(p, z) and 6(p, z) must be deter-
mined numerically subject to the boundary conditions

( )
0 asr~~,

as r~O,
6(O, z) =+8( —z),

(1.2)

F (p, z) +C—
where 8(x) is the step function. The asymptotic form of
the solution as r ~ ao is

where the integer ir can range from 0 to min(i, [j /2j).
Note that for i(.=0, the state (1.7) is nonzero only if i +j
is odd. The Hamiltonian for the soliton is obtained by in-
serting the ansatz (1.5) into the Hamiltonian for the field
theory. The state (1.7) is found to be an energy eigenstate
with energy
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where C is a constant. The solution has a cylindrical
symmetry and an independent discrete symmetry:

Uz(p, /+a, z) =e 'U2(p, g, z)e

U2. (p ( z) r(U2(p 4' z)r(
(1.4)
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(1.9)
Applying translations, rotations, and isospin rotations to
U2(r) generates the complete eight-parameter set of
minimal-energy solutions.

In the semiclassical limit of the field theory, these are
the only degrees of freedom that need be considered. We
therefore make the following ansatz for the dynamical
chiral field:

We identify these as the deuteron and the 'So state of the
two-nucleon system, respectively. The higher-energy
states can be interpreted as NA and hA resonances and
other more exotic dibaryons.

II. COULOMB AND QUADRUPOLE FORM FACTORS

(1 3)
— where M2 is the classical mass of the soliton and U»,

V&&, and U33 are diagonal components of its inertia ten-
sors. Explicit formulas for these quantities are given in
Ref. 3. From the form of E, it is evident that the ansatz
(1.5) is inherently nonrelativistic and semiclassical.

There are two states with significantly lower energy
than the rest:

U(r, t) = 2 (t) U, (R(B (t) )[r—X(t)])2 (t)t, (1.5)

where X is the center-of-mass coordinate, A is an SU(2)
matrix, and R is a rotation matrix that can be con-
veniently parametrized in terms of a second SU(2) matrix
B: R (B)J =Tr(~'BriB )/2. A convenient basis for the
quantum states consists of the eigenstates of the
coordinate-fixed and body-fixed isospin operators I =K,
I3, and K3, the coordinate-fixed and body-fixed angular
momentum operators J =L, J3, and L3, and the
momentum operator P. We denote these states by

I

The semiclassical calculation of nucleon form factors
in the B=1 sector of the Skyrme model was presented in
Ref. 7. The same method can be applied in the B=2 sec-
tor. The ansatz (1.5) is inserted into the expression for
the electromagnetic current and the matrix element of
the resulting operator is then evaluated between the
states (1.9). We first describe the calculation of the
Coulomb and quadrupole form factors Gc(q ) and

G&(q ) of the deuteron. They are defined in the Breit
frame (p+p'=0) by

(dj3p'lJ (r=O)ldj3p&=GC(q )5., + G&(q )U , (3q'qb q25'")Ubt. —
J30

(2.1)
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where q=p' —p is the momentum transfer, q = ~q~, Md is the mass of the deuteron, and U, is the unitary matrix that
, relates the Cartesian and spherical bases. The isoscalar part of the charge-density operator is one-half the baryon densi-
ty operator:

J (r) = ,'8 —(R(8)(r—X))= — sin F (F,B —F B, )
1 . 2 sine

2772 r-~(ai~r —X)

Its operator character resides completely in the argument r which contains the operators B and X. Their matrix ele-
ments are diagonal in i, i 3, k3, so we will suppress these quantum numbers.

The dependence of the matrix element on the momenta is evaluated as follows:

&j'jill p'~~'(r=0)~jul~ p&=&j'jul p'~-,'8'( —R(8)»ljAl~;p&

,' f—d Xe 'q &j'j l~~8 ( R(8—) X)~jj~l~&

d X B X j'j3l3 exp iqR B X jj3l3 (2.3)

In the second step we used the explicit formula (1.6) for the wave function (X~p&, and in the last step we made the
change of integration variable X—+ —R (8) X, where the superscript T represents transpose. The exponential can be
expanded in terms of irreducible representations of the SU(2) matrix 8:

exp[iq R (8)'X]=4' g i j~(q~X~)Y (X)*D (r Br ) ~ Y (q) . (2.4)

Since 8 (r) is a function of p and z only, the integral in (2.3) will be nonzero only for the m=0 term of (2.4). The only
operator in this expression appears in the factor D (r Br )0 . Using the explicit wave function (Bj~j ~l~ & in (1.6), its
matrix element is evaluated as follows:

1/2 1/2

(j j'&lPD (r Br )0 .~gj&ls &
=f dB D (ir Bt)*, , D (r Br ) D (ir 8 )2~2 2~2 j 313

' 1/2 ' 1/22j'+1 2j +1
dB D~ (B), , D'(ir B)0 .D~(B )

27T2 2m2

1/22j'+1
2j+1 gD (~r )0 &J'll~mljl&&(j'lj &m lgj~& . (2.&)

In the second step we used the invariance of the SU(2) integration measure dB to make the change of variables
8~8 (ir ). In the last step, we made use of the standard SU(2) integration formula

2

f dB D'(8), »(8),D "(Bt), = (ijm&mz~kmq &&ij Imzm~km (2.6)

Using the identity D~(pr )0 =( —1)1$ 0 and combining (2.3), (2.4), and (2.5), we obtain the general expression for the
matrix element of J (r=0):

1/2
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(2.7)

Specializing to the case of the deuteron, this becomes

2 —2Z2
(dj~p'~J (0)~dj~p&=6, , —,

' f d rjo(qr)8 (p, z)+U. , (3Q q o' )U& —,
' f d r — j2(qr)80(p, z) .

J 3Jg JgQ
(2.8)

Gc(q )=—,
' f d rj 0(qr)8 (p, z),

1 2 3 1 3P —2z
Gg(q ) =— f d r j2(qr)B (p, z) .

(2.9)

Comparing with the definition (2.1) of the Coulomb and
quadrupole form factors, we find

,' fd rr 8—(pz),

Q =
—,
' f d r(p —2z~)8 (p, z) .

(2.10)

l

The limiting behavior of these form factors as q ~0 is
Gc(q )~1 'q (r &d and G&—(0—)=MdQ, where (r &d

and Q are the charge radius squared and quadrupole mo-
ment of the deuteron obtained in Ref. 3:
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III. MAGNETIC AND TRANSITION MAGNETIC
FORM FACTORS

The magnetic form factor of the deuteron is defined in
the Breit frame (p+p'=0) by
(dj'p'~ J'(r=O) ~dj p)

1
G (q )U. , (q'5' —5"q")U .

2M„ bj3

The calculation of this form factor is much more compli-
cated than that of Gc(q ) and G&(q ), so we will only

quote a few intermediate results. Only the isoscalar part
—,
'B' of the electromagnetic current contributes to the ma-

trix element. Inserting the ansatz (1.5) into the expres-
sion for J', the current becomes

(dj 3p'~J'(0)~dj3p) = (dj3p'~(IL„R (B)2,[zB (r)]—R (B)„[psinPBo(r)]]
»

—ILz, R (B)„[zB(r)]—R (B)3,[pcosPB (r)]I ) ~dj 3p ), (3.2)

where V» is a diagonal component of one of the inertia tensors of the soliton and the functions of r inside the square
brackets are to be evaluated at r= —R (B)X. We have dropped operators of the form I K, OI, where 0 is some opera-
tor, since K annihilates the deuteron. Operators of the form IP, OI have also been dropped since they vanish in the
Breit frame. Following steps that are similar to those leading up to (2.8), we arrive at the final result

(dj3p'~J'(0)~dj3p)=U. , (q'5' —5'Q")Ub f d r j,(qr)B (p, z) .
13Q »

Comparing with (3.1), we find that the desired form factor is

GM(q )= — d r ji(qr)B (p, z) .1 p 3 1 3 p +2z, 0

2Md 8V» q T

The expression for V» is given in Ref. 3:
2

V»= ,'f f d r (zF—pF,) +s—in F (z6~ —p6, ) +4z
p'

(3.3)

(3.4)

+ f d r sin F [(zF pF, ) +z —(F +F, )]
e p'

2

+sin F [(z6 —p6, ) +z (6 +6, )]+ ,'r sin F(F,6—F6,)—
p'

(3.5)

The limit of this form factor as q —+0 is GM(0) =2Mdpd, where pd is the magnetic moment of the deuteron calculated
in Ref. 3:

pd= f d r(p +2z )B (p, z) .1

11
(3.6)

These methods can also be used to calculate the form factors for transitions from the deuteron to its excited states.
Since these are difBcult to measure experimentally, we will consider only the form factor for the transition to the So
state. We define the form factor GT(q ) by the following matrix element evaluated in the Breit frame:

('S i3p'~J'(r=O)~dj3p) = ie'~"qJUk 5;— G (q ) .1

d
(3.7)

In this case, it is the isovector part I3 of the current which contributes. Upon inserting the ansatz (1.5) into I3, one
finds that as far as the isospin quantum numbers i, i3, and k3 are concerned, the only nontrivial operator is an overall
multiplicative factor of Tr( 2 r 3 r')/2. Its matrix element is

( li30~ —,'Tr(Ar 2 r')~000) = — —5' 5,. 0 .
1 (3.8)

Given this information, the matrix element reduces to

('Soi3p'~ J'(0)~dj3p) = — 5; 0(000;p'~R (B)k; [I(p,z)e "rJ]~ 1j30;p),1 (3.9)

where the expression in square brackets is to be evaluated at r= —R (B)X and the function I(p, z) is

I(p z)= —,'f sin F + sin F [F +F,+sin F(6 +6, )] .2. 2 sine 2 . 2 sine
p e p

(3.10)
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After calculating the matrix elements, the final result is

& '~o4p'I J'(0) ldj3p &

10

2
=ie'~ q JUk~ 5; o—,

' fd r j, (qr)I(p, z) . (3.11) 10

Comparing with (3.7), we read off the transition form fac-
tor:

2

GT(q )= ———f d r j,(qr)I(p, z) . (3.12)2'„T 2 q r

Its value at q =0 is GT(0)=2Mdpd „~, where pd „„ is

the transition moment for the photodisintegration of the
deuteron calculated in Ref. 3:

10
0

q (Gev )

pd. — — d P pI p~Z

IV. DISCUSSION QF RESULTS

(3.13)
FIG. 2. Skyrme-model predictions for the absolute values of

the magnetic (M) and transition magnetic ( T) form factors of
the deuteron, normalized to 1 at q =0.

(r )' =0.92 fm,

Q =0.082 fm

pd 0 74px ~

Pd np 449+ r

(4.1)

where pz is the nuclear magneton. These quantities
agree in sign and order of magnitude with the experimen-
tally measured properties of the deuteron.

The absolute values of the form factors Gc, G&, GM,
and GT are plotted in Figs. 1 and 2. The form factors

10

We have calculated the form factors numerically for
the same parameter set used in Ref. 3: f =108 MeV,
e=4.84, m /ef =0.263. This parameter set optimizes
the predictions for static properties of the nucleon. It is
not the optimal set for describing the B=O sector of the
Skyrme model, since the physical value of the pion decay
constant is f = 186 MeV. We should, therefore, not ex-

pect it to give quantitative predictions in the B=2 sector
either. The static electromagnetic properties of the
deuteron for these parameters are

~ (q') =G, (q')'+-,'q'G~(q')'+-, 'qG (q')',

&(q )=—3r)(1+r))GM(q )

(4.2)

where r)=q /4Md and q =q —qo. The predictions of
the Skyrme model for these structure functions are
shown in Fig. 3, along with some recent experimental

10

have been all normalized to have the value jL at q =0.
The qualitative behavior of these form factors is in fact
similar to that of more conventional models of the deute-
ron. The dips in the Coulomb and magnetic form fac-
tors are due to the form factor going through 0 as it
changes sign. In contrast, the quadrupole form factor
falls oA monotonically. We see that the toroidal struc-
ture of the soliton does not lead to any unreasonable be-
havior ip the form factors.

While the qualitative behavior of the form factors is
reasonable, they do not fare so well in a quantitative com-
parison with experimental data. The combinations of
form factors that are measured directly in electron-
deuteron scattering are

10

10

10

1 0

10
0 2

q (G=v )

FIG. 1. Skyrme-model predictions for the absolute values of
the Coulomb (C) and quadrupole (Q) form factors of the deute-

ron, normalized to 1 at q'=0.

10
0 2

q (Gev )

II
l I I I I I I

3

FIG. 3. Skyrme-model predictions for the structure functions
A (q ) and B (q ) for elastic electron-deuteron scattering, com-
pared with experimental data for A (solid squares) and B (solid
circles).
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+J",„(r;X„X~,A „A~) . (4.4)

data. ' The most obvious discrepancy is that the
Skyrme-model predictions fall oF much more slowly than
the data; they differ by several orders of magnitude at
large q . The asymptotic behavior of the form factors,
however, depends sensitively on the shape of the baryon
density B(p,z). It is relatively easy to find functions
F(p, z) and B(p,z) for which the form factors do fall off
at the desired rate. We have not, however, succeeded in
finding simple forms (i.e., simple enough so that the form
factors can be calculated analytically) for F(p, z) and
e(p, z) which give good fits to both A (q ) and B(q )

simultaneously.
While the deuteron form factors in the Skyrme model

have the same qualitative behavior as in more conven-
tional models, this behavior arises in a very di6'erent way.
The starting point for conventional calculations of the
form factors is the impulse approximation. For example,
the simplest approximation to the Coulomb form factor
is

Gc(q )=[Gg (q )+G E(q )]

X J dr[u (r) +w(r) ]jo(qr/2), (4.3)

where Gz and GE are the electric form factors of the pro-
ton and neutron and u (r) and w (r) are the S, and D,
components of the radial wave function of the deuteron.
Note that in (4.3), the q dependence arises both from the
Fourier transform of the wave function of the deuteron
and from the nucleon form factors. In the Skyrme model
prediction (2.9) for Gc, the q dependence arises only
from a Fourier transform of the baryon density of the
toroidal soliton. That this calculation produces a qualita-
tively reasonable form factor is rather remarkable, since
the toroidal soliton bears no resemblance to a composite
of two individual B=1 solitons.

There has been a previous attempt by Nyman and Ris-
ka" to calculate the deuteron form factors in the Skyrme
model. Instead of the minimal energy solution Uz(r),
they used a product ansatz configuration of the
form A, U, (r —Xi)~ i'I2U, (r —X2)~2 whe~e U, (r)
=exp[iF(r) r r] and F(r) was determined phenomeno-
logically by fitting the isoscalar nucleon form factor. The
electromagnetic current can then be decomposed into
three terms

J"(r)=J", (r —X„A, )+J2 (r —X2, A 2)

There is a corresponding decomposition of the form fac-
tors; for example, Gc =Gc+ Gc+ Gc". Nyman and Ris-
ka replaced Gc+Gc by the conventional result (4.3) of
the potential model in the impulse approximation. They
calculated the exchange term Gc" by sandwiching the
operator J",„ in (4.4) between deuteron potential model
wave functions for the coordinate X, and X2 and
Skyrme-model nucleon wave functions for the SU(2) ma-
trices 2

&
and Az. While they obtained very reasonable

results, we regard that as rather fortuitous. We believe
that the use of the product ansatz has been discredited by
the discovery that it does not probe the lowest-energy
configurations of the B=2 system. Furthermore, a sepa-
ration of the form factor into impulse and exchange con-
tributions is very unnatural in a soliton model. Skyr-
mions are extended objects which lose their individual
identities when they overlap. Finally, Nyman and Riska
used the Skyrme model only as a supplement to conven-
tional potential-model calculations, and as such their re-
sults cannot be regarded as predictions of the Skyrme
model alone.

In this paper we have calculated the electromagnetic
form factors for the deuteron in the Skyrme model under
the assumption that the deuteron should be identified
with the ground state of the toroidal B=2 Skyrmion.
The qualitative behavior of these form factors is indeed
similar to those obtained from more conventional models
of the deuteron. This provides support for this uncon-
ventional and counterintuitive model of the deuteron. In
spite of the fact that the constituent nucleons have com-
pletely lost their individuality, this model seems to have a
remarkable ability to reproduce qualitatively the physical
properties of the deuteron. At the quantitative level, this
approach is far from competitive with conventional treat-
ments of the deuteron based on a pot'ential model. How-
ever, by using a more accurate efFective Lagrangian and
going beyond the semiclassical limit, one could hope to
develop this model into a quantitative description of the
deuteron.
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