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We give a detailed description of the multistring model VENUS for nucleon-nucleus collisions at
ultrarelativistic energies. According to the model, color strings are formed as a consequence of
color exchange between quarks of colliding nucleons. Sequences of nucleon-nucleon collisions are
determined from geometrical considerations. We calculate, among other things, multiplicity distri-
bution for various rapidity intervals for p-p, p-Ar, and p-Xe at 200 GeV, to compare with negative-

binomial fits to data.

I. INTRODUCTION

The ultimate goal of the heavy-ion experiments at
Brookhaven and CERN is to find a new kind of matter:
the quark-gluon plasma (QGP) (Refs. 1 and 2). The
asymptotic-freedom property of QCD implies that at
high temperatures and/or densities such a gas of free
quarks and gluons should exist, the temperature being
low enough to be reached in current heavy-ion experi-
ments. The occurrence of such a new phenomenon
should be proven by an unexpected behavior of one or
more observables, which requires, of course, the
knowledge of “‘expected behavior.” Unfortunately, no-
body can calculate what to expect in an ultrarelativistic
nucleus-nucleus collision, even without a QGP state
involved —we have to rely on models.

One class of model can be considered as an extrapola-
tion of proton-proton (p-p) scattering. The philosophy is
(1) to construct (and test) a parton model for p-p scatter-
ing and (2) determine, from nuclear geometry, p-p in-
teractions in a nucleus-nucleus collision and treat then
every p-p interaction in the same way as an isolated p-p
collision. This amounts not as a superposition of p-p col-
lisions, since a nucleon after an interaction is most prob-
ably a dressed diquark (or even quark) rather than a pro-
ton. Several models have been constructed along these
lines: LUND models>* assume that every p-p collision re-
sults in excited baryons. A phenomenological excitation
function determines excitation energy and momentum of
the baryon, which is further on treated as a particle-
producing string. Another class of models are motivated
by Regge phenomenology, such as dual parton models®~’
and VENUS (Ref. 8), which will be described in this paper.
Here the basic mechanism to form strings is color ex-
change between the quarks of colliding nucleons. An ad-
vantage over LUND is that string properties can be calcu-
lated from structure functions (though an extrapolation
toward low-momentum transfer is necessary). For a com-
parison of the models see Ref. 9.

In order to test such extrapolation models, proton-
nucleus collisions should be considered very useful, since
certain aspects of the reaction mechanism are much
cleaner in p 4 than in A4- A collisions. For example, con-
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sidering p-p, p-Ar, and p-Xe collisions (with average num-
ber of collisions {v),,~2 and {v)y.,~3) we can com-
pare a proton colliding once, twice, and three times with
target nucleons. The average collision numbers are ob-
tained from

vy =3 vP,v),
v>1
P ,(v) being the probability for an incident proton to per-
form v collisions inside the nucleus 4. Distributing the
nucleons randomly according to the nuclear density
p 4(x) we obtain an average number of collisions for a
given impact parameter b of

(v)b=ainfdsz(b,z) (1.1)

leading to an impact-parameter average over Poisson dis-
tributions'® for P ,(v):

P,(v)=[d%

(V)Y —¢y
——v—|b—)e<>”. (1.2)

Since the cross section can be expanded as

0,4= 3 Psvio,,

v>1

(1.3)

we can also study even more than three collisions in a p-
Xe scattering. However, as can be seen from Eq. (1.2),
P ,(v) is for v larger than {(v),_, a very fast-decreasing
function of v (see Fig. 1), so it might be difficult to see
large-v effects.

II. MULTIPLE SCATTERING

The basic assumption of our model is that the projec-
tile nucleon—whatever its nature is after the first
collision—moves through the nucleus on a straight line,
interacting with nucleons coming into its way. Each in-
teraction means color exchange and string formation; we
will discuss that in detail later. The projectile is assumed
to be outside the nucleus already when it hadronizes.

This is reasonable as long as the hadronization time

7,=m " lcosh(y)
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FIG. 1. The distribution P(v) of the number of collision v
for p-Ar and p-Xe collisions. Mean values are {v),,=2.13 and
( V)xe =3.04.

for the leading particle is much larger than the reaction
time

7,=2R coth(y) , (2.1

R being the nuclear radius. A condition for the applica-
bility of our model is, therefore,

Th>Tp (2.2)

For 200-GeV incident energy with y =6 we obtain
7,=~40 fm/c and 7,=~2R, so the condition 7, >, is
satisfied for all nuclei. At 14.5 GeV with y =3.4 we find
7, =3 fm/c, which means the projectile hadronizes inside
the nucleus—the model should not work. If (2.2) is
violated, it may be useful to introduce another time scale,
the time 7, between two nucleon-nucleon interactions

T, =Acoth(y) , (2.3)

with A being the nuclear mean-free path. For 14.5 GeV
we get 7. ~2 fm/c, so the projectile can perform two col-
lisions before it hadronizes—we need a kind of hybrid
model.

Let us consider a proton with high enough energy (so
that the condition 7, >, is satisfied) hitting a nucleus
with mass number A. Our reference system is the
center-of-mass system of the incident nucleon and one
target nucleon, further on referred to as the N-N c.m. sys-
tem, having the rapidity

rlE-l—P
E—P

Vem =3 %31

1y (M2 P24 P

The NN energy in this system is
\/s_m;:{[(mz_|_P2)1/z+m]2_P2} 172

~V2Pm , (2.5)

the last equalities being true in the ultrarelativistic limit
P >>m (m is the nucleon mass). In the numerical calcu-
lations we always use the exact formulas. For 200-GeV
incident nucleons, for example, we obtain from (2.4) and
(2.5 Yem =3.0 and V'syy =19.4, for 14.5 GeV we find
Yem =1.7 and v/ syy=5.4. From (2.5) we obtain the ini-
tial momenta for the projectile nucleon

— 1
gy [ om [ 29
Pl=(E}—m?*)'? 2.7)
and the target nucleons
— 172
Ei=@z %’i’— L i=1,4 (2.8)
Pl=—(E?—m?)'?, i=1,4 . (2.9)

Correspondingly, the coordinates of the nucleons are la-
beled as (xy,y¢,29) and (x;,y;,2;), i =1, A. The target
nucleons are distributed isomorphically according to a
Woods-Saxon density distribution

Po
= 2.10
P = expl(r —ro)/a] 2.10)
with the parameters
a=0.54, ro=1.194'"3—1.614"173 . 2.11)

Although not very important, we take into account the
hard core of the nucleon:

(x;=x; P+, —y;?+(z;—2,)* = (2r, ) (2.12)

with a core radius r,=0.4 fm. The projectile nucleon N
is assumed to move on a straight line through the nu-
cleus, making an interaction whenever it comes close
enough to a target nucleon N;:

o)
(xo=x;)2+ o=y S =,

(2.13)

onyy being the inelastic N-N cross section (we use
oyy=3.1 fm? for 200 GeV). As discussed later, a nu-
cleon is usually no longer a nucleon after it hits a target
nucleon. Nevertheless, we believe this “object” to travel
through the nucleus still having the size of a nucleon and
having the same mean-free path; therefore we use the
same o yy independent of how many collisions are per-
formed.

Before we discuss in the next section what we mean by
nucleon-nucleon interaction (color exchange, string for-
mation, . ..), we want to investigate how many interac-
tions we expect according to the above scenario. In Fig.
1 we display Monte Carlo results (using VENUS 1.06) for
the probability P(v) for an incident proton to hit [ac-
cording to Eq. (2.13)] v target nucleons for an argon and
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a xenon target. For the mean-collision numbers
(v)=3vP(v) we obtain 2.12 for argon and 3.04 for xe-
non. We notice that P (v) is a rapidly decreasing function
of v with a maximum at v=1 (which remains also true
for heavy targets). This means that nucleon-nucleus col-
lisions are dominated by peripheral collisions with a sin-
gle nucleon-nucleon interaction, which is rather unfor-
tunate, since we do not want to study p-p coilisions in p-
A experiments. The hard-core radius r, [see Eq. (2.12)]
only weakly affects the distribution P(v), so we are going
to provide some explicit formulas for r,=0. Since the
computer code is flexible enough to allow a change of the
elementary cross section oy with the number of col-
lisions (although this is never done in numerical calcula-
tions), let us consider a sequence o; (1 <i<v+1) of ele-
mentary cross sections for the ith collision, implying
mean free paths [o,;p(x)]”!. The probability to perform
a collision between z and z +dz is

o;p(b,z)dz ; (2.14)
the probability for no collision is
1—o,;p(b,z)dz =exp[ —o,;p(b,z)dz] ; (2.15)

so the probability for v collisions between z; and z; +dz;
(1<i<wv)is

P, (b)= exp[—o, T(b ]fT(b

Ha

T(b)
. f dry---dr,
0

dP,(b)=exp —f_z‘ma,p(b,z)arz]alp(b,zlwzl
. X exp —-f:a;p(b,z)dz]azp(b,zz)dzz
' X oo
X exp —fzwavﬂp(b,z)dz} . (2.16)
Introducing
ri=[" plb,2)dz @.17)
and
T:= [ 7 plb,2)dz (2.18)
we obtain, by using d7;=p(b,z;)dz;,
dP (b)=exp(—o 7)o dT,
Xexp[ —oy(m,—71)]o,dT,
X o
Xexpl—o,+ (T —7,)]. (2.19)

Integrating Eq. (2.19) we obtain for the probability to
perform v collisions (at a given impact parameter)

v

(2.20)

(Ti41—7;) |exp 017

Equation (2.20) simplifies considerably for equal elementary cross sections o; =o (this is used in all calculations shown

in this paper). In this case we have 0, — 0,

Pv(b)za"exp[—aT(b)]fOT(b) .fOT"”dr

The integration yields T (b)"/V,
(v), =0T (b) a Poissian distribution

P (b)= Q—exp( —{(v))
'V

so we get with

(2.22)

This is Glauber’s result already quoted earlier [see Eq.
(1.2)]. Numerical integration of

P,=2x [ db b<—)iexp —(v)y) (2.23)
gives results very close to the curves shown in Fig. 1,
which are derived with the Monte Carlo technique.
From Eq. (2.23) it is obvious that P(v) drops very fast
whenever v exceeds {(v),—o ({(v),—o is of the order
2R /{A), so {v), —, is approximately 5.4 for Xe and 3.6

for Ar).
III. STRING FORMATION

In this section we want to specify what we mean by
nucleon-nucleon interaction. Let us first consider the in-
teraction of two “fresh” nucleons, not having performed
an interaction before (i.e., a pure N-N collision). The in-
teraction between the two nucleons is realized by color

=0, and we get, from (2.20),

I:[ Ti+1— i)

(2.21)

[ .
exchange between a quark of the projectile and a quark of
the target (see Ref. 5). Since particle production in ul-
trarelativistic collisions is very much forward peaked,
thus limiting the transfer of transverse momentum, we
assume that the color exchange occurs without any
momentum transfer. The production of massive strings
is just due to the fact that color exchange causes the for-
mation of color singlets—stretched between partons
from different nuclei. The relative motion of the partons
creates the string mass.

We make the general ansatz, that the whole N-N col-
lision is a superposition of contrlbutlons o; with i color
exchanges

o=y wo;,

i

(3.1)

w; being the probability for such a contribution. We first
describe the basic one-color-exchange contribution o .
As shown in Fig. 2(a), color exchange (arrow) between a
projectile quark and a target quark rearranges the color
structure such that instead of two nucleons in singlet
states we find two singlets each consisting of a diquark
and a quark of the other nucleon. We explicitly treat the
case in which one (or both) of the quarks participating in
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FIG. 2. The four basic one-color-exchange diagrams. The
arrows indicate color exchange between quarks, leading to a
rearrangement of singlets (string formation). The contributions
(a)-(d) differ in the number N of white ¢@ pairs involved: N =0
(a), N=1 (b) and (c), N =2 (d).

the color exchange is accompanied by an antiquark such
that the gg pair is color neutral, because in this case the
diquark-quark (gg-q) string is replaced by a g-g string and
a baryon. In Figs. 2(b)-2(d) we show this for the case
when the projectile quarks 2(b), the target quark 2(c), or
both quarks.2(d) are part of colorless g pairs. We gen-
erate quarks with and without g partners with probabili-
ties w and 1—w), so the relative weights of these contribu-
tions 0%, 0%, 0§, 0{ can be expressed in terms of w

P(c9)=(1—w)?, Pled)=w(l—w),
(3.2)
P(o$)=w(l—w), P(cH=w?.

In order to qualitatively understand the properties of the
different diagrams concerning particle production, it is
sufficient to know that the quarks (antiquarks) participat-
ing in the color exchange are most likely very slow—
according to the quark structure functions. That means
that all the g¢-g strings, consisting of a slow-forward-
moving quark and a slow-backward-moving antiquark (or
vice versa) have a much smaller mass than the g¢g-g
strings, where a fast diquark participates. Whereas con-
tribution 2(a) is of course symmetric in the N-N c.m. sys-
tem, we expect for 2(b) a fast nucleon in forward direc-
tion, and a bunch of particles produced preferentially in
backward direction from gg-q string fragmentation. This
is the typical situation for diffractive target excitation due
to Pomeron exchange. Another similarity concerns the
momentum distribution of the scattered nucleon. Be-
cause of the x ~! divergence of sea-quark structure func-
tions, the momentum fraction of the nucleon
xy=1—x,—x, is distributed as (1—xy) "' as observed
for diffractive scattering and as predicted due to Pomeron
exchange (for details see Ref. 11). Since the mass of the
' gq-q string is roughly given as (neglecting parton masses
and transverse momentum) m%=syyx, with x being the
quark momentum fraction, the x ~! divergence of the
sea-quark structure functions also implies an m ~? behav-
ior for missing-mass distributions—as observed in
diffractive scattering. For all these reasons we refer to

the contributions 2(a)-2(d) from the figure as 2(a)
nondiffractive, 2(b) diffractive target excitation, 2(c)
diffractive projectile excitation, and 2(d) double-Pomeron
exchange.

Higher-order contributions—involving several color
exchanges—are obtained by applying the basic contribu-
tion o?, 0%, o, o? [corresponding to Figs. 2(a)-2(d)]
several times

o,=(c)={ 3 PlaMol)
meM
J m; { m;
= > > IMPo )]0’ 33
m eEM mEM;j=1 i=1

with the set M defined as M ={a,b,c,d}. In Fig. 3 we
show three of the 16 possibilities for i =2 (two-color-
exchange) contributions: oo, 099, and 0% From
the point of view of the projectile (upper nucleon) in con-
tribution (dd) the projectile survives, whereas in (da) the
nucleon breaks up leaving a ‘“leading diquark,” and in
(aa) even the diquark breaks up to form a fast-forward-
moving quark. Such a diquark breakup was first pro-
posed in Ref. 12. In Fig. 4 we show some examples for
three-color-exchange contributions. For three or more
collisions there would be in principle the possibility to
“remove” three quarks from the projectile (target), thus
leaving a fast-forward- (backward-) moving flavor white
object (glueball)? We do not allow this possibility; we re-
quire a minimum number N, =1 of surviving valence
quarks; N, =2 would prohibit diquark breakup; this is
the usual assumption in dual parton models.>~7 In the
code VENUS N, is a parameter; all results in this paper
refer to N,=1. Many global quantities such as multipli-
city and transverse-energy distributions are only very
weakly affected by the choice of N.

A new feature occurs in ultrarelativistic nucleon-
nucleus collisions compared to N-N collisions. Since ul-
trarelativistic means by definition that the hadronization
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FIG. 3. Exaniples of two-color-exchange diagrams.
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time for the projectile is larger than the nuclear size, it
happens that a leading diquark or even a leading
quark—produced in an earlier collisions—interacts with
a target nucleon. Yet, the above definition of an N-N col-
lision can be as well applied to such collisions between
wounded nucleons: the interaction is realized by color
exchange between quarks, which rearranges singlet struc-
tures to produce strings. The following restriction ap-
plies: we only consider quarks to participate in the color
exchange which have not been struck in an earlier col-
lisions. So for every single collision in a sequence of v
collisions of a projectile nucleon with target nucleons, we
have the four basic one-color-exchange contributions
ou), o), o§(n), o) as in Figs. 2(a)-2(d) (1<pu <v
indicates that target nucleon p is involved)
and correspondingly higher-order contributions
oy N w)oy () -+ oy (u). The whole contribution is [see
Eqgs. (3.1) and (3.3)]

IT |2 wow) =11
p=1

i

w; being the probability for i color exchanges in an N-N collision and M = {a,b,c,d}.

I1 Ploy”) I 01" (p)

@
1L
@

FIG. 4. Examples of three-color-exchange diagrams.

b (3-4)
j=1

In Fig. 5 we show as an example

for v=2 the contribution 0§(1)o¥(1)0%(2) and as an example for v=3 the term ¢(1)0%2)c%3). The entire nucleon-
nucleus collision can be written as [with P ,(v) being the probability to perform v collisions]

m. ot m;
opa= 2P Il | 2w X 2 I P ILor' ()
v u=1 i m,eEM m,EM j=1 ji=1
v v m b v ol mh
:E 2 2 .o 2 2 PA(V)Hwiu HHP(O-II) HHUIJ(#)
v i1"'ivm}EM miIIEM myEM my €M u=1 u=1j=1 p=1j=1

(3.5)

How do we calculate string properties for a given contribution [J; a;n"( u;)? The strings consist of the following in-

gredients: antiquarks with momentum fractions X;(u) (0 <u <v referring to the nucleon), participating quarks with
momentum fractions x;(u), and spectator partons (diquarks or quarks) with momentum fractions z (u). Participants
and spectators are meant regarding color exchange. Since spectators are thought to be dressed containing gluons and
g-g pairs, we determine only momentum fractions of participating quarks and of antiquarks according to measured
structure functions, the spectator gets what is left. So the momentum distribution of the relevant partons of nucleon u
is [with x, =x,(u), X;=%,(un), z =z (u)]

fCox X )= [Taix) [17(%)8 [1— 3 x;— 3 X;—2]6(2) . (3.6)
i j i J

[
p(D)=(po(1),p,(1),p;(1)) and p(2)=(py(2),p,(2),p(2)).
The string mass is

m*=[po(1)+po(2)*—[p,(1)+p,(2)]

Not knowing multiquark structure function, we make in
Eq. (3.6) a simple factorization ansatz; the factor 6(z)
reflects the fact that we do not allow to “remove’ more
momentum from the nucleon than available.

We are talking about momentum fractions, but we did —[p,(1 )+p”(2)]2 . (3.7)
not specify so far which kind of momentum we mean. . o
The possibilities are the longitudinal momentum p, the For vanishing longitudinal momenta we find
energy pg, or the light-cone variable p , =p,+p,, all of m2=2p,(1)||p,(2)|(1—cosa) , (3.8)

them being equal (concerning fractions) for p— 0. In
order to make a choice let us first evaluate the mass of a
string in  terms of the parton momenta

a being the angle between p,(1) and p,(2). The trans-
verse momentum p, being of the order (nucleon ra-
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dius) "!~0.4 GeV, we find m to be of the order (2X0.4>
GeV?)!"2=0.6 GeV which is considerably larger than the
pion mass. This is very important, as we will see in the
following. According to Duke and Owens' the quark
structure functions are parametrized as (see also Ref. 14
for the parameters)

xq;(x)= Ax“(1—x)"(1+ax) , (3.9)

with a =0 for sea quarks. So some cutoff is necessary to
handle the x ~! divergence for x —0. A natural cutoff is
the requirement that the string mass has to be larger than
the pion mass for g-g strings (or larger than the proton
mass for gg-q strings). Since, as discussed above, the
string mass due to relative motion in transverse direction
is already larger than the pion mass, such a string-mass
cutoff could not remove the x ~! divergence—if x is the
longitudinal-momentum fraction. Consequently we have
to use a variable, which includes p,, the energy
Po=I( pﬁ +phH1? or the light-cone variable
p+=p0+p”=(pﬁ+p,2)“2+p”. It amounts to a kind of
parameter to have the choice between p, and p,.. We
prefer p, and all results in this paper are obtained in this
way.

Independent of which momentum (p, or p ) the frac-
tion x refers to, we use, assuming cylindrical symmetry,
as a second variable the absolute value of the transverse
momentum p, = (p? +py2)1/2. In general we generate p,
independent of x according to either an exponential dis-
tribution

2
( ) ~p:€ 7\ ’ 3.10
fl P D:€Xp <Pt>pt ( )
or according to a Gaussian distribution
f2(p)~pexp | ——"—p} (3.11)
2\t t 4(pt )2 t ’ .
with a parameter (p, ) of the order
(p)=R71, (3.12)
(1Cld20) [sF 9 =1
L:D
LJ
oF BiEb
C ‘ he C
B
IR O —
o
—— |J

el
le)

FIG. 5. Example for nucleon-nucleus interaction with two
and three participating target nucleons.
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R being the size of a nucleon. For all results obtained in
this paper we use the exponential distribution f; with
(p,)=0.400 GeV. The variables x and p, are, of course,
not entirely independent since p, has to be smaller than
the energy xE|,. '

Using the above prescription to determine string prop-
erties, we get, for example, a distribution of string rapidi-
ties

. Po(1)+po(2)+p (1) +p,(2)
y=4l

3.13
2 po(1)+po(2)—p,(1)—p,(2) (3-13)

as shown in Fig. 6. In order to explain the results we give
the asymptotic (p — o« ) limit of Eq. (3.13) for finite x

x(1)
x(2)

The value for x is qualitatively different for participating
partons and spectators. Participants have small x ac-
cording to the structure functions, which are peaked at
small x, whereas spectators, as long as not too many par-
ticipants contribute, carry a large momentum fraction.
Therefore gq-q strings have a preferred direction. If the
spectator is from the projectile (“projectilelike” gg-g
string) they move forward (y > 0); if the spectator is from
the target (“targetlike” g-g strings), they move backward
(y <0). Since for N-N collisions (v=1, left Fig. 6) we
have one projectilelike and one targetlike string, we ob-
serve two maxima of equal height around y =+1. For
v=3 we still observe two maxima, also around y ==+1,
yet the left (y <0) peak is approximately three times as
high as the right (y > )0 peak, because we have three tar-
getlike gg-q strings versus only one projectilelike gg-g
string. In general, we have for v collisions v targetlike
and one projectilelike string, just reflecting baryon-
number conservation. Since for ¢-g strings x(1) and x(2)
are generated according to the same distribution g (x)
with a maximum at a small value of x =x, the rapidity
distribution peaks at y =0, yet showing large fluctua-

y=1n (3.14)

10" ¢ : : : 3 : : .

1 collision 200 GeV 3 collisions 200 GeV
VENUS 1.06

— 9799

02 strings strings |
1 — —_
K —— g9 -~ 99
] strings strings
1

\
\
\
\
\
\
\
1
1
|
]
]
1
]
]
1
1

—3 ) A .
0 55 =25 00 25

Y y

25 5.0

FIG. 6. Distribution of string rapidities for one and three
collisions. The solid curves consider diquark-quark (ggq-q)
strings; the dashed curves consider quark-antiquark (g-g)
strings. The g¢g-g strings can be clearly separated into

backward- (targetlike) and forward- (projectilelike) moving
strings.
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tions. In order to understand the different large-x behav-
ior of qq-q and g-g strings, we use another way to express
the rapidity in the ultrarelativistic limit (for y > 0):

2x (1)P,
y=In"—"",
My
u,z(p(z)—pﬁ )1/2 being the transverse mass of the string
with po=p,(1)+py(2) and p,=p (1)+p;(2), and with
x (1)=py(1)/P,y, where P, is the nucleon momentum.
Since the mass of a gg-g string has to be larger than the
nucleon mass my and x (1) < 1,we find, as an upper limit,

2Py
my =JInN >

(3.15)

Vog-q =In (3.16)
yy being the rapidity of the incident nucleon (for 200
GeV, yy=3). This sharp cutoff can be clearly seen in the
rapidity distributions for gg-q strings in Fig. 6. For g¢-g
strings the situation is different, since the string mass is
not limited by the nucleon mass, but by the much smaller
pion mass m _—so we observe g-g strings with rapidities
larger than yy.

IV. STRING FRAGMENTATION

In this section we discuss particle production from a
color string. We are, of course, interested in strings pro-
duced in hadronic collisions, as discussed above. Yet the
following considerations are more general: the fragmen-
tation model (with the same parameters) is also applied to
describe particle production of strings from e *e ~ annihi-
lation and deep-inelastic lepton nucleon scattering. So,
we have the opportunity to test and fix the fragmentation
procedure before applying it to hadronic collisions.

A string is defined by the flavor of the two partons that
generate the string and by the parton momenta

p(1)=(py(1),p,(1),p(1))

and
p(2)=(po(2),p,(2),p\(2)),

the latter ones defining string momenta
P =(po,p,,py)=p(1)+p(2) .

We first perform a Lorentz boost for the parton momenta
p (i) into the string c.m. system

3
po(i)=Bwo()+ 3 Bipli),

=1

4.1
Pr()= Brpoli)+p, (i)
B 3
tr @,
1 PP
with
B.= p"2 ©=0,1,2,3 4.2)

(ps—pi—pi—pD"*’

[we identify p, =(p;,p,) and p;=p;]. Two Euler angles

p5(1)
cosa= ,
{[p5(1)*+ps(D]}'2 w3
{[p5(1)24p5(1)2]}1/2 '
cosfB=

([P (1P +p3 (12 +p5 (D]}
define the tilt of the string relative to the three-axis. A
rotation '

py () pi(i)

py (i) |=R |p4(i) 4.4)
p3 (i) p3(i)
with the transformation matrix
cosf8 —sinasinf8 —cosa sinf3
R=1|o0 cosa —sina 4.5)
sinB sinacosff  cosa cosf3

provides a purely longitudinal string, all transverse mo-
menta of the partons being zero. The inverse matrix (for
the reverse transformation later) is

cosf3 0 sinf3
R '=|— sinBsina cosa cosfsina (4.6)
—sinfcosa —sina cosfcosa

After Lorentz boost dnd rotation a string is now well
prepared to be processed by a string fragmentation pro-
cedure. Different types of models provided a phenome-
nological description of string fragmentation: (i) the
Field-Feynman model'® where the two partons fragment
independently in an iterative manner, (ii) the Lund mod-
el'® where resonance production is realized through
breaking the string in pieces, (iii) parton-shower models'’
where ordered gluon radiation is the source of particle
production. We use a generalized version of the Field-
Feynman model (FFM), as described in the following.

In the FFM the two partons, which define the string,
fragment essentially independently of each other. For
each of the partons a fragmentation cascade is defined by
elementary vertices; a parton (g or § or gq or qq) pro-
duces a primary hadron, leaving a new parton with re-
duced momentum. Figure 7 shows the vertices we take
into account: 7(a) a quark producing a meson, leaving a
quark; 7(b) a quark producing a baryon, leaving an an-
tidiquark; 7(c) a diquark producing a meson, leaving a di-
quark; and 7(d) a diquark producing a baryon, leaving an
antiquark. The vertices for antiquark and antidiquark
production are obtained by exchanging quarks and anti-
quarks.

The relative weights of baryon and meson production
in quark jets (P,;’, 1 —-P;’) and in diquark jets (P:q, 1 —P,;’q)
provide two free parameters. A further parameter is the
probability P, to create s pairs in competition to u% and
dd production. The latter two are assumed to be equally
probably produced

1—P

1-P, :
P,=—F=", Pj=—F—. 4.7)

The momentum of a primary hadron relative to the
momentum of the corresponding parton is generated ac-
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FIG. 7. The elementary fragmentation vertices for the frag-
mentation of quarks and diquarks.

cording to so-called splitting functions f"(x), fJ(x),
m(x), and fL(x) for the four vertices of Fig. 7. The
splitting functions are a crucial input of the model. They

determine momentum distributions of produced particles,

moreover, the multiplicities depend strongly on these.

functions. Therefore, one would like to have some
theoretical basis to determine them, rather than having
free parameters. Indeed, there exist QCD-inspired results
for the asymptotic behavior of such elementary vertices
as x approaches 1. The fragmentation behaves like
(1—x)*"~!, where n counts the number of spectators
(counting rules'®). We have n =1 for the vertices Figs.
7(a) and 7(d) and n =2 for the vertices Figs. 7(b) and 7(c),
leading to a large-x behavior as (1—x)! and (1—x)3, re-
spectively. In order to account for the fact that one does
not observe a rapidity plateau of baryons produced in
deep-inelastic scattering'® we add a factor x ® for the case
of baryon production. We eventually use (up to normali-
zation factors)

frx)=01—x), fhx)=x(1-x)7,

(4.8)
fox)=(1-x), fbx)=x*(1-—x).

Again we have some freedom concerning the choice of
the momentum variable: longitudinal momentum p,, en-
ergy po, or light-cone variable p, =p +p, (for large
momentum they are equal). For all calculations present-
ed we choose the energy p,.

The transverse momentum p, of quarks created during
fragmentation is generated according to either an ex-
ponential distribution,

2
(p,)~p,e - , 4.9)
S1(p;)~p,exp <Pt>Pt ( »
or according to a Gaussian distribution,
f2(p)~peexp | ——5p? (4.10)
2\Pt t 4<Pt )2 t | .

the first option being used in this paper. Azimuthal sym-
metry is assumed. We use a mean transverse momentum
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{p,)=0.400 GeV. If the quark gets a momentum p,, the
corresponding antiquark gets —p,.

The jet fragmentation cascade is terminated when the
jet energy is too small to produce further particles. In or-
der to achieve flavor conservation (and thus baryon-
number conservation) we combine the two remaining par-
tons of two corresponding jets to make a primary hadron.
The last fragmentation step before the recombination is
only performed if the sum of the masses of all produced
particles, including the recombined one, is smaller than
the string mass. In this way we obtain approximate ener-
gy conservation. We perform a correction procedure? in
order to achieve exact energy conservation as follows.
Since we work in the string c.m. system, the four-
momentum of all produced particles i per string

Poli)

Po ; °

P, |= |2 p.(0) (4.11)
Py i

Zp“(i)

should be (pg,p,,p;)=(M,0,0), M being the string mass.
Although momentum conservation is done correctly,
p; =0 and p, =0, we find in general p, to deviate slightly
from M. To fix that we rescale all particle momenta

p,(i)—(1+e€)p,(i),
p (i) —(1+e)p, (i),
poli)—{m (i +(1+€)[p,(i)+p, ()P} 7*,

such that the energy of the produced particles matches
the string mass:

S (m P+ (1+e)[p, (i)Y +p ()]} *=

i

(4.12)

The fragmentation procedure described above has been
applied to describe particle production of strings from
e te ™ annihilation and deep-inelastic vp, vp, up scatter-
ing. For string masses between few and 12 GeV we can
reproduce mean multiplicities, momentum, rapidity, and
multiplicity distributions. Qualitative features are multi-
plicity {n ) increases logarithmically with the energy as
(n)=a +bInE. Rapidity distributions shows a plateau-
like behavior at y_.,, =0. These features can be easily
understood in a very simplified, therefore analytical solv-
able, version of the model, which we discuss in the fol-
lowing (see Ref. 15).

Let us consider the fragmentation of a fast-moving
quark, taking into account only the dominant vertex Fig.
7(a)—meson production (baryon production from a
quark is much less likely than meson production, so the
model is somehow not unrealistic). If we do not care
about the fact that the cascade has to stop at some point,
we can write an integral equation for the momentum
fraction distribution at produced particles:

Dx)=f(x)+ ['defF(1—ED [% i

S (x)=f7"(x) being the splitting function. The term f (x)

(4.13)
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on the right-hand side of Eq. (4.13) represents mesons
which are produced from the original quark in the first
fragmentation step (first-rank meson). The integral in Eq.
(4.13) counts higher-rank mesons: f(1—&)d& is the
probability to have, after the first fragmentation, a
remainder quark with the momentum fraction &, the term
E7'D(x/£) is the distribution of mesons produced from
the remainder quark, renormalized by £ !. The reason-

able ansatz
f(x)=(n+1)(1—x)" (4.14)

allows an analytical solution of the integral Eq. (4.13):

px)=Lx) (4.15)
X
For small values of x (x <<1) we find
px=21H (4.16)

In the central region (small x) it is more convenient to
use the rapidity rather than the momentum. Taking x to
be the light-cone momentum fraction x =p_ /p'li we
find the relation

x=—F v
init

P+

> (4.17)

where u=(m?+p?)!/? is the transverse mass of the pion.
With dx/dy =x [from (4.17)] we conclude from Eq.
(4.16) for the rapidity density in the central region

D(y)=n+1, (4.18)

implying that the height of the rapidity distribution stays
constant with energy; only the width increases (logarith-
mically with energy), consequently leading to an energy
dependence of the mean multiplicity as '

(n)=a-+bnkE . (4.19)

These important features, rapidity plateau and logarith-
mic increase of (n ) with energy, remain approximately
true also for the realistic model described earlier (taking
into account all vertices of Fig. 7).

V. RESULTS

In this section we want to study properties of particle
production according to the string model for nucleon-
nucleus collision as discussed in Secs. II, III, and IV. A
comparison with data will be left to the next section. In
particular, we want to compare the two reactions: (a) a
proton hitting exactly one target proton and (b) a proton
hitting exactly three target nucleons—two neutrons and
one proton. We discussed earlier (in Fig. 6) the distribu-
tion of string rapidities. In Fig. 8 we display the rapidity
distribution of produced negative particles (mostly 7~ ).
By comparing the solid and the dashed lines we realize
that for one collision particle production is mostly due to
qq-q strings, whereas g-g strings (from diffractive process-
es and from higher-order color-exchange processes) play
a minor role. For three collisions the g-g strings partici-
pate more strongly due to the fact that by definition no

10 T T T 3 T T T
1 collision 200 GeV 3 collisions 200 GeV

VENUS 1.06

(1/o )doy/dy
S

aI
N
T

— dll strings — all strings

—— g—qq strings

—— g—qq strings

=3 ) . ) ) . A
0 5025 00 25 50 =25 00 25 5.0

Y Y

FIG. 8. Rapidity distribution of negative particles for one
and three collisions. The solid curves represent the full distribu-
tions; the dashed curves only count for particles from gg-g
strings.

more than two quarks can be removed from the projec-
tile, so for v=3 (even without higher-order terms) at least
one g-g pair is involved. In Fig. 6 we showed that gg-q
strings can be subdivided into forward- and backward-
moving strings (projectilelike and targetlike). Therefore,
we shown in Fig. 9 how gg-g contributions (the dashed
curve in Fig. 8) can be subdivided into contributions from
forward- and backward-moving gq-q strings. We realize
that for three collisions the backward peak is approxi-
mately three times as high as the forward peak—in ac-
cordance with three targetlike strings compared to one
projectilelike one. Not so obvious but nevertheless re-
markable is the difference concerning the mean values
(y) for backward and forward peak for one and three

10 ¢ T T T F T T T
1 collision 200 GeV 3 collisions 200 GeV
0 VENUS 1.06

107 k E3 E
> r
g1
310 E ¥ E
g

1072 3 :

b
10_3 1 !

50 25 00 25 50 -25 00 25 50
y y

FIG. 9. Separation of rapidity distributions of particles from
gq-q strings (dashed curves in Fig. 8) into contributions of parti-
cles from backward- and forward-moving strings. The back-
ward peak for three-collision is approximately three times as
high as the forward peak, corresponding to three times as many
backward strings as forward strings.
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collisions. We obtain
(y )t1>ackw= _092’
1.14,

(P)w=0.92,
(_V >gackw=_ (y >?orw:0'87 .

Whereas the forward values are fairly close, we observe a
substantial backward shift of the backward mean value
for three collisions compared to one collision (see Ref.
21). This is partly due to the fact that for three collisions
relatively more gg-g ., strings compared to gg-q,,, strings
contribute than for one collision, and ()., or
[ €y Yoackw! is larger for gg-q.., than for gg-q,, strings.
The latter result is more or less obvious, since, as seen in
Fig. 10, rapidity distributions of particles from gg-q,,
strings are broader than distributions from g¢g-q,
strings—yet on the quark side, since a valence quark has
usually more momentum than a sea quark. On the di-
quark side, of course, both distributions look the same.
For a relativistic string, the one end would not care what
the other end looks like. This relativistic effect looks at
first glance contradictory since we know that string rapi-
dity and mass depends on both quark momentum and di-
quark momentum:

(5.1)

Yer=21In );((qqq)) , (5.2)
Mg =[synx (gq)x ()] (5.3)

(we consider the ultrarelativistic limit). The rapidity of a
particle (in forward direction, i.e., on the gq side), in the
string c.m., is

gmsr 2
! =%ln%sx(qq)x(q) s
p p

Ypu=In (5.4)

£ being a number between O and 1 and u being the trans-
verse mass of the particle. In the N-N reference system

L T T T
101 | 1collision 200 GeV |
] VENUS 1.06
100L T Gaaqstrings ]
2 [ T~ Gea—qgstrings ]
} [
S o0
S0 F
1072 \
o \ ]
r \
T \
r \
1673 .
-5.0 —2.5 0.0 2.5 5.0
y

FIG. 10. Separation of the forward and backward gq-g string
contributions in gg-q,, and ¢q-q.., contributions. For large |y|,
both agree, which means that the diquark side does not care
about the parton at the other end of the string.
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FIG. 11. Rapidity distribution of negative particles com-
pared to data of De Marzo et al. (Ref. 22).

we find, with (5.2) and (5.4),

Y=y ;m FVstr

2
lnfz—sx (qq)x(q)-an—(g—q—)

1
2 x(q)

s —
= tinE ox (ggP=1nEY5x90)

. K K
So the particle rapidity in fact does not depend on x (g),
the momentum of the proton on the other side. These
considerations justify models for particle production in
the projectile fragmentation region, which do not care
about the backward parton. !1214

VI. COMPARISON WITH p-p, p-Ar, AND p-XE DATA

We are now going to compare results of our multi-
string model, carried out with the computer code VENUS
1.06, with data®*2® for p-p, p-Ar, and p-Xe scattering at
200 GeV incident energy. Since our model does not in-
clude intranuclear cascading of secondaries, we will in
particular care about how much room is left for particle
production due to this effect. In Fig. 11 we see that the
Monte Carlo results (histograms) reproduce the increase
of particle production at backward rapidities for increas-
ing target size, due to the increasing number of targetlike
qq-q strings, as discussed earlier. At forward rapidities,
data as well as calculated results are more or less the

10 - r r T v T r v
p+p 200 Gev p+Ar 200 Gev p+Xe 200 Gev
10’ ¥
.
> .
B .
% 00 5 +
= * SPS ® o SPS o o o SPS
4 — VENUS 106 o/ — VENUS 106 — VENUS 106
10 3 (3 . .
o
o o
_ol o

10

50 —25 00 25 50 —25 00 25 50
y

50 —25 00 25
y y

FIG. 12. Rapidity distribution of charged particles compared
to data of De Marzo et al. (Ref. 22). Contrary to the model, the
data show a spike at y,, =0, probably due to protons from the
target remnant.



790 K. WERNER 39

10 . T : ; ;
p+A 200 GeV 102 p+A 200 GeV ]

10'1 L ®SPS — VENUS 106 ] o SPS — VENUS 1.06

Xe

-3
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FIG. 13. Multiplicity distribution of charged (left) and nega-
tive (right) particles for p-p, p-Ar, and p-Xe scattering at 200
GeV. The data are from Ref. 22.

same for p-p, p-Ar, and p-Xe—since we have in any case
only one projectilelike string. It is remarkable that even
in the target-fragmentation region [y =(—2)—(—3)] the
agreement is satisfactory—Ileaving not much room for
negative particle production due to cascading. The situa-
tion is quite different concerning charged particles (in-
cluding protons). As seen from Fig. 12, the data (dots)
are well reproduced by VENUS calculations (histograms),
except for peaks around y.,, =—3 (=y,, =0) for p-Ar
and p-Xe. These peaks are certainly due to slow proton
from the fragmentation of the spectator part of the target
nucleus. Spectators are not considered in our calcula-
tions at all. The flatter tails of the data for y * 3 com-
pared to VENUS look like misidentification of protons. A
too-small transverse mass results in a too-large rapidity.
In Fig. 13 we display multiplicity distributions for
charged (left) and negative (right) particles. Again for
negative particles VENUS results and data agree remark-
ably well, whereas the theoretical distribution for charged
particles in p-Ar and p-Xe are much too narrow. Again
we can blame the missing spectator protons for this
disagreement. More detailed information is obtained by
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FIG. 14. Multiplicity distribution of charged (left) and nega-
tive (right) particles at limited rapidity intervals 0 <y <y; with
»i=3.5,3.0,...,0.5 (from top to bottom) for a p-p collision at
200 GeV. The data are from Ref. 23.
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FIG. 15. Multiplicity distribution of negative particles in a
p-Ar collision at 200 GeV in forward intervals 0<y <y, (left)
and  backward intervals —y; <y <0 (right) with
»;=3.5,3.0,...,0.5 (from top to bottom). The data are from
Ref. 23.

presenting multiplicity distributions in limited rapidity
intervals (y i, <y <Yna, ), Where only particles with a ra-
pidity between y.., and y... are counted. In Ref. 23
multiplicity distributions are presented separately for
backward rapidity intervals (—y; =y =0) and forward in-
tervals (0=<y <y;) with y,={0.5,1.0,1.5,2.0,2.5,3.0,3.5}.
It turned out that all distributions can be well
parametrized by the two-parameter negative-binomial
(NB) distribution

(k+1)---(k+n—1) a"k*
n! (ke
(6.1)

so we compare VENUS results with NB fits to these data.
As seen from Fig. 14 VENUS reproduces both charged-
and negative-particle distributions for p-p quite well, al-
though the theoretical curves are slightly too narrow cor-
responding to a slight underprediction of the rapidity
density (see Figs. 11 and 12). In Figs. 15-18 we show p-
Ar and p-Xe results. On the right-hand side we alway
plot the distributions for backward-rapidity intervals
(—y; <y <0), on the left-hand side for the forward inter-
vals (0<y <y;) with y;=3.5,3.0,...,0.5 from the top
to the bottom. We first observe that backward distribu-
tions are much broader than forward distributions, being
related to the fact that rapidity densities o~ !do /dy are

ok, )=~
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FIG. 16. Same as Fig. 15, but for charged particles.



108 — . . .
07F  p+Xe2000eV - § p+Xe 200 GeV i
10?> — VENUS 106 ¥ — VENUS 106 1
07 r esps ¥ ®SPS 1
107§ . ¥ 1
.3 DO
w=0F d ¥ . ]
101 ¥ 2. 4
o ¥ - - 1
107 F L g 1
4 .
10 ¥ - ° 1
~2
0 F ¥ g 1
1074 neg forw ¥ neg backw 1
000 2.0 40 60 80 100 5 0. . 20.
n n

FIG. 17. Same as Fig. 15, but for p-Xe.

peaked at negative rapidities (see Figs. 11 and 12), as dis-
cussed earlier (more targetlike than projectilelike strings
contribute). For negative particles forward and back-
ward distributions are nicely reproduced by VENUS. For
charged-particle distributions only for the backward in-
tervals [—3.5,0] and [—3.0,0] we observe a major
disagreement. On the other hand, this includes just the
rapidity y = —3 where we observed earlier an excess of
charged particles compared to VENUS, probably due to
spectator protons.

VII. CONCLUSIONS

We have demonstrated that the multistring model
VENUS, a parameter-free extrapolation of a nucleon-
nucleon model, is able to describe rapidity and detailed
multiplicity distributions for p-p, p-Ar, and p-Xe col-
lisions at 200 GeV reasonably well. Only some charged
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FIG. 18. Same as Fig. 17, but for charged particles.

particles at y,, =0 are missing, probably spectator pro-
tons. The effect of particle production due to cascading
has to be carefully investigated; in fact we believe that p-
nucleon data provide a much better and clearer test of
such a concept that nucleus-nucleus data.
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