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Semileptonic B and D decays in the quark model
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We predict the matrix elements and resulting electron spectra for semileptonic meson decays us-
ing the quark potential model. Particular attention is paid to the high-energy electron end-point re-
gion in B decay since it is crucial to a determination of the b~u weak mixing angle. It is argued
that in this region the usual inclusive ("quark decay") calculations are unjustified and must be re-
placed by explicit sums over decays of the original meson into low-mass exclusive hadronic final
states.

I. PREFACE O1 O2 O3 and a phase 6:

Soon after the experimental discovery' of some
difficulties with the "quark decay" model for the high-
energy end point of the electron spectrum in B~Xev„
three of us published a critique of the use of the model in
that region along with a recalculation of the end-point
spectrum based on an explicit summation (via the quark
potential model) of the spectra due to the low-massed ha-
dronic resonances which contribute there.

The details of this calculation and of our misgivings
concerning the alternatives to it, although available,
were not published. In the meantime, several factors led
us to decide to publish an expanded and revised version
of these details. One is that we have completed new cal-
culations which allow us to confirm some speculations
made in our earlier work. ' We now also have a better
understanding of the precise relationship of the "quark
decay" calculations to ours, and as a result we are in a
position to expand considerably upon the reasons for
preferring (at least in principle) our approach. Finally, a
recent investigation within the framework of our ap-
proach has uncovered a potentially serious uncertainty in
our calculations. We would also like to address this is-
sue, correcting in the process a mistake in our previous
work.

II. INTRODUCTION

In the standard model, based on the gauge group
SU(3) X SU(2) XU(1), the quarks couple to the W bosons
through the weak current

J"= —u;y"(1 —y5) V;.dj
—= —V; jt' .

g2

In Eq. (1), i,j H ( 1, . . . , n J are generation indices and V,"
is an n X n unitary matrix that arises from diagonaliza-
tion of the quark mass matrices. At present there is ex-
perimental evidence for three generations of quarks and
leptons. In this case it is possible, by redefining the
phases of quark fields, to write V in terms of three angles

C1
—$1C3 $1$3

V= $1c2 c1c2c3—$2$3e clc2$3 +$2c3ei6 i6

S1$2 C1S2C3 +C2S3e C1S2S3 C2C3e
i6 i6

(2)

d I (B—+Xev) =
I V,i, d f'(B +X,ev)—
+

I v.b I'd f'(B X.e v), (3)

where d f'(B ~X ev) denotes the contribution to
dI (B~Xev) from the part of the weak current (exclud-
ing the weak-mixing angles) where a bottom quark b cou-
ples to a quark q =c or u. If the functions d f'(B ~X,e v)
and df'(B~X„ev) can be predicted theoretically, then
the experimental electron spectrum can be used with Eq.
(3) to determine the ratio

I V„b I /I V,b I, whilst the abso-
lute semileptonic decay rate can be used to determine the
magnitudes of these weak mixing angles. In particular,
the contribution to I (B~Xev) coming from the b ~u
coupling can, in principle, be isolated experimentally by
examining the electron spectrum dI /dE, in the end-
point region near the maximum allowed electron energy,
since only b ~u can contribute for
E, ) (m~ —mD ) l(2m~ ).

In the free-quark decay model where the b quark de-
cays freely from rest,

Here, c;—:cosO;, s;—:sinO, -, and the angles O; are chosen
to lie in the first quadrant.

In the standard model the elements of the matrix V, .

are fundamental parameters and their values must be
determined experimentally. Information on O1 comes
from nuclear P decay and semileptonic hyperon decays,
whilst information on the angles O2 and O3 can be ob-
tained from semileptonic B-meson decays. The
dift'erential rate for semileptonic B-meson decay
(B = bd, B =—bu ) has the form ( V» ——V„t, and

V&3
——V.b )
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2 5GFmbf'(B —+X ev) = f (m /m„),
192m

(4)

where f(x)=1—8x +8x —x —24x lnx. This free-
quark decay model (with and without perturbative QCD
corrections ) has become the traditional tool for discuss-
ing semileptonic decays of heavy quarks. It is known to
give a satisfactory understanding of many of the features
of such decays, including a semiquantitative description
of their absolute rates and good predictions for semilep-
tonic branching ratios. Perhaps for this reason it was
hoped that this simple model could also be applied to the
prediction of the shape and normalization of the
B—+Xev, end-point spectrum. This paper and our ear-
lier ones ' are motivated by our belief that the use of the
free-quark decay model cannot be justified in precisely
this region.

Whilst our reasons for rejecting the free-quark decay
model are not very subtle, our point of view is
sufficiently iconoclastic for us to feel that it is essential to
discuss them fully. The focus of our concerns is the fact
that the end-point region is, from kinematics alone, popu-
lated via the production of low-mass hadronic systems.
In such circumstances the free-quark decay model will
sufFer from both kinematical and closely related dynami-
cal problems.

Let us begin with an illustration. Imagine a world in
which pair creation by the strong interaction is
suppressed. (This imaginary world corresponds to QCD
in the large-X, limit. Alternatively, we can view it as an
approximation in which QCD is first solved in fixed sec-
tors of Fock space with mixing between sectors treated as
a perturbation. ) Then the decay B—+Xev, will be sa-
turated by hadronic systems X which are qd resonances.
If, for simplicity, we ignore the motion of the quarks in
the decaying B meson, then in the free-quark decay mod-
el the recoil hadronic mass mx=(ps —p, —p ) will be
treated as continuously distributed from a minimum
value (m~+md) up to a maximum value (m~+md)
+ [(md Imb )(mb m~ ) ]. On t—he other hand, in our il-
lustrative world the quark q would be captured into one
of the discrete eigenstates in which qd form a confined
meson spectroscopy. In these circumstances, the free-
quark differential decay rates will approximately hold (in
an energy average sense) in only those regions of phase
space where the density of confined states has ap-
proached that of the continuum. This corresponds to the
usual parton model condition that p &&1 GeV/c. How-
ever, at low mz the "true" hadronic recoil spectrum will
be controlled by a sparse set of discrete states which will
at best only remotely resemble the free spectrum:
dI /dmz in this region will consist of a set of well-
separated spikes. We therefore see that in this limit
(large %, or treating pair creation as a perturbation), on
purely kinematical grounds the free-quark decay model
cannot possibly reproduce the difFerential spectrum
dI /dm& at low mz. While dI /dm& is not a very useful
quantity experimentally, this failure rejects directly on
the high-energy end-point region of the electron spec-
trum dl /dE, . The electron energy spectrum can be
viewed as a superposition of m~-dependent projections of

the three-body Dalitz plots for B~Xev, for fixed mz,
each with their corresponding end points
E, '"=(ms —mx)/2m', so that, as already stated, low

mz determines the high-E, spectrum. Of course, one
might hope that the parton model "averaging" of the
confined spectrum will extrapolate right down to the
minimum allowed hadronic mass mz. This "averaging"
would necessarily be rather crude, since as each new
discrete m& begins to contribute to the electron spectrum
(as the energy drops below its end point), it has associated
with it a threshold —with its prescribed threshold
behavior —of which the free-quark decay model is com-
pletely ignorant. Even allowing for this failure, we can
see no justification for such an optimistic view of the
range of validity of the free-quark decay model. Its kine-
matic failures are, after all, a superficial reAection of the
deeper dynamical problem of failing to take into account
the strong, nonperturbative interactions which create the
confined spectrum. In other words, in the low-mz part of
the spectrum there is no justification for the parton mod-
el mnemonic that "the short-distance physics determines
the inclusive cross section; everything else happens with
unit probability. "

Before leaving the world of our illustrative example, let
us pause to consider a few particulars of semileptonic de-
cays. In b —+c decays, the free-quark mz spectrum in the
above model (with typical quark masses given in the body
of the paper below) ranges continuously from 2.15
GeV/c to 2.31 GeV/c, whilst the experimental spec-
trum seems to be dominated by D and D * production at
the two (nearly) discrete masses of 1.87 GeV/c and 2.02
GeV/c . Although the continuous spectrum can be
arranged —by sensible but nevertheless ad hoc manipula-
tions of the free-quark decay model —to give the correct
E, end point and thereby to correspond to an mz spec-
trum more closely related to the experimental one, the
observed dominance of the D and D* must in itself be
viewed as antithetical to the parton-model approxima-
tions. We can certainly see no reason to expect the par-
ton model to serve in these circumstances as anything
more than a rough guide in the "duality" sense men-
tioned above. [Note that absolute semileptonic rate pre-
dictions of the free-quark decay model are in any event
not very significant since, for example, as mb is varied by
+300 MeV/c around 5 GeV/c, the free-quark rate, Eq.
(4), for B~X,e v, varies by about a factor of 2.] In b ~u
decay, the corresponding range in mz is 0.66 GeV/c to
1.38 GeV/c, so that —given especially that the motion
of the initial quarks will broaden this range —it is
justified to expect that the parton-model approximations
will be valid at high I&, where the light-quark spectrum
has become reasonably dense. Since hadronic form fac-
tors lead to E, spectra which peak just below the max-
imum for a given mx (see below), this corresponds to an
applicability of the free b-quark decay model at low E, in
the b ~u spectrum. There is, however, still no
justification, even here, for the use of this model at the
highest E, corresponding to the lowest mz. For exam-
ple, in the resonance approximation, only the projections
of the m and p Dalitz plots will contribute to the electron
spectrum for E, ~ 2.49 GeV (where the L =1 resonances
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clustered around 1.25 GeV can no longer contribute),
with the p contribution cutting off at 2.58 GeV whilst the
~ contributes all the way to the physical end point at 2.63,
GeV. In the free-quark decay model this end-point re-
gion receives (pointlike) contributions from the entire sec-
tion of the Dalitz plot in which the recoiling light quark
u and the V, are approximately collinear, so that the total
rate actually peaks very near the maximum allowed E, :
with the typical constituent-quark masses we use below,
the free-quark rate peaks only 0.15 GeV below the end
point. However, it seems likely that in nature (as in the
model we present below), contributions in this region are
suppressed because the ~ and p are soft hadronic objects.
Since their momentum-space wave functions have mean
momenta of the order of 300 MeV/c, form factors will
give very little amplitude for their formation when the
collinear u and v, contain a high-momentum u quark
(~p„~ from free-quark decay ranges from zero to about
2.5 GeV/c in the b rest frame or from zero to about 0.6
GeV/c in the m~ rest frame). The pointlike amplitude
for producing these high —three-momentum u quarks in a
pseudoscalar or vector combination with the "spectator"
d quark is not, of course, lost: it feeds the amplitudes for
producing excited states of the m. and p. However, since
elementary kinematics forbids the main effects of these
pointlike amplitudes to appear at the highest E„ the
peaking of the electron spectrum will be shifted to lower
values.

Despite this failure to describe the spectrum at high
E„we should emphasize that in this picture the free-
quark decay model (and the ancillary QCD jet model)
would hold as an approximation which would become in-
creasingly accurate as the mass of the decaying b quark
increased. In particular, we note that the range of ha-
dronic masses populated by the decay with a light-quark
spectator leads to all the thresholds falling within a re-
gion 5E just below the maximum energy, which becomes
an increasingly small fraction of the total E, range: as
mb —+ oo)

6E md

E Inax me b

(we once again neglect quark motion in the hadrons).
This happens even though the highest-mass mz being
produced is becoming large: as mb —+ ~,

mx-"=(m, m, )'" .

The crucial point is that the model does not produce
states with m~ ranging up to mz -mb+md as allowed
by pure kinematics, but rather (as mb —+ ~) only over an
infinitesimal fraction of this range. Thus we see that
there is, for example, no paradox in producing high-
momentum jets through "soft" qd bound states: the jets
of highest momentum ( ——,

' mii) correspond to large
recoils sustained by states which have a density ap-
proaching that of the continuum and masses around
(m„m, )' ' «'m~, in which the quarks each have mean
center-of-mass momenta of —,

'
( md m b )

' corresponding,
in the original B rest frame, to a recoil quark momentum
of —mg.

In our discussion of the free b-quark decay model, we
have so far neglected perturbative QCD corrections.
Gluon radiation will, with a probability of order
a, (mb)/n, p.opulate hadronic final states with all masses
up to the kinematic limit and thereby produce effects
which are missing from our earlier picture. However, if
the free b-quark decay picture is to be at all useful, the &-

quark mass must be large enough for these effects to be
only a small perturbation. Also, at low mz it is especially
clear that gluon radiation cannot cure the flaws in the
free b-quark decay picture: we know empirically that the
gluonic degrees of freedom of QCD are frozen out at low
mass. There are therefore no grounds for believing that
the inclusion of gluonic degrees of freedom will
significantly modify our basic conclusions regarding the
electron end-point spectrum. Certainly, all the kinematic
arguments against using the free-quark decay model ap-
ply with equal force to the radiative final states.

%'e have seen that in a limit in which pair creation is
suppressed, the free b-quark decay model is likely to be
valid in the usual (inclusive) QCD jet limit, but invalid
near the high-energy electron end point. We next want
to examine whether this conclusion can be expected to
survive as we turn on pair creation (or leave the large-X,
limit). As a first step, motivated by the fact that at least
most of the known low-lying mesons in which we are in-
terested are narrow, we treat the amplitude for the pro-
duction of dynamical pairs as a perturbation. It will then
create, in lowest order, a small additional qqq q piece in
the previously pure qq meson state-vectors as well as a
coupling between these stable eigenstates and the meson-
meson continuum which will give them widths. The ad-
dition of widths to the stable bound states of our earlier
picture presents no problems for our arguments: its main
effect is to give an effective mz spectrum which will more
closely resemble the true resonance spectrum. In particu-
lar, this new effect does not dilute the argument against
using the free-quark decay model at low m~: it only sug-
gests that the free-particle spectrum will "average the
resonances" in a more direct way once the widths of the
resonances become comparable to their spacings. There
will be another effect of this presumed perturbation
which cannot be viewed as a simple modification of our
earlier picture. When the "four-quark" (i.e., qqq q) com-
ponent of the B meson decays, the recoiling quark from
b~q must be recombined in lowest order with a q qq
state. Part of the time this recombination will be into the
four-quark component of X (e.g. , for elastic scattering as
Q ~0, each Fock-space component of the initial state
scatters coherently into the final state), but it can also
feed a nonresonant meson-meson continuum. This non-
resonant continuum will also be a small perturbation on
the resonance spectrum, to the extent that resonance
widths can be treated as a small perturbation on the spec-
trum. Given the success of the narrow resonance approx-
imation and of the valence-quark picture of mesons, it
therefore seems unlikely that such nonresonant continua
are very important.

Resonance dominance has, of course, been studied in
inelastic lepton-nucleon scattering. The analogue to the
action of our Aavor-nonsinglet b~q current occurs in
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nondiffractive lepton-nucleon scattering. (Diffractive
scattering, which occurs when the virtual photon creates
a quark-antiquark pair which then interacts with the nu-
cleon, is not dominated by nucleon resonances in the final
state. No analogous processes exist in B-meson decay,
since the final state cannot contain a bb pair). Such
nondiffractive scattering, which can be studied by exam-
ining nonsinglet structure functions, appears experimen-
tally to be consistent with being saturated for m ~2
GeV/c by the production of (overlapping) resonances
with cross sections which rise and then fall with increas-
ing momentum transfer with a scale of I GeV/c (Ref. 7).

In addition to such empirical checks of resonance dom-
inance, nonresonant continuum production can also be
studied theoretically. In the approximation in which
quark pair creation is treated to lowest order, the reso-
nant contribution to B~X&X2ev, occurs when the ac-
tion of the weak current is followed by pair creation,
whilst nonresonant production occurs when pair creation
acts before the current. Since both are controlled by the
strength of the quark pair-creation operator, which is
known from the study of meson decay (see, for example,
Ref. 8), the continuum production can in principle be es-
timated. In the absence of such estimates, and especially
considering the evidence and arguments that nonresonant
production will be small, it certainly seems worthwhile to
predict, as we do here, the resonance contributions to
semileptonic decay. This is at least the first step towards
realizing a full sum over exclusive semileptonic decays.

Although we believe that our resonance dominance as-
sumption for semileptonic decays will prove to be reason-
ably accurate, we should perhaps emphasize that if in
some cases nonresonant processes are important, there is
certainly no reason to expect the free-quark decay model
to do a better job of describing them: apart from some
small radiative corrections, the free-quark model also ig-
nores the presence of extra quark-antiquark pairs in the B
meson. On the other hand, the resonance model can at
least partly take into account strong pair creation
through its inclusion of resonance widths, whilst the
free-quark decay model cannot. As an explicit example
of this, consider the inclusive semileptonic spectra of
B = —bd and B =bu decay from the b —+ u transition.
In the free-quark decay model, ignoring isospin violation,
these two spectra are identical, but in the resonance de-
cay model they are different, as they should be. The
point is that bd ~ud whilst bu ~uu. The former transi-
tion thus creates a pure I=1 hadronic final state, whilst
the latter has equal amplitudes to create I= 1 and I=O.
Since the I=1 and I =0 hadronic spectra differ, the two
electron spectra will differ. To begin with, they have
different thresholds: for I= 1 it is m& ~ m, but for I =0
we have mz )2m . The thresholds would only coincide,
in the narrow resonance approximation, if the Okubo-
Zweig-Iizuka (OZI) rule were exact so that m =m„,
m =m„, etc. Even in this limit, the spectra would differ,
as the widths of degenerate I=1 and I=O mesons need
not be the same since ordinary m, &m„SU(3)-symmetry
breaking can create width differences. One example we
will encounter below occurs in the J =0++ mesons
where, even in the OZI limit, I z &/I z 0- —,'. Thus,

even without pair creation our resonance approximation
would be no more "incomplete" than a free-quark decay
calculation, and with resonance widths taken into ac-
count it clearly contains physics elements that the free-
quark decay model cannot describe.

We warned the reader at the beginning of this Intro-
duction that we would not be brief in delineating our
reasons for doubting the validity of the free-quark decay
model in the electron end-point region. We hope that
even readers who were ready to accept this conclusion
more easily will have appreciated seeing the case laid out
in detail. We also expect that this discussion, whilst mak-
ing it clear that our approach is in principle an improve-
ment over the free-quark decay model, will have allowed
the reader to anticipate that it still has many difficulties
to overcome.

III. METHOD

We believe that the foregoing arguments convincingly
demonstrate the need to replace the free-quark decay
model for the end-point electron spectrum in semilepton-
ic weak decays by an explicit summation over the spectra
generated by exclusive channels. Unfortunately, it is
easier to decide what needs to be done than to do it.
Indeed, one of the other main conclusions of this and of
our previous work ' is that there are considerable
theoretical uncertainties in carrying out this program, so
that the extraction of accurate values or stringent limits
on weak-mixing angles from such data will be corre-
spondingly more difFicult than was previously believed.

The problem, of course, is that there is no rigorous
method available at the moment for handling the neces-
sarily nonperturbative physics of the exclusive B~X,
and B~X„ transitions. One must therefore rely on a
model for these states and, as the Introduction implies,
we have chosen to rely on the constituent-quark model.
This model is a phenomenological model of @CD in the
nonperturbative regime, which has had considerable suc-
cess in describing hadronic structure. It is especially well
suited to (and well tested for) describing the low-lying
resonances that contribute to the B~Xev, end-point
spectrum. Apart from sounding the warnings made
above (and amplified below) regarding the inapplicability
of the free-quark decay model to this problem, the other
main purpose of this paper is to study this spectrum us-
ing the nonrelativistic quark potential model. Although
we will discuss the uncertainties inherent in this calcula-
tion in some detail later (along with some possible im-
provements to the simple version of the model used here),
we would like to state immediately that we will not be
able to claim that our results are very reliable, especially
for the crucial B~X„ev, transitions. On the other
hand, for reasons that we hope are now obvious to the
reader, we believe that a calculation of this type is essen-
tial if we are to be able to extract Vb„/Vb„or a limit on
it, from the data. Thus, although we will conclude that
there are substantial uncertainties in our predictions, we
will argue that they are a realistic reAection of the state of
our understanding of nonperturbative @CD at the
present time.
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The transition matrix element for
B ' ~X+' ev, is

the process

GF—I;B~,I „(I —)5)U. &X,(pxsx)~~(~~8(PB) &e p e

trix [formula (2)] which is appropriate for the B~X
transition, and j b is the charged hadronic current in Eq.
(I). Since the hadronic tensor

It .—= & &8(pB)Ij'.IX(pxsx) &&X(pxsx)jl„lB(PB)&

where V b is the element of the Kobayashi-Maskawa ma-
I

must have the form

hpv kg@v+f3++(PB+PX)p(PB+PX)v+1 + —(PB+PX)IJ(PB PX)v ) —+(PB PX)p(PB P»
+~——(PB Px) (PB Px) +trE (PB+Px) (PB Px)

2mx
+y

mg

we can easily show, if the mass of the electron is neglected, that the differential decay rate of the B meson depends only
on a, P++, and y, and is given by

2 5 2
d I. 2G~ma a mx

y+2I3++ 2X —4x —y —yy 1 —' —4x +y (8)
dx dy 32~ mg

where x:F., ImB a—nd y =tlmB=(pB —px) ImB. Of
course Eq. (8) holds for other M~M'e v, decays with
the appropriate substitutions; for decays to e+v, one
must in addition reverse the sign of the term proportional
to y. The effects of resonance widths for the recoiling
system X are discussed below and in Appendix D.

We will estimate a, P++, and y (for each channel X)
using the quark model, building up the total electron
spectrum d I /dx by summing over contributing states X.
If we include states X with mass up to mz, we will then
have the complete spectrum from the maximum value of
x down to x= —,'[I —(mxImB)] so that this method, in

contrast with a free-quark decay calculation, is potential-
ly very suitable for studying the crucial end-point region
of the spectrum.

Central to this calculation is, obviously, the possibility
of reliably estimating the matrix elements & X

~

j"~8 &, and
the inclusion of all relevant states which will contribute
above some minimum E, . Our first assumption, the ra-
tionale of which has already been discussed extensively in
the Introduction, is that the sum over final hadronic
states X will be approximately saturated by the ordinary
quark-model resonances. This approximation thus ig-
nores nonresonant production of multihadron states (for
the reasons stated earlier) as well as gluonic excitations of
mesons (meson hybrids). The latter approxiination will

be perfect down to values of E, which correspond to the
threshold for producing hybrids, and will become in-
creasingly dubious at higher mz, where the spectrum of
such states is expected to become quite dense. (The exci-
tation of these states is connected with the excitation of
gluon radiation in the perturbative picture, but the con-
nection is not a simple one. ) This observation, along with
the sheer complexity of extending the sum over X to high
mz, will mean that in practice we will truncate our calcu-
lation at some maximum mz. To the extent that our
truncation leaves out states, our results will then only ap-
ply above some minimum E, .

A basic element of our method' is to make a
correspondence between the Lorentz-invariant form fac-
tors f; which occur as the coefficients of the various vec-

tors XI" that one can form from available kinematic vari-
ables in the expansion of the matrix element
&X(p sx)x~j"(0)~8(p )B& of the physical 8 and X, and
those (which we call f; ) which appear in the quark-model

calculation of &X(pxsx)~ j (0)~8(pB ) & [where, for exam-

ple, ~8(pB ) & is the quark-model state vector in the weak-
binding, nonrelativistic limit]. This "mock-meson
method" (which is discussed more fully in Appendix A) is
based on the observation that in this limit the quark-
model state vectors form good representations of the
Lorentz group, so that the f; and f; are in one-to-one
correspondence.

In our earlier work ' we did not appreciate the full

power of this method: we applied it only to form factors
that were the coefficients of terms that were of zeroth or
first order in the recoil momentum pz, believing that
"higher-order" form factors, being of order v /c, were
neither calculable nor important. The recent work of Al-
tomari and Wolfenstein demonstrated that the neglect of
such form factors may not be justified. We have reexam-
ined this issue, and have found that we can extend our
calculation to include them. When we do so, we find that
it was indeed a mistake to ignore them in general. The
required extension of the method is discussed below and
in Appendix A.

Although the accuracy of our form factors will obvi-
ously depend directly on the validity of the nonrelativistic
quark model, it should be emphasized that this method
not only makes our calculation fully relativistic kinemati-
cally, but also ensures that our calculated spectra respect
all the correct physical thresholds occurring in these pro-
cesses [that is, thresholds are all determined by Eq. (8) (or
Appendix D) by observed masses and widths]. Moreover,
since we expected, and find, rates for low-massed states
that are dominated by soft recoils, our results will depend
mainly on our ability to predict the form factors near
zero recoil where the nonrelativistic quark model will be
most reliable. In particular, we will find that in most
cases rates are not very sensitive to the p~ dependence of
the f;.
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This is fortunate since within the weak-binding limit,
where we know how to maintain Lorentz invariance, we
can only compute the values of the form factors f, near
zero recoil: the essence of the method is to identify f;
(px -0) with f, (p x -0). Indeed, the formulas we derive
are only valid for wave functions with (p, ) /m, «1 (p,
and m; are the momentum and mass of quark i) W. e nev-
ertheless follow the normal and reasonable quark-model
phenomenology of using these formulas in the relevant
regime where (p ) —(m„) -AQCD i.e., of assuming that
the weak-binding formulas can be extrapolated.

In general, we should expect such an extrapolation to
be only qualitatively accurate. The fact that the quark
model normally works somewhat better than this is
presumably because its parameters have been adjusted to
compensate for at least some of its deficiencies. There
are, however, cases where quark-model calculations in-
volve an overlap of wave functions that is near to unity,
independent of details of the model. In these cases the
quark potential model can be expected to be quite accu-
rate. The transitions B~X,ev„ in which the reduced
masses of the quarks in the B and X, are very similar, are
examples of calculations which, at least in part, should
exhibit such accuracy. At the opposite extreme is the ac-
curacy we should expect from the quark model in its pre-
diction of the large recoil behavior of form factors. A
form factor will, in general, have an intercept at zero
recoil which can be computed with typical quark-model
accuracy. For pz small but nonzero, we will have

f (px) —-f (o) 1 —
—.'r +, px

m

(10)+f—(pa —pD)"
where f+ are I.orentz-invariant form factors which
can be considered as functions of t —t, where t
=(m~ —mD) . (Note that in this example a=0, /3++= lf+ l, and @=0, so that in fact only the f+ form fac-
tor is really required. ) In the weak-binding, non-
relativistic limit, the matrix element of j,"b between
quark-model states 8 (Pii ) and D +(pD ) [with, for exam-

in which we have allowed the slope of f; to depend, as it
might on dimensional grounds, on both the size of the
hadrons (as represented by r, ) and on a quark mass m.
(Such relativistic corrections of order px/m are familiar
from the hydrogen atom, where they give rise to the
Darwin term correction to the Bohr spectrum. ) In the
weak-binding approximation r; —1/p ))m, so the
p~/m term is lost, but in many hadrons of interest the
two contributions to the slope of f; could be comparable.
Whilst irrelevant at pz =0, this deficiency is potentially
very serious at large pz where, for example,
exp( —apx/m ) «1. We will deal with this inadequacy
of the nonrelativistic quark model below. First, we will
give an explicit example of a calculation of the f; using
the mock-meson method.

Consider the matrix element for B ~D+, where D+
is the cd pseudoscalar ground-state meson. In general,

my
(f+ f )pD =+—4mIimD f d'pPD p+ pD Pii(p)

mD

p P+PD
2mb 2mq

These expressions, as already implied, neglect perturba-
tive radiative corrections to the weak current. Although
the weak current receives no infinite renormalizations,
loop graphs give rise to corrections of the type
[a, (mi, )/rr] in(mi', /p') coming from regions of integra-
tion where the loop momentum is smaller than mb but
larger than the typical momentum of the charm quark. "
To proceed much further requires explicit momentum
wave functions. We have chosen to use Schrodinger
wave functions that are appropriate to the usual
Coulomb plus linear potential

4a, +c+br (14)
3r

with a, =0.5, c = —0.84 GeV, and b =0.18 GeV, and
with constituent-quark masses m„=m&=0. 33 GeV/c,
m, =0.55 GeV/c, m, =1.82 GeV/c, and m& =5.12
GeV/c . This simple model gives quite reasonable spin-
averaged spectra of ud, cd, and bd mesons up to L =2,
and extends satisfactorily to the cc and bb systems (where
we do not need it) with a running a, =0.4 and 0.3, re-
spectively. To avoid extensive numerical calculations, we

V(r) =—

pie, ms=m&+mz so that Eii =(m s+p ~)' ] has an ex-
pansion exactly analogous to Eq. (10) with form factors
f+ that are functions of t —t

The calculation of the form factor f+ is straightfor-
ward. As explained in Appendix A, whilst such a calcu-
lation could be done using the full, properly normalized
boosted state vectors of the weak-binding limit, it is more
convenient to concentrate on special linear combinations
of matrix elements which allow one to use simple nonre-
lativistic state vectors of the form

lX~V»». ~I V2=e»'f S I XC
'
'**4»„ip~,„y' '

mq
px+p~s

mg

m
Xg pg p s

m&

(1 1)

Sms
where y couples the spins s and s to the total spin S,
Px(p)1 is the qq relative momentum wave function,

L

and the C factors couple L and S to the total angular
momentum sz. Assuming that the fields appearing in the
currents create and destroy constituent quarks, we then
simply compute free-quark matrix elements between
states 8 and X of the form of Eq. (11). In our example,
we easily find that, for p~ =0 and lpD l

&& mD,

(mii+mD )f+ +(ms —mD )f
my—')/ 4m~mD f d pPD p+ PD Pa(p), (12)
mD
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R5/2 —Ppr /2
ll = —

3/4 r+ e (16)

7/2
p2 2/2

q2S—
(

2 )1/2 S (r2 3P 2)e tS"
3 3/4 2 S (17)

in which the P's are employed as variational parameters.
The resulting P values are given in Appendix C. With
these wave functions we can perform analytically all the
integrals we encounter. As described in Appendix C, we
have checked the accuracy of these variational solutions
and found them to be satisfactory. The analytic formulas
for a, P++, and y, and the form factors f; relevant to
them, are given in Appendix B for all mesons X with 1S,
1P, and 2S spatial wave functions. These formulas, in
conjunction with Eq. (8) and the physical masses and
widths (taken from Refs. 12 and 13) of Table I, can be
used to calculate d I /dx dy. (See Appendix D for the
treatment of particle widths. )

Before this is done, however, we must face up to the
expected inaccuracy of our nonrelativistic calculation of
the pz dependence of form factors. Since all the mesons
under explicit consideration here have roughly the same
radius, we have dealt with this problem by allowing the
computed slopes of all form factors to be modified by a
common factor. This multiplicative constant is chosen to
bring the calculated F (Q ) into better agreement with
experiment in the low-Q region, as shown in Fig. 1.
[Charge radii are a special case of Eqs. (12) and (13).]
This means that our computed form factors as functions
of t —t have all been replaced by the same functions of
(t t )ll~, whe—re x.=0.7. We believe that this tamper-
ing with our calculation is justified by our earlier re-
marks, and that the modified form factors will give better
estimates of semileptonic rates, but we will have to con-
sider the uncertainties inherent in this procedure when
we come to assess the reliability of our conclusions.

have used variational solutions of this Schrodinger prob-
lem based on harmonic-oscillator wave functions:

~3/2
1S ~S Psr /2

3/4

Since, as previously emphasized, most decays are dom-
inated by small recoils, we will find that most of our re-
sults are not very sensitive to sc. Unfortunately, the cru-
cial 8~X„ transitions will turn out to be the most sensi-
tive to the behavior of the form factors away from the
zero recoil point.

The study of exclusive semileptonic decays, of which
our spectra are built, has a long history. This is especial-
ly true of the pseudoscalar-to-pseudoscalar transitions.
The more recent work on exclusive charm and beauty
semileptonic decays includes many different approaches.
Initial work on heavy-quark semileptonic decay' was
usually concentrated on the inclusive processes (the work
of Ref. 2 traces it lineage back to these papers) but also
gave rough estimates for exclusive decay rates. Later
work tackled individual form factors employing quark-
model ideas similar to ours, ' infinite-momentum-frame
quark models, ' current-algebra ideas, ' and other
methods. ' AH studies prior to ours of which we are
aware confined themselves to the explicit calculation of,
at most, pseudoscalar-to-pseudoscalar and pseudoscalar-
to-vector transitions; they generally agreed with each
other (and with us) on the former and disagreed with
each other (and with us) on the latter. Below, we will
comment further on the comparison between our method
and those of other authors.

IV. RESULTS

In this section we will present our results not only for
8 decay but also for related processes such as E ~me v,
and D~Xe v„since in addition to being interesting in

their own right, in the cases where data exist they gen-
erally support the applicability of our methods. In later
sections we will discuss the limitations of our results and
the possibilities for improving them.

A. %~me v,

This process was previously studied' by the methods
used here. We also find f+ (t ) = 1.02 and

f (t )= —0.29, both of which agree with experiment.

TABLE I. Physical masses and widths of the 1S, 1P, and 2S mesons. Masses and widths are taken
from Ref. 12 if possible; properties of unobserved or controversial states {given in parentheses) are tak-
en from Ref. 13. The entries in the table are, with all values in GeV: mass, width on resonance.

1 'So
1 S
1 'Pl
1 P2
1 Pl
1 Po
2'S,
2 Si

0.14, 0.00
0.77, 0.15
1.23, 0.15
1.32, 0.11
1.28, 0.32
(1.09, 0.3)'
1.30, 0.4'

(1.45, 0.4)'

( —')' (uu+dd )

a
0.78, 0.00
1.19, 0.32
1.27, 0.18
1.28, 0.03
(1.09, 0.6)'
(1.44, 0.1)'
(1.46, 0.4)'

su

0.49, 0.00
0.89, 0.05
1.27, 0.09
1.43, 0.10
1.41, 0.18
(1.24, 0.3)'
(1.45, 0.2}'
(1.58, 0.4}'

cd

1.87, 0.00
2.01, 0.00
(2.44, 0.1)
(2.50, 0.1)
(2.49, 0.3)
(2.40, 0.2)
{2.58, 0.3)
(2.64, 0.4)

5.27, 0.00

'We assume that the (~)' (uu+dd) strength is present with an amplitude of (2)' in each of the

q(0. 55) and g'(0. 96) corresponding to a mixing angle of approximately —10 .
P& - Pl mixing has a negligible eft'ect.

The light-quark mesons in this sector are poorly understood. See the discussion in Ref. 13.
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FIG. 2. (1/I")(dl /dE, ) for D~X,e+v, showing the contri-
butions of K, K*, and the total contribution from all 1S, 1P, and
2S states; also shown is the corresponding free quark curve.
Absolute rates can be obtained by using I =0. 19
X ]Q'~~ P; ' sec ' and 1'""=Q.35 X $Q '~ P;, ~

sec
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FIG. 1. Corrected (re=0. 7) and uncorrected (v=1.0) pion
form factor compared to experiment. The arrows along the
abscissa show the Q value corresponding to the maximum p»
reached by the indicated transition. For a compilation of the
data, see Ref. 14.

B. D~Xe v,

All strange mesons X with mass mz & ma can contrib-
ute to the electron spectrum for D-meson decay. Figure
2 shows our full predicted spectrum and how it is built up
from contributing resonances. The free-quark decay
spectrum is shown for comparison. Note that our spec-
trum is dominated by the two processes D ~Ke+v, and
D —+K*e+v„which we predict will constitute approxi-
mately 47% and 51% of the total, respectively. Al-
though various experiments ' agree that the K and E

It is significant that we agree with the measured slope of
the form factor f+. When combined with the observa-
tions that we agree with the measured kaon charge radii
and that the K wave function is already significantly
different (on the scale set by the B wave function) from
that of the rr (see Appendix C), these results suggest that
our use of the ~ factor to take into account relativistic
modifications of the form factors may be reasonably reli-
able. Finally, note that although SU(3) breaking in the
quark masses is substantial, the Ademollo-G atto
theorem protects f+ from substantial deviations from
umty. Equation (B8) for f+ is not only consistent
with the Ademollo-Gatto theorem; it also displays a
shielding from fIavor symmetry-breaking in
the heavy-fiavor case: (1 f+ ) is quadratic —in

(mb —m~)/mb for any light-quark mass md. Even for
B~D we find that f+(t ) differs from unity by only
20%.

f;(Do~sr+)=v'2f;(D ~rr )=2f, (D ~rl)
=2f;(D+ ~rl') (18)

(assuming an g-g' mixing angle of approximately —10'),
the fact that m /mD « m „./ma leads to a rather
different total pseudoscalar-meson contribution to the
electron spectrum in D+ decay versus D decay. In addi-
tion, although given that with m„=m the vector contri-
bution to D+ and D decays would be equal in the stable
resonance approximation, the fact that I p)+I would
lead to small differences in the vector contributions to the

modes are dominant features of the mz spectrum, it is
still unclear whether they are as completely dominant as
we predict: Ref. 23 finds a significant nonresonant K~
contribution. Despite this disagreement between experi-
ments, there is agreement that the K/(K+K*) ratio is
about 50%. Our D~E form factor is, moreover, once
again in agreement with the measured form factor. Us-
ing Ref. 24, we also predict the polarization of the K*'s
produced in D —+K *ev, to be I (longitudinal)/
I (transverse) = l. 1. Finally, we note that an absolute pre-
diction for the total rate for semileptonic D decay
is I (D ~Xe+v, )=I (D+ Xe+v, )=0.19~ V„~ X10'
sec '. Assuming that there are three generations of
quarks, this is in reasonable agreement with the experi-
mental result' of (0.19+0.02) X 10' sec '. Figure 3

shows our predicted electron spectrum, boosted as is ap-
propriate for DD pairs produced from the g(3770), com-
pared with an experimental spectrum ' of such electrons;
we conclude that our model gives a reasonable account of
these decays. Figure 4 shows our predictions for the
electron spectra from Cabibbo-suppressed D decays. The
D spectrum is dominated by the two processes
D ~~ e+v, and D —+p e+v„which constitute about
43% and 52% of the total, respectively.

Cabibbo-suppressed D + decay looks somewhat
different, since in this case L=m, g, p, co, . . . , in con-
trast with the free-quark decay model in which it is iden-
tical to D decay. First of all, since
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FIG. 3. dl"/dE, for D~X,e+v, from Fig. 2 boosted to cor-
respond to D's from $1 37701 decay and compared to the data of
Ref. 20. The integrated theoretical and experimental rates have
been roughly adjusted to agree in order to facilitate a compar-
ison of the spectral shapes. Note that these data contain a small
contamination of D ~Xd e +v, .

D+ and D electron spectra; these differences are ignored
in Figs. 4, but see Appendix D.

C. B~Xe v,

We now turn to the cases of interest for extracting
~ V„b ~ l~ V,b ~

. We first discuss B~X,e v„where X, is

a charmed meson with mass mz & mz. Our present cal-
culations extend only up to I&-2.5 GeV/c, but as can
be seen from Fig. 5, which shows how our predicted spec-
trum is built up out of contributing resonances, the full
rate appears to be rapidly saturated by the lowest-lying
states. We show the surprisingly similar shape of the
free-quark decay spectrum for comparison. Our spec-
trum is once again dominated by the 1'So and 1 S&

states with the D(1870) and D*(2020) contributing 27%
and 60% (respectively) of our total spectrum.

Of the predictions made in this paper, we believe that
those for B~De v, and B~D 'e v, are the most reliable.
In the limit where the c- and b-quark masses are treated
as large compared with the u- and d-quark masses, the
form factors at threshold t=t contain an overlap of
wave functions that is unity, independent of the potential
model. Also, in this limit the masses that appear in the
form factors f+(t ), f(t ), g(t ), and a+(t ) are
heavy-quark masses whose values are insensitive to the
choice of potential model. The suppression of the form
factors for t « t arises because momentum must be
transferred to the light quark in the recoiling X=D or
D* state. However, if the momentum of X is p~, the

0.2 0.80.60 O4

E, (GeV)

FIG. 4. (a) (1/l )(dI /dE, ) for D ~Xde+v, showing the
contributions of ~, p, and the total contribution from all 1S, 1P,
and 2S states; also shown is the corresponding free quark curve.
Absolute rates can be obtained by using I =0. 18
X10'

~ Vd~ sec ' and I "'=0.54X10'2~ V,„~~sec '. Note that
~ and p constitute 43% and 52%, respectively, of the total rate.
(b) (1/I )(dI /dE, ) for D+ —+Xde+v, showing the contribu-
tions of ~, g, g', p, co, and the total contribution from all 1S, 1P,
and 2S states; also shown is the corresponding free quark curve.
Absolute rates can be obtained by using I =0. 17
X10'

~ V,d~'sec ' and I ""'=0.54X10"~V,„~ sec '. Note that
I (D+ —+Xde+v, )/I (D ~Xd e+v, ) =0.93 mainly from the
effects of the g and g' channels which are especially evident at
the highest E„and that m, g, q', p, and co constitute, respective-
ly, 23%, 12%, 5%, 28%%uo, and 27% of the total rate.
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FIG. 5. (1/I )(dI /dE, ) for B~X,e v, showing the contri-
butions of D, D*, and the total contribution from all 1S, 1P, and
2S states; also shown as a dashed curve is the corresponding free
quark curve. Absolute rates can be obtained by using
1 =0.41X10' ~V,b( sec ' and I ""=0.49X10' ~V,b~ sec
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~ V„~ =0.048+0.005+0.006 . (20)

Below, we will discuss the uncertainties in this determina-
tion of

~ V,z ~
associated with our calculation [the second

error in Eq. (20); the first is experimental and arises from
uncertainties in the B lifetime and semileptonic branch-
ing ratio].

Figure 6 shows our predicted spectrum for
B ~X„+ev„where X„+ is a ud meson belonging to any
of our eight lowest-lying meson families. It is clear that
the 1S, 1P, and 2S states (which include all states with
mz ~ 1.7 GeV/c ) do not in this case saturate the rate.
Recall, however, that our calculation does saturate the
contributions of B~X,ev, in a region at the end of the
spectrum where B~X,ev, vanishes. This fraction of the
spectrum is therefore all we need for determining (or for
setting an upper limit on)

~ V„b~. Note that our B~X„
spectrum is considerably softer than the free-quark spec-
trum.

In the Introduction it is clearly indicated why b~u
might not be saturated by these lowest-lying states, in
contrast with the other transitions we discuss. Recall
that (ignoring relative momentum in the decaying B)
free-quark decay populates recoiling masses mz in
the range from m +md up to [(m~+md )
+ (md /mb )(m& —

m~ ) ]' and that this range (0.02

light quark only carries momentum [md /(m, +md )]px.
The presence of the heavy c quark thus causes the form
factors to vary only a little over the available phase space.

Our D* branching fraction of 0.60 is consistent with
the preliminary measurements' of 0.8+0.3. It should be
noted that the rate for B~D*ev, is determined by three
form factors: f, g, and a+. The dependence on f, g, and

a+ can be partially separated ' by observing the polar-
izations of the D*'s produced in B~D*ev, . The pro-
duction rate of transversely polarized D*'s is independent
of a+, whilst the production rate of longitudinally polar-
ized D*'s does depend on a+. We predict fa+(t )
= —1.00, which gives roughly equal amounts of longitu-
dinally and transversely polarized D*'s. As fa+(t ) is
increased, the rate for longitudinally polarized D*'s in-
creases. For example, at fa+ (t ) =0,
D*(longitudinal)/D*(transverse)=2. A recent measure-
ment of the D* polarization is consistent with the D*'s
in semileptonic B decay being purely longitudinal. Fur-
ther measurements of this polarization are needed as such
a situation may be dificult to reconcile with not only cal-
culations of the type presented here, but also the free-
quark decay model. (In this model one can predict in-
clusive probabilities for the production of hadronic sys-
tems recoiling with helicities +1 and 0 by using the fact
that the initial state has zero angular momentum so the
hadronic helicity must balance that of the ev, system. )

Anticipating that b~u/b~c will be small, our abso-
lute prediction for the total B semileptonic rate is

I (B -+X e v, )=l (B -+X e v, )

=0.41 X 10'
~ V, ~

sec

From the experimental value of this rate' ' we find
that
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FIG. 6. (1/I '"")(dI /dE, ) for B~X„+e v, showing the
contributions of m., p, the 1P states, and the 2S states ~' and p';
also shown as a dashed line is the free quark curve
(1/I "')(dl "'/dE, ). Absolute rates can be obtained by using
I ""=1.18X10'

~ V„&~ sec '. The partial rates to exclusive
channels, in units of 10'

~ V» ~' sec ' are I (8~sr(151) =0.021,
I (B p(1S))=0.083, 1"(B P )=0.007, I (B P, )=0.093,
1 (B P )=0.007, (I B 'P, )=0.059, I (B m(2S))=0. 110,
and 1"(B—+p(2S)) =0.053. Thus the 1S, 1P, and 2S states corn-
puted account for a rate of 0.43 X 10'~~ V„b ~

sec

GeV/c for s~u, 0.15 GeV/c for c~s, 0.26 GeV/c
for c~u, 0.16 GeV/c for b~c, and 0.72 GeV/c for
b ~u) is considerably smaller than the typical orbital ex-
citation energy of 0.5 GeV in every case except that of
b ~u, where it is actually greater. (A more realistic esti-
mate, taking into account the mean momentum in the B
wave function, gives a range in b~u of more than 1

GeV/c .) It is therefore not at all surprising that there
are, for example, significant 2S components in the b ~u
spectrum; nor should we be surprised that our truncated
calculation is incomplete. We have nevertheless checked
this point explicitly by extending our calculation for
pseudoscalar mesons to higher masses by computing
B ~n(Sn) ve„wh. ere ~(nS) is the nth pion state. A
description of the calculation is given in Appendix C;
Fig. 7 displays the results, which exhibit the convergence
conjectured in Refs. 3 and 4. Note that the 1S and 2S
levels already give about two-thirds of the total pseudos-
calar contribution, suggesting that a complete calculation
would converge, as described in the Introduction, to a
d I /dE, comparable to the free-quark rate at low E, .

Since our end-point spectrum is considerably softer
than the free-quark decay electron spectrum, we expect
that a complete sum over Anal states X„would lead to a
total semileptonic decay rate that is somewhat smaller
than the corresponding free-quark rate. It should be re-
called, however, that the b~u free-quark rate [see Eq.
(4)] it itself quite uncertain, since the effective value of mb
entering in this equation is not well known.

To extract a value (or limit) for V„b using our predicted
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(&I I&&, ) for B ~m+(nS)e v, showing conver-
gence of the sum over exclusive pseudoscalar channels. In units
of 10'

~ V„I, ~
sec ' the individual rates to ~(IS), m(2S), m.(3S),

~(4S), and m(5S) are 0.031, 0.077, 0.047, 0.014, and 0.003, re-
spectively. See the discussion of Appendix C for the relation of
these rates to those of Fig. 6.

electron spectra, they must first be boosted as appropriate
for BBpairs produced on the f(10580) and then smeared
with experimental resolutions. For such analyses based
on the earlier version ' of our model (we expect very
similar conclusions will emerge from this version), see
Refs. 31—33 which showed that our pure b —+c spectrum
gave a satisfactory fit to the data and derived correspond-
ing limits on V„b. In Sec. V we will discuss the reliability
of such limits.

V. DISCUSSION

Most early attempts to extract
~ V„b~ /~ V,b~ from the

B~Xev end-point spectrum used Eq. (3), with df"s
given by a @CD-perturbed free-quark calculation in
which extra parameters were introduced to correct for
nonperturbative efFects. With recent improvements in
the data, these attempts have, as might have been antici-
pated, encountered some difficulties. ' These difficulties
have made it clear that the predicted end-point behavior
of the calculations of Ref. 2 are being controlled to a
large extent by parameters introduced to describe
bound-state effects, and not by perturbative QCD. Our
calculation, in contrast, is more suitable for the end-point
region: it correctly handles the kinematics of the opening
of new channels with their appropriate quantum num-
bers; also, the dynamics of the quark model is more ap-
propriate to this region.

Our calculations still have serious sources of uncertain-
ty. Nevertheless, we would first like to stress that our
calculation of B—+X,e v, seems to be immune to most of
these uncertainties. The success of the analogous
D~X,e v, calculation is evidence of the reliability of
B—+X,ev„but we have also checked that reasonable
variations of the wave functions (for example, ones that
change I~ by 30%) have little effect on our spectra.

In the foregoing we have discussed the reasons for the
stability of our B~X, results. It is more difficult to as-
sess the systematic uncertainties associated with this cal-

culation. We will discuss below some possible improve-
ments to our methods which could check several possible
sources of error, but for now we just note that the success
of our predictions for K~~, D —+X„and various known
features of B~X„along with the demonstrably weak pa-
rameter dependence of our results, lead us to have
confidence that the absolute-rate predictions shown in
Fig. 5 are valid at the 20% level, and that the shape of
the predicted electron spectrum is very good.

For B~X„ev, our predicted spectral shape is once
again stable in the end-point region. However, in this
case we have considerably less confidence in our ability to
predict absolute rates: few of the features which stabi-
lized B~X,ev, are present here. For example, when we
vary the /3's and a. over. the ranges that we consider
reasonable, we get substantial variations in the absolute
rates of the exclusive modes. We have concluded that
our absolute-rate predictions could be as much as 30%
higher and a factor of 2 lower than the true rates. This
uncertainty will affect our ability to determine (or bound)
V„b from the data.

The model sensitivity of our B~X„ev, results is not
unrelated to the slow convergence of the summation over
X„. As discussed in the Introduction, in a heavy-quark
decay, once E, is small enough for all relevant thresholds
to have been crossed, the summation should converge to
the free-quark spectrum independent of the details of the
confinement dynamics Howe.ver, the way this spectrum
is split up into exclusive channels will depend on these
details and will naturally become more difficult to calcu-
late as the strength becomes divided into more channels.
Since the end-point spectrum corresponds to the high-E,
tail of a few of these states, it is correspondingly more
di%cult to compute.

As already mentioned in Sec. III, there is no other cal-
culation of exclusive semileptonic decay matrix elements
known to us which is as extensive as this one. Neverthe-
less, in looking for possible improvements to our method,
it may be useful to make a comparison with some other
existing calculations. '

Reference 16 consists of calculations that are very
similar in spirit to ours, and when they overlap with us
they seem to differ mainly on matters of detail (although
we are unable to reproduce some of the results quoted in
these papers). The best method for connecting results
such as ours with experiment will, it seems to us, depend
on a close interplay between experiment and this still-
developing phenomenology (see Sec. VI for further dis-
cussion). The works listed in Ref. 18 exploit some poten-
tially very powerful constraints on weak matrix elements
arising from low-energy theorems. It could be very use-
ful to try to impose these constraints on our calculation.
(Low-energy theorems also limit the importance of chan-
nels containing additional soft pions. These constraints
might be exploited to study theoretically the possible im-
portance of the nonresonant processes discussed in Sec.
II.) However, low-energy theorems are clearly limited in
scope and cannot be expected to give as complete a pic-
ture of the weak matrix elements as would a full dynami-
cal model. In our opinion, the method of Ref. 17 is the
one most likely to provide, at some future time, an alter-
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native to ours. However, at the moment we see several
difficulties for this method: (i) It is based on infinite-
momentum-frame wave functions (or light-front wave
functions) about which we know very little either theoret-
ically or phenomenologically. Thus, unlike the quark po-
tential model, this phenomenology is not yet "tuned. " (ii)
Matrix elements are calculated at t =0 and then extrapo-
lated to t =t by invoking pole dominance. As we have
stressed, t (corresponding to zero recoil) is the point
where form factors for transitions to low, -lying states will
tend to peak. A calculation at t =0 therefore calculates
the form factors where they are small and extrapolates
them to where they are large. Here the difFiculty is com-
pounded by the fact that a t =0 calculation requires
knowledge of the infinite-momentum-frame wave func-
tions near their end points where they are small and least
well understood. We will also argue below that the use of
pole-model form factors is not generally appropriate and
may not be justified in transitions such as B~X„. (iii)
While the potential advantages of a relativistic formalism
will be obvious from the di%culties we encountered in
our work, there are some serious obstacles to making
such a formalism consistent. In particular, infinite-
momentum-frame wave functions cannot be constructed
to be good eigenstates of J (except in the weak-binding
limit in which this formalism becomes equivalent to
ours); good J states could be obtained in general only by
solving the equation of motion, which is at present im-
possible.

We might hope to reduce the uncertainties in the re-
sults we have presented by improving upon our quark-
model calculation. To a certain extent we believe that
this is possible. It would be useful, for example, to extend
our calculations to higher masses (see, however, the
warning in Sec. II). It would also be interesting to check
on the importance of relativistic efFects. We have just
commented on one possible way of doing so. We have
some doubts about the utility of making a check of such
effects in the bag model (although it naturally comes to
mind as a relativistic quark model), since one will en-
counter two problems with the static bag approximation:
heavy-quark wave functions will not be adequately de-
scribed, and the recoiling quark will populate both
excited-meson states and spurious center-of-mass motion
states. An alternative is to build some relativistic correc-
tions into the quark-potential model. Here one must be
careful to ensure that the model predicts meson spectra
and static properties as well as the nonrelativistic quark
model. (Note that the models of Refs. 10 and 13, which
are of this type, predict that the discrepancy between the
data and the nonrelativistic quark-model prediction for
Gz /G~ in neutron decay will be reduced by a factor of
md/mbm~ in, for example, the f form factor in B~D*
decays. ) We might also consider supplementing our
quark-model calculation with some sort of pole-
dominance model for the t dependence of the weak form
factors (this is the usual method in Refs. 16—19). Our
form factors are actually quite close to pole-dominance
form factors in many cases, but from our calculation we
can also appreciate that the pole model is not generally
applicable. These form factors are largest (and therefore

normally most important) at the zero recoil point where
the quark model applies and where, in some cases, there
is no reason to expect a single meson pole to dominate.
An extreme case would be the elastic form factor of the

this form factor near t =0 will clearly be controlled
by the r), wave function [which will give r&-(m„a, ) ]
and not by the lowest vector meson (which would give
r&-m, ). The failure of vector-meson dominance is in
this case easy to understand: on the scale of m&, the
spacing between vector-meson states is small. It is also
dubious whether the pole model applies to transitions
such as 8 —+X„. In such a transition, t can vary from
zero to t =(m~ —m ), whilst the spacing between B*
poles is of order (300 MeV) making it very difficult to
understand why a simple pole model should work. Of
course for light-quark states our form factors also have
difficulties, as discussed in Sec. II. This is illustrated in
Fig. 1 which shows the measured pion electromagnetic
form factor F (Q ) and our quark-model prediction for
it. With the factor sc the two agree out to about Q =1
GeV . Beyond this point ( a region relevant only in the
b~u transition) our exponential form factor falls below
the measured one. (This deficiency and our neglect of
nonresonant contributions tends to make limits on

~ Vb„~,
obtained from a comparison of our results with experi-
mental data on the end point of the electron spectrum,
conservative ones, and is partly responsible for the lopsid-
ed theoretical errors on our predicted rate for 8 ~X„ev,
mentioned earlier. )

As stated previously, we can also improve upon this
calculation by including resonance widths and estimating
nonresonant production. Figure 8 shows the efFect on the
contribution of the f0 (the I =0, P0 qq state) to the
B~X„ev, electron spectrum. Even for a broad reso-
nance (which, incidentally makes up only a few percent of
the total B~X„ev, rate) the width does not lead to a
significant increase in the rate in the end-point region
E, )2. 3 GeV, where 8 ~X,e v, is kinematically forbid-
den.

VI. CONCLUSIONS AND SUMMARY

We have argued that the extraction of
~ V„b ~

/~ V,b ~

from the end point of B~XeV, requires an understand-
ing of the nonperturbative physics which binds the
quarks into hadrons. The quark-model calculation
presented here represents one approach to this physics.
Although it sufFers from considerable uncertainties, we
believe that these are typical of the uncertainties at
present associated with our ability to predict when non-
perturbative strong interactions are important.

Our results give a 8 —+X, end-point spectrum that is
slightly softer than the free-quark spectrum; this spec-
trum fits the data quite well with no admixture of
B~X„. Our 8~X„spectrum is considerably softer
than the free-quark spectrum, so that the limits that can
be obtained on the strength of V„b from the lepton spec-
tra in the end-point region will be correspondingly weak-
er.

Although improved measurements of the end-point
spectrum may well remain the best way to limit and even-
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tually observe V„b, our calculation does open up one oth-
er possible avenue. Since we provide absolute rates for a
large number of exclusive semileptonic modes of decay to
noncharmed mesons, a limit on (or a measurement of)
any of these modes can now be turned into a limit on (or
a measurement of)

~ V„b ~.

We also note that, as a by-product of these calcula-
tions, we have predicted how the B~X„B~X„,
D —+X„and D~Xd spectra are built up out of exclusive
channels. These predictions, which are of interest in
their own right, can be used to check the reliability of our
calculations. It would be especially rigorous to check our
predictions (through a, 13++, and y) of the detailed struc-
ture of the relevant Dalitz plots. Another possible appli-
cation of our results is to check the validity of the KM
parametrization of the mixings. For example, using our
absolute predictions for the total rate for sernileptonic D
decay we deduce that

~ V„~ =(1.00+0.05+0. 10), where
the first error is experimental and the second is the es-
timated error in our prediction of the semileptonic D-
decay rate. We could also use our predictions to extract
V,d from an exclusive mode such as D+ —+p e+v, .
Indeed, in the short term it is perhaps only by checking
detailed predictions such as these for various exclusive
channels that we can assess the reliability of our predic-
tions and eventually improve our ability to calculate
weak matrix elements. Eventually, of course, such ma-
trix elements will be accurately calculated on the lattice.
Once this can be done, it will be possible to convert the
increasingly sophisticated measurements of exclusive
semileptonic decays directly into accurate measurements
of the Kobayashi-Maskawa angles.
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APPENDIX A: THE "MOCK-MESON" METHOD

As discussed briefly in the text, the "mock-meson"
method is based on an expansion

(B
~
j"(0)

~
3 ) = g f, (t t )X/', — (Al)

where the X~ are Lorentz vectors constructed from the
available kinematic variables, and the f; are Lorentz-
invariant form factors which may depend on
t = (p~ —P ~ ), t being the maximum four-momentum
transfer (mz —mz) . In the weak-binding limit, as we
will see below, one can construct nonrelativistic quark-
model states which are good representations of the
Lorentz group, so that

&B~j&(0)~a &=yf (t —t )X&, (A2)

where A is the quark-model state ("mock meson") corre-
sponding to the hadron A, etc. , and where there is there-
fore a one-to-one correspondence between the f; and the
f, Since, as we will see shortly, Eq. (A2) applies exactly
only in the limit of zero binding, where the matrix ele-
ment has support solely at zero recoil, this correspon-
dence can only be used to identify f; and f; at zero recoil.
Relationships away from zero recoil, for example, slopes,
will in general not be Lorentz invariant by terms of order
p; /m;, where p,. and I; are constituent three-momenta
and masses. The problems this entails, given that the ac-
tual quark-model wave functions for hadrons containing
light quarks have p; comparable to m;, are discussed in
the text.

Before giving any details, we would like to describe
qualitatively, and brieAy, why it is that the nonrelativistic
quark model can predict all the f;, including those that
are coefficients of X~ that are of higher order than v/c in
recoil velocity. We will take as our example the first ma-
trix element needed here where this issue arises:
( V(pxsx ) ~

2 "(0)~B(p~ ) ). As shown in Appendix B, this
matrix element is described by three form factors, and we
can easily see that one linear combination of the three
form factors can be determined at order (v /c ) and one
at order v /c, but that the third linear combination
requires a calculation to order (v /c) . To see why
this is possible, it is convenient to consider
(B(p~ ) ~

2 "(0)
~
V(O, sx) ) (which we know has the same

information in it by Lorentz invariance), since we can
then identify the three Lorentz-invariant form factors
with three partial-wave amplitudes: A (0) is a pseudo-
scalar operator and, when applied to the vector

~
V(O, s~)), gives a J =1+ state which must therefore

produce ~B(pz )) recoiling in a P wave. A(0) on

~
V(O, sx ) ) can give quantum numbers J =2,1,0

but only 2 and 0 can be reached by the recoiling B,
which will be in a D wave and S wave for 2 and 0, re-
spectively. These S-, P-, and D-wave amplitudes are of
course required by nonrelativistic kinematics to behave
like (v/c), v/c, and (v/c), respectively, and can be re-
lated to the three Lorentz-invariant amplitudes. Since
there is nothing intrinsically relativistic about recoiling in
a D wave, we see that in principle this amplitude can be
calculated nonrelativistically. Indeed, if one takes care to
isolate a given partial wave in the matrix element, ordi-
nary quark-model state vectors can be used for all three
form factors.

Such a calculation will not be Lorentz invariant to or-
der (v/c) [in the sense that with ordinary quark-model
state vectors, relationships between different components
of the matrix element with various spin states and various
values of p~ and px will not be correct to order (v/c) ],
but it will give the zero recoil value of the three form fac-
tors. Alternatively, one can calculate with the full state
vectors given below, which ensure exact Lorentz invari-
ance in the weak-binding limit.

The construction of quark-model states that are repre-
sentations of the Lorentz group in the weak-binding limit
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begins with the construction of a free quark-antiquark
"momentum shell" state in its center-of-mass frame, with
definite J and definite relative momentum p. The usual
quark-model states are superpositions of such states
weighted with a wave function that depends on p. How-
ever, for fixed p, such states could be boosted with a
free-particle boost under which they would form repre-
sentations of the Lorentz group with mass
M=(p +m )' +(p +m )'~, spin J; and momentum

q

p =yvM, where v is the boost velocity and
y = ( 1 —v /c )

' . Since a superposition of such free-
particle rest-frame states has masses in a range 6M, it
cannot be trivially boosted to form a representation of the
Lorentz group. In an interacting theory, such a superpo-
sition might be a state of definite mass, but then its boost
operator is nontrivial. However, a superposition over a

(q(p's')lq(ps)) = &, ,&'(p' —p)
E

(A3)

for quarks and antiquarks and

(A4)

for mesons, one would get the result

very narrow range of momenta will, under a free-particle
boost, form an approximate representation of the Lorentz
group. Weak binding is a particular example of such a
case in which we can expect deviations from Lorentz in-
variance to vanish as (p ) ~0.

To apply this. method, one could therefore construct
exact representations of the Lorentz group with fixed p,
and then superpose them. With normalizations

l&(p~sx)) =+2m& Id'p g C, ,kx(p)i, X,—, '(p px)~q(I-, (p px»s)q(L-( —p p~»s)) (A5)

in which everything is as in Eq. (11) except that now
L,.(p, p~) is the momentum of a particle of mass m, and
momentum p, boosted by the Lorentz transformation
that takes X with mass m~ to momentum pz, and

X,—, '(p, px) =N., (p px»,—,-(p px», —,

'

N~ + = Nq+* = y—up+ /Dq, — (AS)

with D~ = I2(1+y)(E +m )[y(E +vp, )+m ]I '~~ and

N i+ =N ~ =[(1+y)(E~+m ) —vyp, ]/D (A9)

= —X q' = —yvp /D (A10)

with D = I2(1+y)(E +m )[y(E —vp, )+m ]I'~2.
the weak-binding limit it is easily seen that (A5) reduces
to Eq. (11) of the text.

Fortunately, as the discussion at the beginning of this
appendix suggests, in many cases (including all those of
interest here) one need not be so careful since nonrela-
tivistic physics determines the zero recoil behavior of the
f;. The simplest way to see this is in terms of the free
"momentum shell" states previously defined. For free
quar ks, these states form complete sets of quark-
antiquark states which are good representations of the
Lorentz group, so current matrix elements between such
shells will have exactly the same Lorentz-covariant struc-
ture as the matrix elements of interest (between states of
corresponding angular momentum and parity). Now im-
agine that some matrix element (or linear combination of
matrix elements) is of order (u/c)", n being some non-
negative integer. (In the cases at hand, the one-to-one
correspondence between partial-wave amplitudes and

where y, are the usual Clebsch-Gordan coefficients
that couple s' and s' to Smz, and where with

E~=(mq+p )', E =(m +p' )', and p~=yvmxz,

N~++ =N~ =[(1+y)(E +m )+vyp, ]/D, (A7)

Lorentz-invariant amplitudes guarantees the existence of
such linear combinations; in the frame pz =0 introduced
earlier, v /c would just be pii /mz. ) Then integrating such
a matrix element over an initial and a final momentum-
space wave function (i.e., over ranges of initial and final
momentum shells) cannot change this leading behavior:
since superpositions such as Eq. (11) are good up to order
v /c, the errors in such a calculation will be of relative or-
der (u /c) and P /m . [The former error comes from the
use of Eq. (11) instead of Eq. (A5), and the latter from the
deviations from the strict weak-binding limit. ] Thus at
zero recoil and in the weak-binding limit, such a calcula-
tion will give Lorentz-invariant results.

Surprisingly, one can get Lorentz-invariant results in
this kind of situation without even being this careful. Im-
agine calculating a matrix element such as
(8(p~ )

~
A (0)

~
V(O, sx ) ) introduced earlier for

m =1,2, 3. Then either m =1 or 2 will give [see Eq.
(B10)]an equation for the form factor f, whilst m =3 will
give an equation for the linear combinationf —(a++a )p~. In Refs. 4 and 5 it was assumed—
since f was not calculable by this method to order p~-
that these two equations would not determine (a+ +a ).
However, we can now see that even such a "brute force"
calculation will give the correct answer. The reason is
that the matrix element (8(p~)~A (0) V(O, s~)) can be
decomposed into an S-wave part (corresponding to f) and
a D wave part [correspond-ing to (a++a )], for any
choice of p~, m, and sx, with coefficients that are (essen-
tially) Clebsch-G ordan coefficients. Since the errors
made in computing the S-wave piece will always be the
same, they will cancel out in the calculation of
(a+ +a ), as long as the m = 1 (or 2) calculation is car-
ried out to the same order (p~) as the m =3 calculation.
Incidentally, this means that the "best guess" of Ref. 5
was actually correct. [One can explicitly check that, with
their approximations, our Eq. (B17) for a+ reduces to
theirs. ]
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APPENDIX 8: FORMUI. AS FOR THE FUNCTIONS
a, P++, AND y IN B ~X+ev,

We give here the formulas for a, P++, and y required
in Eq. (8) for d I /dx dy for X=qd in the states 1 'So,
1 SI 1 P2 1 Pi 1 Po 1 PI 2 'So, and 2 SI in the
spectroscopic notation n + 'L,J. Throughout the follow-
ing, we will employ the definitions

(X(px, e)~ A„~B(pa) & =fe„"+a+(e*pa)(pa+px)„
+a-(e* pa)(pa —px)„

and

&x(p,.) I v„lB(p, ) &

i«„...e*'(pa+ px )'(pa px —
)

(810)

F =
n

mx

X exp

1/2
p p

' n/2
8 X

2
pax

md t2

4mamx K pax
(81)

we have

ct=f +4mag px,
2 2

P++ =
z

—mag y+ —,
'

2 (1—y) —1 fa+
4mx mx

(812)

where

pax = ,'(pa+ p—x» (82)

2 2mBPx 2+ a+,
mx

(813)

K =0.7 is the relativistic compensation factor discussed in
Sec. II, X=2gf . (814)

=(ma —mx)'

is the maximum momentum transfer, and

(83) Here px =
[ [ma(1 —y)+ mx] /4ma I

—mx is the square
of the recoil three-momentum of the X. The form factors
f, g, and a+ are given by

1 1

mq mb
(84) f=2maF3, (815)

Also, we denote by V„and 3„ the quark currents qy„b
and qy„y 5b, respectively.

Since, as discussed around Eq. (9), the px dependence
of the form factors is not calculable accurately, in making
a correspondence between px and (t —t) in the follow-
ing formulas, we have dropped terms of order
(t t) /m wh—ich would correspond to higher-order
corrections in (v/c).

and

F3a+=-
2mx

1
g =—,'F

mq

md pa
2~ — mx pax

md pa —px
mb Pa+Px

px

4p ma pax

(816)

(817)
1 2SO

The axial-vector matrix element vanishes, and with

(x(p )iv„~B(p, )&=f (p, +p )„+f (p, p)„—
(85)

we obtain

With

(X(p, e)i V„IB(p, ) &

and

3. 1 I'2

pa (pa+px) (pa px) (818)—

cz=y =0 (86)

2P++ =f+
where

= k epona +b+ (E~apapa )(pa +px )p

+b (&.*apapa)(pa-px)„— (819)

and

f+ =F3 1+
2p

mb mq md pa
2

4p+p — mx pax

we have

(k +4mapxh ),
2mx

(820)

With
2. 1 Si

1f =F3 1 —(ma+mx)
2m'

md pa
4~+ mx pax

(89)

4 2 2
mBpx mB

P++= ——y h + y+
mx 24mx

2 2 2 2 2
2 BPx 2 1 mBPX

mx 3 mx

4Px
k

mx
2

mB
(1 —y) —1 kb+,

mx

(821)
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2 2
m@px

m~

1
h =F~

2&Zma/la

l =&ZF,

md /ia
2

2mxp @ax
(823)

(824)

The form factors h, k, and b+ are given by

b+ =—Fs
2+2m xm b Pa

mdmb /3x md mb/3x
2 2

2
+

29+ma /3' 4ma p /3ax—

m„Px21—
2ma Pax

(825)

4. 1 P 1

The relevant matrix elements are

& X(px, e )
~ V„~B(pa )}:—l e„*+c+ ( e*.pa ) (pa +px )„

2/3~~ =u ~,
a=y=O,

where

(836)

and

+c—(b Pa )(Pa Px)„ mdm mbu~=F,
6/ amx»

(837)

&X(p, ~)~ A„~B(p, ))

lq~„,.~—*'(» a+» x)'(pa »x)—
6. 1 P 1

The matrix elements of the vector and axial-vector
currents have the form

It follows that

2 +4m 2p2q2

2 2

P++ = —mayq + —,
' (1—y ) —1 lc+

4m~
2 2

mgpg+ c~
m&

(828)
&X(px, e)~ V„~B(pa )):re„*+s—+(e* pa)(pa+px)„

s ( 6 'pa )(pa px )p

&X(px, e)i A„iB(pa))

»U~„., ~*—(pa+px)'(pa px)—
It follows that

a=r +4mzp&U

(838)

(839)

(840)

y =2qi,
where

md
q =—,'F,

mx/3a

md t —t
l = F5maPa +-

»b — 2ma v /3a

(83p) aIld

p =2pU

2 m

mg m&

2 2
m&p&+ s+,

mg
(841)

(842)

x
mq

1 md /3a

»' — mx &ax

with

maga
U —F5

4+2mb mqmx
(843)

and

md mb
c~ =F5

4ma/3a p

mdm Pa2

2mxp Pax
(833) a~d

maPa
r =F5

+29+
(844)

5. 1 Po
The vector matrix element vanishes, and with

&X(px) I A„lB(pa) &
—= u ~(pa+px)„+u (pa —px)„

md
s~ =F5 1+

&ZPa ma 2»b

mb mqmd /3a
2

2
4»b ~P m x /3ax

(834)
7. 2'S,

Again the axial-vector contribution vanishes and with
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&X(p»)l I „IB(pa)& =f '+ (pa+p»)„

+f '—(pa —px)? (846)
a'+ = Fs 3maPa» 1—

&6mx 2mbPaP»

mdmb

4m ap /3ax

3md p»
2mb Pa

we have that

a=y=O,

P++ =f '+

The form factor f '+ is given by

1/2 2 2
3 mb pa p»

p+ pa+ px

(847)

(848)

where

5mdPaP» 3ma Pa+ (1+—,', T) — (1+—,
' T)

2mbPax
' 2mb P»

7mdPa Px+ (1+—,
' T), (857)

gma p px —ax

md px t —t
2 2 2mxma pa K pa»

m md Pa 7P» —3Pa+ '
2 23p™xPax 4Pax

md p» t —t+
mxma pa» ?c pa»

2 2 2

2
mqmd pa

X 1—
2p mx Pax

(849)

and

+~' (~*.pa )(pa-px), —(850)

&X(px, ~)l &„I&(pa) & =?g'E„...~* (pa+p»)'(pa px)

(851)

Then we find that

8. 2 S)
The matrix elements of the axial-vector and vector

currents can be written as

&X(P», ~)l ~„ljI(Pa) &:f'~„*+t?+(e*—Pa)(Pa+P»)„

APPENDIX C: EXTENDING THE BASIS SPACE

Here we address two issues: (i) the accuracy of our ap-
proximate solution of the Coulomb plus linear potential
problem and (ii) the convergence of the b —+u expansion
as a sum over exclusive channels. They are related be-
cause both of them require that we extend our basis
space.

In the text, we used simple variational solutions of the
Coulomb plus linear potential problem within the 1S, 1P,
2S basis of harmonic-oscillator states. Here we study the
inhuence on our results of this approximation by obtain-
ing (numerically) exact solutions for S waves. The pro-
cedure is to compute the Hamiltonian matrix in the n

dimensional basis of 1S, 2S, . . . , n „S harmonic-
oscillator states, to diagonalize this matrix, and to vary
the parameter pa analogous to that appearing in Eq. (15)
in order to minimize the ground-state energy. (Of course,
as n,„~oc this variation becomes unnecessary, but it
leads to better convergence. ) Then we find

a=f' +4map»g'
/2 2

4m~ m~

(852) l~„&= ya."(p,')ljI." (p,')&,

„&= g a "(p")I " (p;) &,

(C 1)

alld

2 2mapx+
2 a+

m~

X=2g'f' .

(853)

(854)

where IX„& is the approximately exact nS solution of the
Coulomb plus linear problem, and IX„(p)& is the nS
harmonic-oscillator solution with parameter /3. We then
have

&?r„ I
j?'(0)IB, &

= g a".",(p;)*a.'(p', )
m'm

tm

& pax
2 2

g (
3

)
? /2F

8
?c pa»

2 2

and finally

The form factors f ', g ', a '+ are given by

p2a+px 6m»ma pa»

pa —p» m„' p»+
/3a+/3» 6mxma pa»

2m„pa
X

m 2P™xPax
2

+ m„pa p»

3p mx Pax—

(855)

(856)

x & ~"o(ps)
I
j"l&Ho(pea) & . (C3)

The harmonic-oscillator current matrix elements can be

Meson flavor ud us uc ub

Ps (GeV)
0
Pp (GeV)

0.31

0.27

0.34 0.39
negligible

0.30 0.34

0.41

TABLE II. Variational solutions of the Coulomb plus linear
problem in the 1S, 1P, 2S basis. In general, ?//' and f mix
with some mixing angle 0 so that the ground-state wave func-
tion is cosO?//' +sin0$ . For the particular masses and poten-
tials in these systems, 6 turns out to be always less than 0.01.
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TABLE III. Variational solution of the S-wave Coulomb plus linear problem in the b ~u sector for n, „=5. The P value given is
the one that minimizes the mass of X„and therefore gives the best approximation to the state X„;for this reason the states are only

approximately orthogonal for our finite-size basis. Recall that ( rd ) '~ = rn ( r') '~ l(m +m ), where the r is the qq separation and m

(m) is the mass of the quark (antiquark).

B,
7T l

7T2

'1T3

7T4

0.960
0.965

—0.049
—0.073
—0.015
—0.007

—0.237
—0.228

0.977
—0.014
—0.092
—0.018

m =3

+0.141
+0.112
—0.168

0.969
—0.152
—0.119

—0.037
—0.031
+0.119
—0.184

0.984
—0.153

+0.029
+0.022

0.000
+0.148

0.000
0.981

0.56
0.39
0.72
0.99
1.21
1.43

(fm)

0.55
0.39
0.59

(GeV)

0.52
0.39
0.29
0.26
0.23
0.22

computed analytically, giving results analogous to those
of Appendix B. The results of this exercise are displayed
in Tables II and III and in Fig. 7. Table II gives the P
values and expansion coeKcients for the 1S, 1P, 2S bases
used for our main results. Table III gives our results for
n,„=5, by which time we already see convergence. No-
tice that the value of P is not so relevant physically as the
mean distance from the center of mass to the light anti-
quark, (rd )', which we also tabulate (in the m this dis-

tance coincides with the usual naive charge radius). Fig-
ure 7 shows explicitly the convergence of the total decay
rate of the B to pseudoscalar mesons.

These results also allow us to discuss the accuracy of
the harmonic-oscillator truncation (Sec. II) for the
B—+m.(IS) and B~m( 2S) transitions. They show that
I [B~m(1$ )e V, ] increased from 0.021

~ Vb„~ X 10' sec
to 0.031~ Vt, „~ X10'"sec ' on increasing the basis size
su% ciently to produce an accurate solution of the
Coulomb plus linear problem. This increase could have
been anticipated from Fig. 1, since the more accurate
solution was bound to have more high-momentum com-
ponents than its harmonic approximation, and thus fit
the elastic form factor better at higher Q . Thus we be-
lieve that the more accurate solution is also the more
physical one and therefore somewhat more re1iable.
Since it nevertheless depends on making a model-
dependent connection between the pion elastic form fac-
tor and the B~~ factor, we still do not have the right to
expect this rate to be accurate to better than about a fac-
tor of 2. Since B—+m.(2S) is the largest single pseudosca-
lar rate, we show its convergence explicitly in Table IV.

We have not checked explicitly the variation of our
other b —+u rates under an increase of basis size. Howev-
er, since B~p(nS) is less sensitive to the high-px behav-

ior of the form factors, it should be more stable than
B~vr(nS ).

APPENDIX D: THE EFFECTS OF RESONANCE
WIDTHS

As an example of the e6'ects of resonance widths on
our results we have studied the kinematically simplest
B~(arm)sev, channel, where (mm)s denotes that the di-

pion is in an S wave. This is also arguably the most im-
portant case as well as the simplest, since the ~m S-wave
phase shift shows a very broad rise from threshold which
passes through ~l2 at about 1 GeV: it has been argued
(see, for example, Ref. 13) that this broad effect should be
associated with the I=0, Po, qq meson expected in the
1.0—1.3-GeV region.

For (~~)s production through an S-wave resonance,
the invariant amplitude depends only on the mass m„„of
the ma system and not on its angular orientation with
respect to the remaining particles. Therefore, it suSces
to convert four-body phase space into an integral over
three-body phase space by using

d p) d p2 d p d p
2Ei 2E2 2E E

—,'dQ dm (m —4m )'~ . (Dl)

x]0 2

1.5

)
Ol

L7

1.0
I

TABLE IV. The B~m(2S) state as a function of basis size,
with P chosen to minimize the vr(1S) mass.

0.5

Basis size
I (B~m(2S)ev, )

(units of
~ V~„~ X 10 ' sec ')

0.5 1.0 1.5 2.0 2.5
2X2
3X3
4x4
5X5
6x6

0.110
0.093
0.089
0.087
0.083

Ee (GeV)

FIG. 8. The effect on the electron spectrum in 8~foe
of allowing the fo to develop a width; I =600 MeV could ac-
count for the broad rise of the ~~ phase shift froxn threshold to
=m. /2 at 1 GeV.
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H«e m =2E, p„=p, +p, , and p= —,'(p', —
p2 ) i»n

the mm. center-of-mass system. Since the resonance am-
plitude is independent of 0, the angles associated with

p, we just get, for a resonance of mass ma,

d 1(B~Xoe v, )
X

dx dg
(D2)

d I (B~(mm. )qe v, )

dx dp

1 moI o(m )
dm ~~( 2 2)2+ 21 2( 2

)

where moro(m2. ) =(g2/16~m. .)(m 2„—4m 2 )'/2, and
d I (B—+Xoev, )/dx dy is the rate for decay to a stable
scalar particle of mass m „.

The effect of Eq. (D2) on the B~foe v, electron spec-
trum is shown in Fig. 8. For I & (m& ) &200 MeV/c,

0 0
the change in dI /dE, is almost unnoticeable (~5%).
For a very broad resonance of mass 1.09 CxeV/c and
width 600 MeV/c (see Table I) there is about a 20% de-
pletion in the total rate (the Breit-Wigner tail at low mass
gets "lost" below threshold). Most relevant for us, how-
ever, is the fact that there is no significant additional con-
tribution to the high-energy electron spectrum from the
low m„ tail of such a broad resonance.
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